Myhill_1.thy
author zhang
Thu, 27 Jan 2011 12:35:06 +0000
changeset 42 f809cb54de4e
child 43 cb4403fabda7
permissions -rw-r--r--
Trying to solve the confict

theory Myhill_1
  imports Main List_Prefix Prefix_subtract
begin

(*
text {*
     \begin{figure}
    \centering
    \scalebox{0.95}{
    \begin{tikzpicture}[->,>=latex,shorten >=1pt,auto,node distance=1.2cm, semithick]
        \node[state,initial] (n1)                   {$1$};
        \node[state,accepting] (n2) [right = 10em of n1]   {$2$};

        \path (n1) edge [bend left] node {$0$} (n2)
            (n1) edge [loop above] node{$1$} (n1)
            (n2) edge [loop above] node{$0$} (n2)
            (n2) edge [bend left]  node {$1$} (n1)
            ;
    \end{tikzpicture}}
    \caption{An example automaton (or partition)}\label{fig:example_automata}
    \end{figure}
*}

*)


section {* Preliminary definitions *}

text {* Sequential composition of two languages @{text "L1"} and @{text "L2"} *}
definition Seq :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100)
where 
  "L1 ;; L2 = {s1 @ s2 | s1 s2. s1 \<in> L1 \<and> s2 \<in> L2}"

text {* Transitive closure of language @{text "L"}. *}
inductive_set
  Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102)
  for L :: "string set"
where
  start[intro]: "[] \<in> L\<star>"
| step[intro]:  "\<lbrakk>s1 \<in> L; s2 \<in> L\<star>\<rbrakk> \<Longrightarrow> s1@s2 \<in> L\<star>" 

text {* Some properties of operator @{text ";;"}.*}

lemma seq_union_distrib:
  "(A \<union> B) ;; C = (A ;; C) \<union> (B ;; C)"
by (auto simp:Seq_def)

lemma seq_intro:
  "\<lbrakk>x \<in> A; y \<in> B\<rbrakk> \<Longrightarrow> x @ y \<in> A ;; B "
by (auto simp:Seq_def)

lemma seq_assoc:
  "(A ;; B) ;; C = A ;; (B ;; C)"
apply(auto simp:Seq_def)
apply blast
by (metis append_assoc)

lemma star_intro1[rule_format]: "x \<in> lang\<star> \<Longrightarrow> \<forall> y. y \<in> lang\<star> \<longrightarrow> x @ y \<in> lang\<star>"
by (erule Star.induct, auto)

lemma star_intro2: "y \<in> lang \<Longrightarrow> y \<in> lang\<star>"
by (drule step[of y lang "[]"], auto simp:start)

lemma star_intro3[rule_format]: 
  "x \<in> lang\<star> \<Longrightarrow> \<forall>y . y \<in> lang \<longrightarrow> x @ y \<in> lang\<star>"
by (erule Star.induct, auto intro:star_intro2)

lemma star_decom: 
  "\<lbrakk>x \<in> lang\<star>; x \<noteq> []\<rbrakk> \<Longrightarrow>(\<exists> a b. x = a @ b \<and> a \<noteq> [] \<and> a \<in> lang \<and> b \<in> lang\<star>)"
by (induct x rule: Star.induct, simp, blast)

lemma star_decom': 
  "\<lbrakk>x \<in> lang\<star>; x \<noteq> []\<rbrakk> \<Longrightarrow> \<exists>a b. x = a @ b \<and> a \<in> lang\<star> \<and> b \<in> lang"
apply (induct x rule:Star.induct, simp)
apply (case_tac "s2 = []")
apply (rule_tac x = "[]" in exI, rule_tac x = s1 in exI, simp add:start)
apply (simp, (erule exE| erule conjE)+)
by (rule_tac x = "s1 @ a" in exI, rule_tac x = b in exI, simp add:step)

text {* Ardens lemma expressed at the level of language, rather than the level of regular expression. *}

theorem ardens_revised:
  assumes nemp: "[] \<notin> A"
  shows "(X = X ;; A \<union> B) \<longleftrightarrow> (X = B ;; A\<star>)"
proof
  assume eq: "X = B ;; A\<star>"
  have "A\<star> =  {[]} \<union> A\<star> ;; A" 
    by (auto simp:Seq_def star_intro3 star_decom')  
  then have "B ;; A\<star> = B ;; ({[]} \<union> A\<star> ;; A)" 
    unfolding Seq_def by simp
  also have "\<dots> = B \<union> B ;; (A\<star> ;; A)"  
    unfolding Seq_def by auto
  also have "\<dots> = B \<union> (B ;; A\<star>) ;; A" 
    by (simp only:seq_assoc)
  finally show "X = X ;; A \<union> B" 
    using eq by blast 
next
  assume eq': "X = X ;; A \<union> B"
  hence c1': "\<And> x. x \<in> B \<Longrightarrow> x \<in> X" 
    and c2': "\<And> x y. \<lbrakk>x \<in> X; y \<in> A\<rbrakk> \<Longrightarrow> x @ y \<in> X" 
    using Seq_def by auto
  show "X = B ;; A\<star>" 
  proof
    show "B ;; A\<star> \<subseteq> X"
    proof-
      { fix x y
        have "\<lbrakk>y \<in> A\<star>; x \<in> X\<rbrakk> \<Longrightarrow> x @ y \<in> X "
          apply (induct arbitrary:x rule:Star.induct, simp)
          by (auto simp only:append_assoc[THEN sym] dest:c2')
      } thus ?thesis using c1' by (auto simp:Seq_def) 
    qed
  next
    show "X \<subseteq> B ;; A\<star>"
    proof-
      { fix x 
        have "x \<in> X \<Longrightarrow> x \<in> B ;; A\<star>"
        proof (induct x taking:length rule:measure_induct)
          fix z
          assume hyps: 
            "\<forall>y. length y < length z \<longrightarrow> y \<in> X \<longrightarrow> y \<in> B ;; A\<star>" 
            and z_in: "z \<in> X"
          show "z \<in> B ;; A\<star>"
          proof (cases "z \<in> B")
            case True thus ?thesis by (auto simp:Seq_def start)
          next
            case False hence "z \<in> X ;; A" using eq' z_in by auto
            then obtain za zb where za_in: "za \<in> X" 
              and zab: "z = za @ zb \<and> zb \<in> A" and zbne: "zb \<noteq> []" 
              using nemp unfolding Seq_def by blast
            from zbne zab have "length za < length z" by auto
            with za_in hyps have "za \<in> B ;; A\<star>" by blast
            hence "za @ zb \<in> B ;; A\<star>" using zab 
              by (clarsimp simp:Seq_def, blast dest:star_intro3)
            thus ?thesis using zab by simp       
          qed
        qed 
      } thus ?thesis by blast
    qed
  qed
qed


