theory Myhill_1
imports Main List_Prefix Prefix_subtract Prelude
begin
(*
text {*
\begin{figure}
\centering
\scalebox{0.95}{
\begin{tikzpicture}[->,>=latex,shorten >=1pt,auto,node distance=1.2cm, semithick]
\node[state,initial] (n1) {$1$};
\node[state,accepting] (n2) [right = 10em of n1] {$2$};
\path (n1) edge [bend left] node {$0$} (n2)
(n1) edge [loop above] node{$1$} (n1)
(n2) edge [loop above] node{$0$} (n2)
(n2) edge [bend left] node {$1$} (n1)
;
\end{tikzpicture}}
\caption{An example automaton (or partition)}\label{fig:example_automata}
\end{figure}
*}
*)
section {* Preliminary definitions *}
types lang = "string set"
text {*
Sequential composition of two languages @{text "L1"} and @{text "L2"}
*}
definition Seq :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100)
where
"L1 ;; L2 = {s1 @ s2 | s1 s2. s1 \<in> L1 \<and> s2 \<in> L2}"
text {* Transitive closure of language @{text "L"}. *}
inductive_set
Star :: "lang \<Rightarrow> lang" ("_\<star>" [101] 102)
for L
where
start[intro]: "[] \<in> L\<star>"
| step[intro]: "\<lbrakk>s1 \<in> L; s2 \<in> L\<star>\<rbrakk> \<Longrightarrow> s1@s2 \<in> L\<star>"
text {* Some properties of operator @{text ";;"}.*}
lemma seq_union_distrib:
"(A \<union> B) ;; C = (A ;; C) \<union> (B ;; C)"
by (auto simp:Seq_def)
lemma seq_intro:
"\<lbrakk>x \<in> A; y \<in> B\<rbrakk> \<Longrightarrow> x @ y \<in> A ;; B "
by (auto simp:Seq_def)
lemma seq_assoc:
"(A ;; B) ;; C = A ;; (B ;; C)"
apply(auto simp:Seq_def)
apply blast
by (metis append_assoc)
lemma star_intro1[rule_format]: "x \<in> lang\<star> \<Longrightarrow> \<forall> y. y \<in> lang\<star> \<longrightarrow> x @ y \<in> lang\<star>"
by (erule Star.induct, auto)
lemma star_intro2: "y \<in> lang \<Longrightarrow> y \<in> lang\<star>"
by (drule step[of y lang "[]"], auto simp:start)
lemma star_intro3[rule_format]:
"x \<in> lang\<star> \<Longrightarrow> \<forall>y . y \<in> lang \<longrightarrow> x @ y \<in> lang\<star>"
by (erule Star.induct, auto intro:star_intro2)
lemma star_decom:
"\<lbrakk>x \<in> lang\<star>; x \<noteq> []\<rbrakk> \<Longrightarrow>(\<exists> a b. x = a @ b \<and> a \<noteq> [] \<and> a \<in> lang \<and> b \<in> lang\<star>)"
by (induct x rule: Star.induct, simp, blast)
lemma star_decom':
"\<lbrakk>x \<in> lang\<star>; x \<noteq> []\<rbrakk> \<Longrightarrow> \<exists>a b. x = a @ b \<and> a \<in> lang\<star> \<and> b \<in> lang"
apply (induct x rule:Star.induct, simp)
apply (case_tac "s2 = []")
apply (rule_tac x = "[]" in exI, rule_tac x = s1 in exI, simp add:start)
apply (simp, (erule exE| erule conjE)+)
by (rule_tac x = "s1 @ a" in exI, rule_tac x = b in exI, simp add:step)
text {* Ardens lemma expressed at the level of language, rather than the level of regular expression. *}
theorem ardens_revised:
assumes nemp: "[] \<notin> A"
shows "(X = X ;; A \<union> B) \<longleftrightarrow> (X = B ;; A\<star>)"
proof
assume eq: "X = B ;; A\<star>"
have "A\<star> = {[]} \<union> A\<star> ;; A"
by (auto simp:Seq_def star_intro3 star_decom')
then have "B ;; A\<star> = B ;; ({[]} \<union> A\<star> ;; A)"
unfolding Seq_def by simp
also have "\<dots> = B \<union> B ;; (A\<star> ;; A)"