text {* The syntax of regular expressions is defined by the datatype @{text "rexp"}. *}
datatype rexp =
  NULL
| EMPTY
| CHAR char
| SEQ rexp rexp
| ALT rexp rexp
| STAR rexp


text {* 
  The following @{text "L"} is an overloaded operator, where @{text "L(x)"} evaluates to 
  the language represented by the syntactic object @{text "x"}.
*}
consts L:: "'a \<Rightarrow> string set"


text {* 
  The @{text "L(rexp)"} for regular expression @{text "rexp"} is defined by the 
  following overloading function @{text "L_rexp"}.
*}
overloading L_rexp \<equiv> "L::  rexp \<Rightarrow> string set"
begin
fun
  L_rexp :: "rexp \<Rightarrow> string set"
where
    "L_rexp (NULL) = {}"
  | "L_rexp (EMPTY) = {[]}"
  | "L_rexp (CHAR c) = {[c]}"
  | "L_rexp (SEQ r1 r2) = (L_rexp r1) ;; (L_rexp r2)"
  | "L_rexp (ALT r1 r2) = (L_rexp r1) \<union> (L_rexp r2)"
  | "L_rexp (STAR r) = (L_rexp r)\<star>"
end

text {*
  To obtain equational system out of finite set of equivalent classes, a fold operation
  on finite set @{text "folds"} is defined. The use of @{text "SOME"} makes @{text "fold"}
  more robust than the @{text "fold"} in Isabelle library. The expression @{text "folds f"}
  makes sense when @{text "f"} is not @{text "associative"} and @{text "commutitive"},
  while @{text "fold f"} does not.  
*}

definition 
  folds :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b"
where
  "folds f z S \<equiv> SOME x. fold_graph f z S x"

text {* 
  The following lemma assures that the arbitrary choice made by the @{text "SOME"} in @{text "folds"}
  does not affect the @{text "L"}-value of the resultant regular expression. 
  *}
lemma folds_alt_simp [simp]:
  "finite rs \<Longrightarrow> L (folds ALT NULL rs) = \<Union> (L ` rs)"
apply (rule set_ext, simp add:folds_def)
apply (rule someI2_ex, erule finite_imp_fold_graph)
by (erule fold_graph.induct, auto)

(* Just a technical lemma. *)
lemma [simp]:
  shows "(x, y) \<in> {(x, y). P x y} \<longleftrightarrow> P x y"
by simp

text {*
  @{text "\<approx>L"} is an equivalent class defined by language @{text "Lang"}.
*}
definition
  str_eq_rel ("\<approx>_")
where
  "\<approx>Lang \<equiv> {(x, y).  (\<forall>z. x @ z \<in> Lang \<longleftrightarrow> y @ z \<in> Lang)}"

text {* 
  Among equivlant clases of @{text "\<approx>Lang"}, the set @{text "finals(Lang)"} singles out 
  those which contains strings from @{text "Lang"}.
*}

definition 
   "finals Lang \<equiv> {\<approx>Lang `` {x} | x . x \<in> Lang}"

text {* 
  The following lemma show the relationshipt between @{text "finals(Lang)"} and @{text "Lang"}.
*}
lemma lang_is_union_of_finals: 
  "Lang = \<Union> finals(Lang)"
proof 
  show "Lang \<subseteq> \<Union> (finals Lang)"
  proof
    fix x
    assume "x \<in> Lang"   
    thus "x \<in> \<Union> (finals Lang)"
      apply (simp add:finals_def, rule_tac x = "(\<approx>Lang) `` {x}" in exI)
      by (auto simp:Image_def str_eq_rel_def)    
  qed
next
  show "\<Union> (finals Lang) \<subseteq> Lang"
    apply (clarsimp simp:finals_def str_eq_rel_def)
    by (drule_tac x = "[]" in spec, auto)
qed

section {* Direction @{text "finite partition \<Rightarrow> regular language"}*}

text {* 
  The relationship between equivalent classes can be described by an
  equational system.
  For example, in equational system \eqref{example_eqns},  $X_0, X_1$ are equivalent 
  classes. The first equation says every string in $X_0$ is obtained either by
  appending one $b$ to a string in $X_0$ or by appending one $a$ to a string in
  $X_1$ or just be an empty string (represented by the regular expression $\lambda$). Similary,
  the second equation tells how the strings inside $X_1$ are composed.
  \begin{equation}\label{example_eqns}
    \begin{aligned}
      X_0 & = X_0 b + X_1 a + \lambda \\
      X_1 & = X_0 a + X_1 b
    \end{aligned}
  \end{equation}
  The summands on the right hand side is represented by the following data type
  @{text "rhs_item"}, mnemonic for 'right hand side item'.
  Generally, there are two kinds of right hand side items, one kind corresponds to
  pure regular expressions, like the $\lambda$ in \eqref{example_eqns}, the other kind corresponds to
  transitions from one one equivalent class to another, like the $X_0 b, X_1 a$ etc.
  *}

datatype rhs_item = 
   Lam "rexp"                           (* Lambda *)
 | Trn "(string set)" "rexp"              (* Transition *)

text {*
  In this formalization, pure regular expressions like $\lambda$ is 
  repsented by @{text "Lam(EMPTY)"}, while transitions like $X_0 a$ is represented by $Trn~X_0~(CHAR~a)$.
  *}

text {*
  The functions @{text "the_r"} and @{text "the_Trn"} are used to extract
  subcomponents from right hand side items.
  *}

fun the_r :: "rhs_item \<Rightarrow> rexp"
where "the_r (Lam r) = r"

fun the_Trn:: "rhs_item \<Rightarrow> (string set \<times> rexp)"
where "the_Trn (Trn Y r) = (Y, r)"

text {*
  Every right hand side item @{text "itm"} defines a string set given 
  @{text "L(itm)"}, defined as:
*}
overloading L_rhs_e \<equiv> "L:: rhs_item \<Rightarrow> string set"
begin
  fun L_rhs_e:: "rhs_item \<Rightarrow> string set"
  where
     "L_rhs_e (Lam r) = L r" |
     "L_rhs_e (Trn X r) = X ;; L r"
end

text {*
  The right hand side of every equation is represented by a set of
  items. The string set defined by such a set @{text "itms"} is given
  by @{text "L(itms)"}, defined as:
*}

overloading L_rhs \<equiv> "L:: rhs_item set \<Rightarrow> string set"
begin
   fun L_rhs:: "rhs_item set \<Rightarrow> string set"
   where "L_rhs rhs = \<Union> (L ` rhs)"
end

text {* 
  Given a set of equivalent classses @{text "CS"} and one equivalent class @{text "X"} among
  @{text "CS"}, the term @{text "init_rhs CS X"} is used to extract the right hand side of
  the equation describing the formation of @{text "X"}. The definition of @{text "init_rhs"}
  is:
  *}

definition
  "init_rhs CS X \<equiv>  
      if ([] \<in> X) then 
          {Lam(EMPTY)} \<union> {Trn Y (CHAR c) | Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}
      else 
          {Trn Y (CHAR c)| Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}"

text {*
  In the definition of @{text "init_rhs"}, the term 
  @{text "{Trn Y (CHAR c)| Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}"} appearing on both branches
  describes the formation of strings in @{text "X"} out of transitions, while 
  the term @{text "{Lam(EMPTY)}"} describes the empty string which is intrinsically contained in
  @{text "X"} rather than by transition. This @{text "{Lam(EMPTY)}"} corresponds to 
  the $\lambda$ in \eqref{example_eqns}.

  With the help of @{text "init_rhs"}, the equitional system descrbing the formation of every
  equivalent class inside @{text "CS"} is given by the following @{text "eqs(CS)"}.
  *}

definition "eqs CS \<equiv> {(X, init_rhs CS X) | X.  X \<in> CS}"
(************ arden's lemma variation ********************)

text {* 
  The following @{text "items_of rhs X"} returns all @{text "X"}-items in @{text "rhs"}.
  *}
definition
  "items_of rhs X \<equiv> {Trn X r | r. (Trn X r) \<in> rhs}"

text {* 
  The following @{text "rexp_of rhs X"} combines all regular expressions in @{text "X"}-items
  using @{text "ALT"} to form a single regular expression. 
  It will be used later to implement @{text "arden_variate"} and @{text "rhs_subst"}.
  *}

definition 
  "rexp_of rhs X \<equiv> folds ALT NULL ((snd o the_Trn) ` items_of rhs X)"

text {* 
  The following @{text "lam_of rhs"} returns all pure regular expression items in @{text "rhs"}.
  *}

definition
  "lam_of rhs \<equiv> {Lam r | r. Lam r \<in> rhs}"

text {*
  The following @{text "rexp_of_lam rhs"} combines pure regular expression items in @{text "rhs"}
  using @{text "ALT"} to form a single regular expression. 
  When all variables inside @{text "rhs"} are eliminated, @{text "rexp_of_lam rhs"}
  is used to compute compute the regular expression corresponds to @{text "rhs"}.
  *}

definition
  "rexp_of_lam rhs \<equiv> folds ALT NULL (the_r ` lam_of rhs)"

text {*
  The following @{text "attach_rexp rexp' itm"} attach 
  the regular expression @{text "rexp'"} to
  the right of right hand side item @{text "itm"}.
  *}

fun attach_rexp :: "rexp \<Rightarrow> rhs_item \<Rightarrow> rhs_item"
where
  "attach_rexp rexp' (Lam rexp)   = Lam (SEQ rexp rexp')"
| "attach_rexp rexp' (Trn X rexp) = Trn X (SEQ rexp rexp')"

text {* 
  The following @{text "append_rhs_rexp rhs rexp"} attaches 
  @{text "rexp"} to every item in @{text "rhs"}.
  *}

definition
  "append_rhs_rexp rhs rexp \<equiv> (attach_rexp rexp) ` rhs"

text {*
  With the help of the two functions immediately above, Ardens'
  transformation on right hand side @{text "rhs"} is implemented
  by the following function @{text "arden_variate X rhs"}.
  After this transformation, the recursive occurent of @{text "X"}
  in @{text "rhs"} will be eliminated, while the 
  string set defined by @{text "rhs"} is kept unchanged.
  *}
definition 
  "arden_variate X rhs \<equiv> 
        append_rhs_rexp (rhs - items_of rhs X) (STAR (rexp_of rhs X))"


(*********** substitution of ES *************)

text {* 
  Suppose the equation defining @{text "X"} is $X = xrhs$,
  the purpose of @{text "rhs_subst"} is to substitute all occurences of @{text "X"} in
  @{text "rhs"} by @{text "xrhs"}.
  A litte thought may reveal that the final result
  should be: first append $(a_1 | a_2 | \ldots | a_n)$ to every item of @{text "xrhs"} and then
  union the result with all non-@{text "X"}-items of @{text "rhs"}.
 *}
definition 
  "rhs_subst rhs X xrhs \<equiv> 
        (rhs - (items_of rhs X)) \<union> (append_rhs_rexp xrhs (rexp_of rhs X))"

text {*
  Suppose the equation defining @{text "X"} is $X = xrhs$, the follwing
  @{text "eqs_subst ES X xrhs"} substitute @{text "xrhs"} into every equation
  of the equational system @{text "ES"}.
  *}

definition
  "eqs_subst ES X xrhs \<equiv> {(Y, rhs_subst yrhs X xrhs) | Y yrhs. (Y, yrhs) \<in> ES}"

text {*
  The computation of regular expressions for equivalent classes is accomplished
  using a iteration principle given by the following lemma.
  *}

lemma wf_iter [rule_format]: 
  fixes f
  assumes step: "\<And> e. \<lbrakk>P e; \<not> Q e\<rbrakk> \<Longrightarrow> (\<exists> e'. P e' \<and>  (f(e'), f(e)) \<in> less_than)"
  shows pe:     "P e \<longrightarrow> (\<exists> e'. P e' \<and>  Q e')"
proof(induct e rule: wf_induct 
           [OF wf_inv_image[OF wf_less_than, where f = "f"]], clarify)
  fix x 
  assume h [rule_format]: 
    "\<forall>y. (y, x) \<in> inv_image less_than f \<longrightarrow> P y \<longrightarrow> (\<exists>e'. P e' \<and> Q e')"
    and px: "P x"
  show "\<exists>e'. P e' \<and> Q e'"
  proof(cases "Q x")
    assume "Q x" with px show ?thesis by blast
  next
    assume nq: "\<not> Q x"
    from step [OF px nq]
    obtain e' where pe': "P e'" and ltf: "(f e', f x) \<in> less_than" by auto
    show ?thesis
    proof(rule h)
      from ltf show "(e', x) \<in> inv_image less_than f" 
	by (simp add:inv_image_def)
    next
      from pe' show "P e'" .
    qed
  qed
qed