unfolding Seq_def by auto
also have "\<dots> = B \<union> (B ;; A\<star>) ;; A"
by (simp only:seq_assoc)
finally show "X = X ;; A \<union> B"
using eq by blast
next
assume eq': "X = X ;; A \<union> B"
hence c1': "\<And> x. x \<in> B \<Longrightarrow> x \<in> X"
and c2': "\<And> x y. \<lbrakk>x \<in> X; y \<in> A\<rbrakk> \<Longrightarrow> x @ y \<in> X"
using Seq_def by auto
show "X = B ;; A\<star>"
proof
show "B ;; A\<star> \<subseteq> X"
proof-
{ fix x y
have "\<lbrakk>y \<in> A\<star>; x \<in> X\<rbrakk> \<Longrightarrow> x @ y \<in> X "
apply (induct arbitrary:x rule:Star.induct, simp)
by (auto simp only:append_assoc[THEN sym] dest:c2')
} thus ?thesis using c1' by (auto simp:Seq_def)
qed
next
show "X \<subseteq> B ;; A\<star>"
proof-
{ fix x
have "x \<in> X \<Longrightarrow> x \<in> B ;; A\<star>"
proof (induct x taking:length rule:measure_induct)
fix z
assume hyps:
"\<forall>y. length y < length z \<longrightarrow> y \<in> X \<longrightarrow> y \<in> B ;; A\<star>"
and z_in: "z \<in> X"
show "z \<in> B ;; A\<star>"
proof (cases "z \<in> B")
case True thus ?thesis by (auto simp:Seq_def start)
next
case False hence "z \<in> X ;; A" using eq' z_in by auto
then obtain za zb where za_in: "za \<in> X"
and zab: "z = za @ zb \<and> zb \<in> A" and zbne: "zb \<noteq> []"
using nemp unfolding Seq_def by blast
from zbne zab have "length za < length z" by auto
with za_in hyps have "za \<in> B ;; A\<star>" by blast
hence "za @ zb \<in> B ;; A\<star>" using zab
by (clarsimp simp:Seq_def, blast dest:star_intro3)
thus ?thesis using zab by simp
qed
qed
} thus ?thesis by blast
qed
qed
qed
text {* The syntax of regular expressions is defined by the datatype @{text "rexp"}. *}
datatype rexp =
NULL
| EMPTY
| CHAR char
| SEQ rexp rexp
| ALT rexp rexp
| STAR rexp
text {*
The following @{text "L"} is an overloaded operator, where @{text "L(x)"} evaluates to
the language represented by the syntactic object @{text "x"}.
*}
consts L:: "'a \<Rightarrow> string set"
text {*
The @{text "L(rexp)"} for regular expression @{text "rexp"} is defined by the
following overloading function @{text "L_rexp"}.
*}
overloading L_rexp \<equiv> "L:: rexp \<Rightarrow> string set"
begin
fun
L_rexp :: "rexp \<Rightarrow> string set"
where
"L_rexp (NULL) = {}"
| "L_rexp (EMPTY) = {[]}"
| "L_rexp (CHAR c) = {[c]}"
| "L_rexp (SEQ r1 r2) = (L_rexp r1) ;; (L_rexp r2)"
| "L_rexp (ALT r1 r2) = (L_rexp r1) \<union> (L_rexp r2)"
| "L_rexp (STAR r) = (L_rexp r)\<star>"
end
text {*
To obtain equational system out of finite set of equivalent classes, a fold operation
on finite set @{text "folds"} is defined. The use of @{text "SOME"} makes @{text "fold"}
more robust than the @{text "fold"} in Isabelle library. The expression @{text "folds f"}
makes sense when @{text "f"} is not @{text "associative"} and @{text "commutitive"},
while @{text "fold f"} does not.
*}
definition
folds :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b"
where
"folds f z S \<equiv> SOME x. fold_graph f z S x"
text {*
The following lemma assures that the arbitrary choice made by the @{text "SOME"} in @{text "folds"}
does not affect the @{text "L"}-value of the resultant regular expression.