text {*
  The @{text "P"} in lemma @{text "wf_iter"} is an invaiant kept throughout the iteration procedure.
  The particular invariant used to solve our problem is defined by function @{text "Inv(ES)"},
  an invariant over equal system @{text "ES"}.
  Every definition starting next till @{text "Inv"} stipulates a property to be satisfied by @{text "ES"}.
*}

text {* 
  Every variable is defined at most onece in @{text "ES"}.
  *}
definition 
  "distinct_equas ES \<equiv> 
            \<forall> X rhs rhs'. (X, rhs) \<in> ES \<and> (X, rhs') \<in> ES \<longrightarrow> rhs = rhs'"
text {* 
  Every equation in @{text "ES"} (represented by @{text "(X, rhs)"}) is valid, i.e. @{text "(X = L rhs)"}.
  *}
definition 
  "valid_eqns ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> (X = L rhs)"

text {*
  The following @{text "rhs_nonempty rhs"} requires regular expressions occuring in transitional 
  items of @{text "rhs"} does not contain empty string. This is necessary for
  the application of Arden's transformation to @{text "rhs"}.
  *}
definition 
  "rhs_nonempty rhs \<equiv> (\<forall> Y r. Trn Y r \<in> rhs \<longrightarrow> [] \<notin> L r)"

text {*
  The following @{text "ardenable ES"} requires that Arden's transformation is applicable
  to every equation of equational system @{text "ES"}.
  *}
definition 
  "ardenable ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> rhs_nonempty rhs"

(* The following non_empty seems useless. *)
definition 
  "non_empty ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> X \<noteq> {}"

text {*
  The following @{text "finite_rhs ES"} requires every equation in @{text "rhs"} be finite.
  *}
definition
  "finite_rhs ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> finite rhs"

text {*
  The following @{text "classes_of rhs"} returns all variables (or equivalent classes)
  occuring in @{text "rhs"}.
  *}
definition 
  "classes_of rhs \<equiv> {X. \<exists> r. Trn X r \<in> rhs}"

text {*
  The following @{text "lefts_of ES"} returns all variables 
  defined by equational system @{text "ES"}.
  *}
definition
  "lefts_of ES \<equiv> {Y | Y yrhs. (Y, yrhs) \<in> ES}"

text {*
  The following @{text "self_contained ES"} requires that every
  variable occuring on the right hand side of equations is already defined by some
  equation in @{text "ES"}.
  *}
definition 
  "self_contained ES \<equiv> \<forall> (X, xrhs) \<in> ES. classes_of xrhs \<subseteq> lefts_of ES"


text {*
  The invariant @{text "Inv(ES)"} is a conjunction of all the previously defined constaints.
  *}
definition 
  "Inv ES \<equiv> valid_eqns ES \<and> finite ES \<and> distinct_equas ES \<and> ardenable ES \<and> 
                non_empty ES \<and> finite_rhs ES \<and> self_contained ES"

subsection {* The proof of this direction *}

subsubsection {* Basic properties *}

text {*
  The following are some basic properties of the above definitions.
*}

lemma L_rhs_union_distrib:
  " L (A::rhs_item set) \<union> L B = L (A \<union> B)"
by simp

lemma finite_snd_Trn:
  assumes finite:"finite rhs"
  shows "finite {r\<^isub>2. Trn Y r\<^isub>2 \<in> rhs}" (is "finite ?B")
proof-
  def rhs' \<equiv> "{e \<in> rhs. \<exists> r. e = Trn Y r}"
  have "?B = (snd o the_Trn) ` rhs'" using rhs'_def by (auto simp:image_def)
  moreover have "finite rhs'" using finite rhs'_def by auto
  ultimately show ?thesis by simp
qed

lemma rexp_of_empty:
  assumes finite:"finite rhs"
  and nonempty:"rhs_nonempty rhs"
  shows "[] \<notin> L (rexp_of rhs X)"
using finite nonempty rhs_nonempty_def
by (drule_tac finite_snd_Trn[where Y = X], auto simp:rexp_of_def items_of_def)

lemma [intro!]:
  "P (Trn X r) \<Longrightarrow> (\<exists>a. (\<exists>r. a = Trn X r \<and> P a))" by auto

lemma finite_items_of:
  "finite rhs \<Longrightarrow> finite (items_of rhs X)"
by (auto simp:items_of_def intro:finite_subset)

lemma lang_of_rexp_of:
  assumes finite:"finite rhs"
  shows "L (items_of rhs X) = X ;; (L (rexp_of rhs X))"
proof -
  have "finite ((snd \<circ> the_Trn) ` items_of rhs X)" using finite_items_of[OF finite] by auto
  thus ?thesis
    apply (auto simp:rexp_of_def Seq_def items_of_def)
    apply (rule_tac x = s1 in exI, rule_tac x = s2 in exI, auto)
    by (rule_tac x= "Trn X r" in exI, auto simp:Seq_def)
qed

lemma rexp_of_lam_eq_lam_set:
  assumes finite: "finite rhs"
  shows "L (rexp_of_lam rhs) = L (lam_of rhs)"
proof -
  have "finite (the_r ` {Lam r |r. Lam r \<in> rhs})" using finite
    by (rule_tac finite_imageI, auto intro:finite_subset)
  thus ?thesis by (auto simp:rexp_of_lam_def lam_of_def)
qed

lemma [simp]:
  " L (attach_rexp r xb) = L xb ;; L r"
apply (cases xb, auto simp:Seq_def)
by (rule_tac x = "s1 @ s1a" in exI, rule_tac x = s2a in exI,auto simp:Seq_def)

lemma lang_of_append_rhs:
  "L (append_rhs_rexp rhs r) = L rhs ;; L r"
apply (auto simp:append_rhs_rexp_def image_def)
apply (auto simp:Seq_def)
apply (rule_tac x = "L xb ;; L r" in exI, auto simp add:Seq_def)
by (rule_tac x = "attach_rexp r xb" in exI, auto simp:Seq_def)

lemma classes_of_union_distrib:
  "classes_of A \<union> classes_of B = classes_of (A \<union> B)"
by (auto simp add:classes_of_def)

lemma lefts_of_union_distrib:
  "lefts_of A \<union> lefts_of B = lefts_of (A \<union> B)"
by (auto simp:lefts_of_def)