*}
lemma folds_alt_simp [simp]:
"finite rs \<Longrightarrow> L (folds ALT NULL rs) = \<Union> (L ` rs)"
apply (rule set_eq_intro, simp add:folds_def)
apply (rule someI2_ex, erule finite_imp_fold_graph)
by (erule fold_graph.induct, auto)
(* Just a technical lemma. *)
lemma [simp]:
shows "(x, y) \<in> {(x, y). P x y} \<longleftrightarrow> P x y"
by simp
text {*
@{text "\<approx>L"} is an equivalent class defined by language @{text "Lang"}.
*}
definition
str_eq_rel ("\<approx>_" [100] 100)
where
"\<approx>Lang \<equiv> {(x, y). (\<forall>z. x @ z \<in> Lang \<longleftrightarrow> y @ z \<in> Lang)}"
text {*
Among equivlant clases of @{text "\<approx>Lang"}, the set @{text "finals(Lang)"} singles out
those which contains strings from @{text "Lang"}.
*}
definition
"finals Lang \<equiv> {\<approx>Lang `` {x} | x . x \<in> Lang}"
text {*
The following lemma show the relationshipt between @{text "finals(Lang)"} and @{text "Lang"}.
*}
lemma lang_is_union_of_finals:
"Lang = \<Union> finals(Lang)"
proof
show "Lang \<subseteq> \<Union> (finals Lang)"
proof
fix x
assume "x \<in> Lang"
thus "x \<in> \<Union> (finals Lang)"
apply (simp add:finals_def, rule_tac x = "(\<approx>Lang) `` {x}" in exI)
by (auto simp:Image_def str_eq_rel_def)
qed
next
show "\<Union> (finals Lang) \<subseteq> Lang"
apply (clarsimp simp:finals_def str_eq_rel_def)
by (drule_tac x = "[]" in spec, auto)
qed
section {* Direction @{text "finite partition \<Rightarrow> regular language"}*}
text {*
The relationship between equivalent classes can be described by an
equational system.
For example, in equational system \eqref{example_eqns}, $X_0, X_1$ are equivalent
classes. The first equation says every string in $X_0$ is obtained either by
appending one $b$ to a string in $X_0$ or by appending one $a$ to a string in
$X_1$ or just be an empty string (represented by the regular expression $\lambda$). Similary,
the second equation tells how the strings inside $X_1$ are composed.
\begin{equation}\label{example_eqns}
\begin{aligned}
X_0 & = X_0 b + X_1 a + \lambda \\
X_1 & = X_0 a + X_1 b
\end{aligned}
\end{equation}
The summands on the right hand side is represented by the following data type
@{text "rhs_item"}, mnemonic for 'right hand side item'.
Generally, there are two kinds of right hand side items, one kind corresponds to
pure regular expressions, like the $\lambda$ in \eqref{example_eqns}, the other kind corresponds to
transitions from one one equivalent class to another, like the $X_0 b, X_1 a$ etc.
*}
datatype rhs_item =
Lam "rexp" (* Lambda *)
| Trn "(string set)" "rexp" (* Transition *)
text {*
In this formalization, pure regular expressions like $\lambda$ is
repsented by @{text "Lam(EMPTY)"}, while transitions like $X_0 a$ is represented by $Trn~X_0~(CHAR~a)$.
*}
text {*
The functions @{text "the_r"} and @{text "the_Trn"} are used to extract
subcomponents from right hand side items.
*}
fun the_r :: "rhs_item \<Rightarrow> rexp"
where "the_r (Lam r) = r"
fun the_Trn:: "rhs_item \<Rightarrow> (string set \<times> rexp)"
where "the_Trn (Trn Y r) = (Y, r)"
text {*
Every right hand side item @{text "itm"} defines a string set given
@{text "L(itm)"}, defined as:
*}
overloading L_rhs_e \<equiv> "L:: rhs_item \<Rightarrow> string set"
begin
fun L_rhs_e:: "rhs_item \<Rightarrow> string set"
where
"L_rhs_e (Lam r) = L r" |
"L_rhs_e (Trn X r) = X ;; L r"
end
text {*
The right hand side of every equation is represented by a set of
items. The string set defined by such a set @{text "itms"} is given
by @{text "L(itms)"}, defined as:
*}
overloading L_rhs \<equiv> "L:: rhs_item set \<Rightarrow> string set"
begin
fun L_rhs:: "rhs_item set \<Rightarrow> string set"
where "L_rhs rhs = \<Union> (L ` rhs)"
end
text {*
Given a set of equivalent classses @{text "CS"} and one equivalent class @{text "X"} among
@{text "CS"}, the term @{text "init_rhs CS X"} is used to extract the right hand side of
the equation describing the formation of @{text "X"}. The definition of @{text "init_rhs"}
is:
*}
definition
"init_rhs CS X \<equiv>
if ([] \<in> X) then
{Lam(EMPTY)} \<union> {Trn Y (CHAR c) | Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}
else
{Trn Y (CHAR c)| Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}"
text {*
In the definition of @{text "init_rhs"}, the term
@{text "{Trn Y (CHAR c)| Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}"} appearing on both branches
describes the formation of strings in @{text "X"} out of transitions, while
the term @{text "{Lam(EMPTY)}"} describes the empty string which is intrinsically contained in
@{text "X"} rather than by transition. This @{text "{Lam(EMPTY)}"} corresponds to
the $\lambda$ in \eqref{example_eqns}.