subsubsection {* Intialization *}

text {*
  The following several lemmas until @{text "init_ES_satisfy_Inv"} shows that
  the initial equational system satisfies invariant @{text "Inv"}.
  *}

lemma defined_by_str:
  "\<lbrakk>s \<in> X; X \<in> UNIV // (\<approx>Lang)\<rbrakk> \<Longrightarrow> X = (\<approx>Lang) `` {s}"
by (auto simp:quotient_def Image_def str_eq_rel_def)

lemma every_eqclass_has_transition:
  assumes has_str: "s @ [c] \<in> X"
  and     in_CS:   "X \<in> UNIV // (\<approx>Lang)"
  obtains Y where "Y \<in> UNIV // (\<approx>Lang)" and "Y ;; {[c]} \<subseteq> X" and "s \<in> Y"
proof -
  def Y \<equiv> "(\<approx>Lang) `` {s}"
  have "Y \<in> UNIV // (\<approx>Lang)" 
    unfolding Y_def quotient_def by auto
  moreover
  have "X = (\<approx>Lang) `` {s @ [c]}" 
    using has_str in_CS defined_by_str by blast
  then have "Y ;; {[c]} \<subseteq> X" 
    unfolding Y_def Image_def Seq_def
    unfolding str_eq_rel_def
    by clarsimp
  moreover
  have "s \<in> Y" unfolding Y_def 
    unfolding Image_def str_eq_rel_def by simp
  ultimately show thesis by (blast intro: that)
qed

lemma l_eq_r_in_eqs:
  assumes X_in_eqs: "(X, xrhs) \<in> (eqs (UNIV // (\<approx>Lang)))"
  shows "X = L xrhs"
proof 
  show "X \<subseteq> L xrhs"
  proof
    fix x
    assume "(1)": "x \<in> X"
    show "x \<in> L xrhs"          
    proof (cases "x = []")
      assume empty: "x = []"
      thus ?thesis using X_in_eqs "(1)"
        by (auto simp:eqs_def init_rhs_def)
    next
      assume not_empty: "x \<noteq> []"
      then obtain clist c where decom: "x = clist @ [c]"
        by (case_tac x rule:rev_cases, auto)
      have "X \<in> UNIV // (\<approx>Lang)" using X_in_eqs by (auto simp:eqs_def)
      then obtain Y 
        where "Y \<in> UNIV // (\<approx>Lang)" 
        and "Y ;; {[c]} \<subseteq> X"
        and "clist \<in> Y"
        using decom "(1)" every_eqclass_has_transition by blast
      hence 
        "x \<in> L {Trn Y (CHAR c)| Y c. Y \<in> UNIV // (\<approx>Lang) \<and> Y ;; {[c]} \<subseteq> X}"
        using "(1)" decom
        by (simp, rule_tac x = "Trn Y (CHAR c)" in exI, simp add:Seq_def)
      thus ?thesis using X_in_eqs "(1)"
        by (simp add:eqs_def init_rhs_def)
    qed
  qed
next
  show "L xrhs \<subseteq> X" using X_in_eqs
    by (auto simp:eqs_def init_rhs_def) 
qed

lemma finite_init_rhs: 
  assumes finite: "finite CS"
  shows "finite (init_rhs CS X)"
proof-
  have "finite {Trn Y (CHAR c) |Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}" (is "finite ?A")
  proof -
    def S \<equiv> "{(Y, c)| Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}" 
    def h \<equiv> "\<lambda> (Y, c). Trn Y (CHAR c)"
    have "finite (CS \<times> (UNIV::char set))" using finite by auto
    hence "finite S" using S_def 
      by (rule_tac B = "CS \<times> UNIV" in finite_subset, auto)
    moreover have "?A = h ` S" by (auto simp: S_def h_def image_def)
    ultimately show ?thesis 
      by auto
  qed
  thus ?thesis by (simp add:init_rhs_def)
qed

lemma init_ES_satisfy_Inv:
  assumes finite_CS: "finite (UNIV // (\<approx>Lang))"
  shows "Inv (eqs (UNIV // (\<approx>Lang)))"
proof -
  have "finite (eqs (UNIV // (\<approx>Lang)))" using finite_CS
    by (simp add:eqs_def)
  moreover have "distinct_equas (eqs (UNIV // (\<approx>Lang)))"     
    by (simp add:distinct_equas_def eqs_def)
  moreover have "ardenable (eqs (UNIV // (\<approx>Lang)))"
    by (auto simp add:ardenable_def eqs_def init_rhs_def rhs_nonempty_def del:L_rhs.simps)
  moreover have "valid_eqns (eqs (UNIV // (\<approx>Lang)))"
    using l_eq_r_in_eqs by (simp add:valid_eqns_def)
  moreover have "non_empty (eqs (UNIV // (\<approx>Lang)))"
    by (auto simp:non_empty_def eqs_def quotient_def Image_def str_eq_rel_def)
  moreover have "finite_rhs (eqs (UNIV // (\<approx>Lang)))"
    using finite_init_rhs[OF finite_CS] 
    by (auto simp:finite_rhs_def eqs_def)
  moreover have "self_contained (eqs (UNIV // (\<approx>Lang)))"
    by (auto simp:self_contained_def eqs_def init_rhs_def classes_of_def lefts_of_def)
  ultimately show ?thesis by (simp add:Inv_def)
qed

subsubsection {* 
  Interation step
  *}

text {*
  From this point until @{text "iteration_step"}, it is proved
  that there exists iteration steps which keep @{text "Inv(ES)"} while
  decreasing the size of @{text "ES"}.
  *}
lemma arden_variate_keeps_eq:
  assumes l_eq_r: "X = L rhs"
  and not_empty: "[] \<notin> L (rexp_of rhs X)"
  and finite: "finite rhs"
  shows "X = L (arden_variate X rhs)"
proof -
  def A \<equiv> "L (rexp_of rhs X)"
  def b \<equiv> "rhs - items_of rhs X"
  def B \<equiv> "L b" 
  have "X = B ;; A\<star>"
  proof-
    have "rhs = items_of rhs X \<union> b" by (auto simp:b_def items_of_def)
    hence "L rhs = L(items_of rhs X \<union> b)" by simp
    hence "L rhs = L(items_of rhs X) \<union> B" by (simp only:L_rhs_union_distrib B_def)
    with lang_of_rexp_of
    have "L rhs = X ;; A \<union> B " using finite by (simp only:B_def b_def A_def)
    thus ?thesis
      using l_eq_r not_empty
      apply (drule_tac B = B and X = X in ardens_revised)
      by (auto simp:A_def simp del:L_rhs.simps)
  qed
  moreover have "L (arden_variate X rhs) = (B ;; A\<star>)" (is "?L = ?R")
    by (simp only:arden_variate_def L_rhs_union_distrib lang_of_append_rhs 
                  B_def A_def b_def L_rexp.simps seq_union_distrib)
   ultimately show ?thesis by simp
qed 

lemma append_keeps_finite:
  "finite rhs \<Longrightarrow> finite (append_rhs_rexp rhs r)"
by (auto simp:append_rhs_rexp_def)

lemma arden_variate_keeps_finite:
  "finite rhs \<Longrightarrow> finite (arden_variate X rhs)"
by (auto simp:arden_variate_def append_keeps_finite)

lemma append_keeps_nonempty:
  "rhs_nonempty rhs \<Longrightarrow> rhs_nonempty (append_rhs_rexp rhs r)"
apply (auto simp:rhs_nonempty_def append_rhs_rexp_def)
by (case_tac x, auto simp:Seq_def)

lemma nonempty_set_sub:
  "rhs_nonempty rhs \<Longrightarrow> rhs_nonempty (rhs - A)"
by (auto simp:rhs_nonempty_def)

lemma nonempty_set_union:
  "\<lbrakk>rhs_nonempty rhs; rhs_nonempty rhs'\<rbrakk> \<Longrightarrow> rhs_nonempty (rhs \<union> rhs')"
by (auto simp:rhs_nonempty_def)

lemma arden_variate_keeps_nonempty:
  "rhs_nonempty rhs \<Longrightarrow> rhs_nonempty (arden_variate X rhs)"
by (simp only:arden_variate_def append_keeps_nonempty nonempty_set_sub)


lemma rhs_subst_keeps_nonempty:
  "\<lbrakk>rhs_nonempty rhs; rhs_nonempty xrhs\<rbrakk> \<Longrightarrow> rhs_nonempty (rhs_subst rhs X xrhs)"
by (simp only:rhs_subst_def append_keeps_nonempty  nonempty_set_union nonempty_set_sub)

lemma rhs_subst_keeps_eq:
  assumes substor: "X = L xrhs"
  and finite: "finite rhs"
  shows "L (rhs_subst rhs X xrhs) = L rhs" (is "?Left = ?Right")
proof-
  def A \<equiv> "L (rhs - items_of rhs X)"
  have "?Left = A \<union> L (append_rhs_rexp xrhs (rexp_of rhs X))"
    by (simp only:rhs_subst_def L_rhs_union_distrib A_def)
  moreover have "?Right = A \<union> L (items_of rhs X)"
  proof-
    have "rhs = (rhs - items_of rhs X) \<union> (items_of rhs X)" by (auto simp:items_of_def)
    thus ?thesis by (simp only:L_rhs_union_distrib A_def)
  qed
  moreover have "L (append_rhs_rexp xrhs (rexp_of rhs X)) = L (items_of rhs X)" 
    using finite substor  by (simp only:lang_of_append_rhs lang_of_rexp_of)
  ultimately show ?thesis by simp
qed

lemma rhs_subst_keeps_finite_rhs:
  "\<lbrakk>finite rhs; finite yrhs\<rbrakk> \<Longrightarrow> finite (rhs_subst rhs Y yrhs)"
by (auto simp:rhs_subst_def append_keeps_finite)

lemma eqs_subst_keeps_finite:
  assumes finite:"finite (ES:: (string set \<times> rhs_item set) set)"
  shows "finite (eqs_subst ES Y yrhs)"
proof -
  have "finite {(Ya, rhs_subst yrhsa Y yrhs) |Ya yrhsa. (Ya, yrhsa) \<in> ES}" 
                                                                  (is "finite ?A")
  proof-
    def eqns' \<equiv> "{((Ya::string set), yrhsa)| Ya yrhsa. (Ya, yrhsa) \<in> ES}"
    def h \<equiv> "\<lambda> ((Ya::string set), yrhsa). (Ya, rhs_subst yrhsa Y yrhs)"
    have "finite (h ` eqns')" using finite h_def eqns'_def by auto
    moreover have "?A = h ` eqns'" by (auto simp:h_def eqns'_def)
    ultimately show ?thesis by auto      
  qed
  thus ?thesis by (simp add:eqs_subst_def)
qed

lemma eqs_subst_keeps_finite_rhs:
  "\<lbrakk>finite_rhs ES; finite yrhs\<rbrakk> \<Longrightarrow> finite_rhs (eqs_subst ES Y yrhs)"
by (auto intro:rhs_subst_keeps_finite_rhs simp add:eqs_subst_def finite_rhs_def)

lemma append_rhs_keeps_cls:
  "classes_of (append_rhs_rexp rhs r) = classes_of rhs"
apply (auto simp:classes_of_def append_rhs_rexp_def)
apply (case_tac xa, auto simp:image_def)
by (rule_tac x = "SEQ ra r" in exI, rule_tac x = "Trn x ra" in bexI, simp+)

lemma arden_variate_removes_cl:
  "classes_of (arden_variate Y yrhs) = classes_of yrhs - {Y}"
apply (simp add:arden_variate_def append_rhs_keeps_cls items_of_def)
by (auto simp:classes_of_def)

lemma lefts_of_keeps_cls:
  "lefts_of (eqs_subst ES Y yrhs) = lefts_of ES"
by (auto simp:lefts_of_def eqs_subst_def)

lemma rhs_subst_updates_cls:
  "X \<notin> classes_of xrhs \<Longrightarrow> 
      classes_of (rhs_subst rhs X xrhs) = classes_of rhs \<union> classes_of xrhs - {X}"
apply (simp only:rhs_subst_def append_rhs_keeps_cls 
                              classes_of_union_distrib[THEN sym])
by (auto simp:classes_of_def items_of_def)