With the help of @{text "init_rhs"}, the equitional system descrbing the formation of every
equivalent class inside @{text "CS"} is given by the following @{text "eqs(CS)"}.
*}
definition "eqs CS \<equiv> {(X, init_rhs CS X) | X. X \<in> CS}"
(************ arden's lemma variation ********************)
text {*
The following @{text "items_of rhs X"} returns all @{text "X"}-items in @{text "rhs"}.
*}
definition
"items_of rhs X \<equiv> {Trn X r | r. (Trn X r) \<in> rhs}"
text {*
The following @{text "rexp_of rhs X"} combines all regular expressions in @{text "X"}-items
using @{text "ALT"} to form a single regular expression.
It will be used later to implement @{text "arden_variate"} and @{text "rhs_subst"}.
*}
definition
"rexp_of rhs X \<equiv> folds ALT NULL ((snd o the_Trn) ` items_of rhs X)"
text {*
The following @{text "lam_of rhs"} returns all pure regular expression items in @{text "rhs"}.
*}
definition
"lam_of rhs \<equiv> {Lam r | r. Lam r \<in> rhs}"
text {*
The following @{text "rexp_of_lam rhs"} combines pure regular expression items in @{text "rhs"}
using @{text "ALT"} to form a single regular expression.
When all variables inside @{text "rhs"} are eliminated, @{text "rexp_of_lam rhs"}
is used to compute compute the regular expression corresponds to @{text "rhs"}.
*}
definition
"rexp_of_lam rhs \<equiv> folds ALT NULL (the_r ` lam_of rhs)"
text {*
The following @{text "attach_rexp rexp' itm"} attach
the regular expression @{text "rexp'"} to
the right of right hand side item @{text "itm"}.
*}
fun attach_rexp :: "rexp \<Rightarrow> rhs_item \<Rightarrow> rhs_item"
where
"attach_rexp rexp' (Lam rexp) = Lam (SEQ rexp rexp')"
| "attach_rexp rexp' (Trn X rexp) = Trn X (SEQ rexp rexp')"
text {*
The following @{text "append_rhs_rexp rhs rexp"} attaches
@{text "rexp"} to every item in @{text "rhs"}.
*}
definition
"append_rhs_rexp rhs rexp \<equiv> (attach_rexp rexp) ` rhs"
text {*
With the help of the two functions immediately above, Ardens'
transformation on right hand side @{text "rhs"} is implemented
by the following function @{text "arden_variate X rhs"}.
After this transformation, the recursive occurent of @{text "X"}
in @{text "rhs"} will be eliminated, while the
string set defined by @{text "rhs"} is kept unchanged.
*}
definition
"arden_variate X rhs \<equiv>
append_rhs_rexp (rhs - items_of rhs X) (STAR (rexp_of rhs X))"
(*********** substitution of ES *************)
text {*
Suppose the equation defining @{text "X"} is $X = xrhs$,
the purpose of @{text "rhs_subst"} is to substitute all occurences of @{text "X"} in
@{text "rhs"} by @{text "xrhs"}.
A litte thought may reveal that the final result
should be: first append $(a_1 | a_2 | \ldots | a_n)$ to every item of @{text "xrhs"} and then
union the result with all non-@{text "X"}-items of @{text "rhs"}.
*}
definition
"rhs_subst rhs X xrhs \<equiv>
(rhs - (items_of rhs X)) \<union> (append_rhs_rexp xrhs (rexp_of rhs X))"
text {*
Suppose the equation defining @{text "X"} is $X = xrhs$, the follwing
@{text "eqs_subst ES X xrhs"} substitute @{text "xrhs"} into every equation
of the equational system @{text "ES"}.
*}
definition
"eqs_subst ES X xrhs \<equiv> {(Y, rhs_subst yrhs X xrhs) | Y yrhs. (Y, yrhs) \<in> ES}"
text {*
The computation of regular expressions for equivalent classes is accomplished
using a iteration principle given by the following lemma.
*}
lemma wf_iter [rule_format]:
fixes f
assumes step: "\<And> e. \<lbrakk>P e; \<not> Q e\<rbrakk> \<Longrightarrow> (\<exists> e'. P e' \<and> (f(e'), f(e)) \<in> less_than)"
shows pe: "P e \<longrightarrow> (\<exists> e'. P e' \<and> Q e')"
proof(induct e rule: wf_induct
[OF wf_inv_image[OF wf_less_than, where f = "f"]], clarify)
fix x
assume h [rule_format]:
"\<forall>y. (y, x) \<in> inv_image less_than f \<longrightarrow> P y \<longrightarrow> (\<exists>e'. P e' \<and> Q e')"
and px: "P x"
show "\<exists>e'. P e' \<and> Q e'"
proof(cases "Q x")
assume "Q x" with px show ?thesis by blast
next
assume nq: "\<not> Q x"
from step [OF px nq]
obtain e' where pe': "P e'" and ltf: "(f e', f x) \<in> less_than" by auto
show ?thesis
proof(rule h)
from ltf show "(e', x) \<in> inv_image less_than f"
by (simp add:inv_image_def)
next
from pe' show "P e'" .
qed
qed
qed
text {*
The @{text "P"} in lemma @{text "wf_iter"} is an invaiant kept throughout the iteration procedure.
The particular invariant used to solve our problem is defined by function @{text "Inv(ES)"},
an invariant over equal system @{text "ES"}.
Every definition starting next till @{text "Inv"} stipulates a property to be satisfied by @{text "ES"}.
*}
text {*
Every variable is defined at most onece in @{text "ES"}.
*}
definition
"distinct_equas ES \<equiv>
\<forall> X rhs rhs'. (X, rhs) \<in> ES \<and> (X, rhs') \<in> ES \<longrightarrow> rhs = rhs'"
text {*
Every equation in @{text "ES"} (represented by @{text "(X, rhs)"}) is valid, i.e. @{text "(X = L rhs)"}.
*}
definition
"valid_eqns ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> (X = L rhs)"
text {*
The following @{text "rhs_nonempty rhs"} requires regular expressions occuring in transitional
items of @{text "rhs"} does not contain empty string. This is necessary for
the application of Arden's transformation to @{text "rhs"}.
*}
definition
"rhs_nonempty rhs \<equiv> (\<forall> Y r. Trn Y r \<in> rhs \<longrightarrow> [] \<notin> L r)"
text {*
The following @{text "ardenable ES"} requires that Arden's transformation is applicable
to every equation of equational system @{text "ES"}.
*}
definition
"ardenable ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> rhs_nonempty rhs"
(* The following non_empty seems useless. *)
definition
"non_empty ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> X \<noteq> {}"
text {*
The following @{text "finite_rhs ES"} requires every equation in @{text "rhs"} be finite.
*}
definition
"finite_rhs ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> finite rhs"
text {*
The following @{text "classes_of rhs"} returns all variables (or equivalent classes)
occuring in @{text "rhs"}.
*}
definition
"classes_of rhs \<equiv> {X. \<exists> r. Trn X r \<in> rhs}"
text {*
The following @{text "lefts_of ES"} returns all variables
defined by equational system @{text "ES"}.
*}
definition
"lefts_of ES \<equiv> {Y | Y yrhs. (Y, yrhs) \<in> ES}"
text {*
The following @{text "self_contained ES"} requires that every
variable occuring on the right hand side of equations is already defined by some
equation in @{text "ES"}.