lemma eqs_subst_keeps_self_contained:
  fixes Y
  assumes sc: "self_contained (ES \<union> {(Y, yrhs)})" (is "self_contained ?A")
  shows "self_contained (eqs_subst ES Y (arden_variate Y yrhs))" 
                                                   (is "self_contained ?B")
proof-
  { fix X xrhs'
    assume "(X, xrhs') \<in> ?B"
    then obtain xrhs 
      where xrhs_xrhs': "xrhs' = rhs_subst xrhs Y (arden_variate Y yrhs)"
      and X_in: "(X, xrhs) \<in> ES" by (simp add:eqs_subst_def, blast)    
    have "classes_of xrhs' \<subseteq> lefts_of ?B"
    proof-
      have "lefts_of ?B = lefts_of ES" by (auto simp add:lefts_of_def eqs_subst_def)
      moreover have "classes_of xrhs' \<subseteq> lefts_of ES"
      proof-
        have "classes_of xrhs' \<subseteq> 
                        classes_of xrhs \<union> classes_of (arden_variate Y yrhs) - {Y}"
        proof-
          have "Y \<notin> classes_of (arden_variate Y yrhs)" 
            using arden_variate_removes_cl by simp
          thus ?thesis using xrhs_xrhs' by (auto simp:rhs_subst_updates_cls)
        qed
        moreover have "classes_of xrhs \<subseteq> lefts_of ES \<union> {Y}" using X_in sc
          apply (simp only:self_contained_def lefts_of_union_distrib[THEN sym])
          by (drule_tac x = "(X, xrhs)" in bspec, auto simp:lefts_of_def)
        moreover have "classes_of (arden_variate Y yrhs) \<subseteq> lefts_of ES \<union> {Y}" 
          using sc 
          by (auto simp add:arden_variate_removes_cl self_contained_def lefts_of_def)
        ultimately show ?thesis by auto
      qed
      ultimately show ?thesis by simp
    qed
  } thus ?thesis by (auto simp only:eqs_subst_def self_contained_def)
qed

lemma eqs_subst_satisfy_Inv:
  assumes Inv_ES: "Inv (ES \<union> {(Y, yrhs)})"
  shows "Inv (eqs_subst ES Y (arden_variate Y yrhs))"
proof -  
  have finite_yrhs: "finite yrhs" 
    using Inv_ES by (auto simp:Inv_def finite_rhs_def)
  have nonempty_yrhs: "rhs_nonempty yrhs" 
    using Inv_ES by (auto simp:Inv_def ardenable_def)
  have Y_eq_yrhs: "Y = L yrhs" 
    using Inv_ES by (simp only:Inv_def valid_eqns_def, blast)
  have "distinct_equas (eqs_subst ES Y (arden_variate Y yrhs))" 
    using Inv_ES
    by (auto simp:distinct_equas_def eqs_subst_def Inv_def)
  moreover have "finite (eqs_subst ES Y (arden_variate Y yrhs))" 
    using Inv_ES by (simp add:Inv_def eqs_subst_keeps_finite)
  moreover have "finite_rhs (eqs_subst ES Y (arden_variate Y yrhs))"
  proof-
    have "finite_rhs ES" using Inv_ES 
      by (simp add:Inv_def finite_rhs_def)
    moreover have "finite (arden_variate Y yrhs)"
    proof -
      have "finite yrhs" using Inv_ES 
        by (auto simp:Inv_def finite_rhs_def)
      thus ?thesis using arden_variate_keeps_finite by simp
    qed
    ultimately show ?thesis 
      by (simp add:eqs_subst_keeps_finite_rhs)
  qed
  moreover have "ardenable (eqs_subst ES Y (arden_variate Y yrhs))"
  proof - 
    { fix X rhs
      assume "(X, rhs) \<in> ES"
      hence "rhs_nonempty rhs"  using prems Inv_ES  
        by (simp add:Inv_def ardenable_def)
      with nonempty_yrhs 
      have "rhs_nonempty (rhs_subst rhs Y (arden_variate Y yrhs))"
        by (simp add:nonempty_yrhs 
               rhs_subst_keeps_nonempty arden_variate_keeps_nonempty)
    } thus ?thesis by (auto simp add:ardenable_def eqs_subst_def)
  qed
  moreover have "valid_eqns (eqs_subst ES Y (arden_variate Y yrhs))"
  proof-
    have "Y = L (arden_variate Y yrhs)" 
      using Y_eq_yrhs Inv_ES finite_yrhs nonempty_yrhs      
      by (rule_tac arden_variate_keeps_eq, (simp add:rexp_of_empty)+)
    thus ?thesis using Inv_ES 
      by (clarsimp simp add:valid_eqns_def 
              eqs_subst_def rhs_subst_keeps_eq Inv_def finite_rhs_def
                   simp del:L_rhs.simps)
  qed
  moreover have 
    non_empty_subst: "non_empty (eqs_subst ES Y (arden_variate Y yrhs))"
    using Inv_ES by (auto simp:Inv_def non_empty_def eqs_subst_def)
  moreover 
  have self_subst: "self_contained (eqs_subst ES Y (arden_variate Y yrhs))"
    using Inv_ES eqs_subst_keeps_self_contained by (simp add:Inv_def)
  ultimately show ?thesis using Inv_ES by (simp add:Inv_def)
qed

lemma eqs_subst_card_le: 
  assumes finite: "finite (ES::(string set \<times> rhs_item set) set)"
  shows "card (eqs_subst ES Y yrhs) <= card ES"
proof-
  def f \<equiv> "\<lambda> x. ((fst x)::string set, rhs_subst (snd x) Y yrhs)"
  have "eqs_subst ES Y yrhs = f ` ES" 
    apply (auto simp:eqs_subst_def f_def image_def)
    by (rule_tac x = "(Ya, yrhsa)" in bexI, simp+)
  thus ?thesis using finite by (auto intro:card_image_le)
qed

lemma eqs_subst_cls_remains: 
  "(X, xrhs) \<in> ES \<Longrightarrow> \<exists> xrhs'. (X, xrhs') \<in> (eqs_subst ES Y yrhs)"
by (auto simp:eqs_subst_def)

lemma card_noteq_1_has_more:
  assumes card:"card S \<noteq> 1"
  and e_in: "e \<in> S"
  and finite: "finite S"
  obtains e' where "e' \<in> S \<and> e \<noteq> e'" 
proof-
  have "card (S - {e}) > 0"
  proof -
    have "card S > 1" using card e_in finite  
      by (case_tac "card S", auto) 
    thus ?thesis using finite e_in by auto
  qed
  hence "S - {e} \<noteq> {}" using finite by (rule_tac notI, simp)
  thus "(\<And>e'. e' \<in> S \<and> e \<noteq> e' \<Longrightarrow> thesis) \<Longrightarrow> thesis" by auto
qed

lemma iteration_step: 
  assumes Inv_ES: "Inv ES"
  and    X_in_ES: "(X, xrhs) \<in> ES"
  and    not_T: "card ES \<noteq> 1"
  shows "\<exists> ES'. (Inv ES' \<and> (\<exists> xrhs'.(X, xrhs') \<in> ES')) \<and> 
                (card ES', card ES) \<in> less_than" (is "\<exists> ES'. ?P ES'")
proof -
  have finite_ES: "finite ES" using Inv_ES by (simp add:Inv_def)
  then obtain Y yrhs 
    where Y_in_ES: "(Y, yrhs) \<in> ES" and not_eq: "(X, xrhs) \<noteq> (Y, yrhs)" 
    using not_T X_in_ES by (drule_tac card_noteq_1_has_more, auto)
  def ES' == "ES - {(Y, yrhs)}"
  let ?ES'' = "eqs_subst ES' Y (arden_variate Y yrhs)"
  have "?P ?ES''"
  proof -
    have "Inv ?ES''" using Y_in_ES Inv_ES
      by (rule_tac eqs_subst_satisfy_Inv, simp add:ES'_def insert_absorb)
    moreover have "\<exists>xrhs'. (X, xrhs') \<in> ?ES''"  using not_eq X_in_ES
      by (rule_tac ES = ES' in eqs_subst_cls_remains, auto simp add:ES'_def)
    moreover have "(card ?ES'', card ES) \<in> less_than" 
    proof -
      have "finite ES'" using finite_ES ES'_def by auto
      moreover have "card ES' < card ES" using finite_ES Y_in_ES
        by (auto simp:ES'_def card_gt_0_iff intro:diff_Suc_less)
      ultimately show ?thesis 
        by (auto dest:eqs_subst_card_le elim:le_less_trans)
    qed
    ultimately show ?thesis by simp
  qed
  thus ?thesis by blast
qed

subsubsection {*
  Conclusion of the proof
  *}

text {*
  From this point until @{text "hard_direction"}, the hard direction is proved
  through a simple application of the iteration principle.
*}

lemma iteration_conc: 
  assumes history: "Inv ES"
  and    X_in_ES: "\<exists> xrhs. (X, xrhs) \<in> ES"
  shows 
  "\<exists> ES'. (Inv ES' \<and> (\<exists> xrhs'. (X, xrhs') \<in> ES')) \<and> card ES' = 1" 
                                                          (is "\<exists> ES'. ?P ES'")
proof (cases "card ES = 1")
  case True
  thus ?thesis using history X_in_ES
    by blast
next
  case False  
  thus ?thesis using history iteration_step X_in_ES
    by (rule_tac f = card in wf_iter, auto)
qed
  
lemma last_cl_exists_rexp:
  assumes ES_single: "ES = {(X, xrhs)}" 
  and Inv_ES: "Inv ES"
  shows "\<exists> (r::rexp). L r = X" (is "\<exists> r. ?P r")
proof-
  let ?A = "arden_variate X xrhs"
  have "?P (rexp_of_lam ?A)"
  proof -
    have "L (rexp_of_lam ?A) = L (lam_of ?A)"
    proof(rule rexp_of_lam_eq_lam_set)
      show "finite (arden_variate X xrhs)" using Inv_ES ES_single 
        by (rule_tac arden_variate_keeps_finite, 
                       auto simp add:Inv_def finite_rhs_def)
    qed
    also have "\<dots> = L ?A"
    proof-
      have "lam_of ?A = ?A"
      proof-
        have "classes_of ?A = {}" using Inv_ES ES_single
          by (simp add:arden_variate_removes_cl 
                       self_contained_def Inv_def lefts_of_def) 
        thus ?thesis 
          by (auto simp only:lam_of_def classes_of_def, case_tac x, auto)
      qed
      thus ?thesis by simp
    qed
    also have "\<dots> = X"
    proof(rule arden_variate_keeps_eq [THEN sym])
      show "X = L xrhs" using Inv_ES ES_single 
        by (auto simp only:Inv_def valid_eqns_def)  
    next
      from Inv_ES ES_single show "[] \<notin> L (rexp_of xrhs X)"
        by(simp add:Inv_def ardenable_def rexp_of_empty finite_rhs_def)
    next
      from Inv_ES ES_single show "finite xrhs" 
        by (simp add:Inv_def finite_rhs_def)
    qed
    finally show ?thesis by simp
  qed
  thus ?thesis by auto
qed
   
lemma every_eqcl_has_reg: 
  assumes finite_CS: "finite (UNIV // (\<approx>Lang))"
  and X_in_CS: "X \<in> (UNIV // (\<approx>Lang))"
  shows "\<exists> (reg::rexp). L reg = X" (is "\<exists> r. ?E r")
proof -
  from X_in_CS have "\<exists> xrhs. (X, xrhs) \<in> (eqs (UNIV  // (\<approx>Lang)))"
    by (auto simp:eqs_def init_rhs_def)
  then obtain ES xrhs where Inv_ES: "Inv ES" 
    and X_in_ES: "(X, xrhs) \<in> ES"
    and card_ES: "card ES = 1"
    using finite_CS X_in_CS init_ES_satisfy_Inv iteration_conc
    by blast
  hence ES_single_equa: "ES = {(X, xrhs)}" 
    by (auto simp:Inv_def dest!:card_Suc_Diff1 simp:card_eq_0_iff) 
  thus ?thesis using Inv_ES
    by (rule last_cl_exists_rexp)
qed

lemma finals_in_partitions:
  "finals Lang \<subseteq> (UNIV // (\<approx>Lang))"
  by (auto simp:finals_def quotient_def)   

theorem hard_direction: 
  assumes finite_CS: "finite (UNIV // (\<approx>Lang))"
  shows   "\<exists> (reg::rexp). Lang = L reg"
proof -
  have "\<forall> X \<in> (UNIV // (\<approx>Lang)). \<exists> (reg::rexp). X = L reg" 
    using finite_CS every_eqcl_has_reg by blast
  then obtain f 
    where f_prop: "\<forall> X \<in> (UNIV // (\<approx>Lang)). X = L ((f X)::rexp)" 
    by (auto dest:bchoice)
  def rs \<equiv> "f ` (finals Lang)"  
  have "Lang = \<Union> (finals Lang)" using lang_is_union_of_finals by auto
  also have "\<dots> = L (folds ALT NULL rs)" 
  proof -
    have "finite rs"
    proof -
      have "finite (finals Lang)" 
        using finite_CS finals_in_partitions[of "Lang"]   
        by (erule_tac finite_subset, simp)
      thus ?thesis using rs_def by auto
    qed
    thus ?thesis 
      using f_prop rs_def finals_in_partitions[of "Lang"] by auto
  qed
  finally show ?thesis by blast
qed 

end