*}
definition
"self_contained ES \<equiv> \<forall> (X, xrhs) \<in> ES. classes_of xrhs \<subseteq> lefts_of ES"
text {*
The invariant @{text "Inv(ES)"} is a conjunction of all the previously defined constaints.
*}
definition
"Inv ES \<equiv> valid_eqns ES \<and> finite ES \<and> distinct_equas ES \<and> ardenable ES \<and>
non_empty ES \<and> finite_rhs ES \<and> self_contained ES"
subsection {* The proof of this direction *}
subsubsection {* Basic properties *}
text {*
The following are some basic properties of the above definitions.
*}
lemma L_rhs_union_distrib:
" L (A::rhs_item set) \<union> L B = L (A \<union> B)"
by simp
lemma finite_snd_Trn:
assumes finite:"finite rhs"
shows "finite {r\<^isub>2. Trn Y r\<^isub>2 \<in> rhs}" (is "finite ?B")
proof-
def rhs' \<equiv> "{e \<in> rhs. \<exists> r. e = Trn Y r}"
have "?B = (snd o the_Trn) ` rhs'" using rhs'_def by (auto simp:image_def)
moreover have "finite rhs'" using finite rhs'_def by auto
ultimately show ?thesis by simp
qed
lemma rexp_of_empty:
assumes finite:"finite rhs"
and nonempty:"rhs_nonempty rhs"
shows "[] \<notin> L (rexp_of rhs X)"
using finite nonempty rhs_nonempty_def
by (drule_tac finite_snd_Trn[where Y = X], auto simp:rexp_of_def items_of_def)
lemma [intro!]:
"P (Trn X r) \<Longrightarrow> (\<exists>a. (\<exists>r. a = Trn X r \<and> P a))" by auto
lemma finite_items_of:
"finite rhs \<Longrightarrow> finite (items_of rhs X)"
by (auto simp:items_of_def intro:finite_subset)
lemma lang_of_rexp_of:
assumes finite:"finite rhs"
shows "L (items_of rhs X) = X ;; (L (rexp_of rhs X))"
proof -
have "finite ((snd \<circ> the_Trn) ` items_of rhs X)" using finite_items_of[OF finite] by auto
thus ?thesis
apply (auto simp:rexp_of_def Seq_def items_of_def)
apply (rule_tac x = s1 in exI, rule_tac x = s2 in exI, auto)
by (rule_tac x= "Trn X r" in exI, auto simp:Seq_def)
qed
lemma rexp_of_lam_eq_lam_set:
assumes finite: "finite rhs"
shows "L (rexp_of_lam rhs) = L (lam_of rhs)"
proof -
have "finite (the_r ` {Lam r |r. Lam r \<in> rhs})" using finite
by (rule_tac finite_imageI, auto intro:finite_subset)
thus ?thesis by (auto simp:rexp_of_lam_def lam_of_def)
qed
lemma [simp]:
" L (attach_rexp r xb) = L xb ;; L r"
apply (cases xb, auto simp:Seq_def)
by (rule_tac x = "s1 @ s1a" in exI, rule_tac x = s2a in exI,auto simp:Seq_def)
lemma lang_of_append_rhs:
"L (append_rhs_rexp rhs r) = L rhs ;; L r"
apply (auto simp:append_rhs_rexp_def image_def)
apply (auto simp:Seq_def)
apply (rule_tac x = "L xb ;; L r" in exI, auto simp add:Seq_def)
by (rule_tac x = "attach_rexp r xb" in exI, auto simp:Seq_def)
lemma classes_of_union_distrib:
"classes_of A \<union> classes_of B = classes_of (A \<union> B)"
by (auto simp add:classes_of_def)
lemma lefts_of_union_distrib:
"lefts_of A \<union> lefts_of B = lefts_of (A \<union> B)"
by (auto simp:lefts_of_def)
subsubsection {* Intialization *}
text {*
The following several lemmas until @{text "init_ES_satisfy_Inv"} shows that
the initial equational system satisfies invariant @{text "Inv"}.
*}
lemma defined_by_str:
"\<lbrakk>s \<in> X; X \<in> UNIV // (\<approx>Lang)\<rbrakk> \<Longrightarrow> X = (\<approx>Lang) `` {s}"
by (auto simp:quotient_def Image_def str_eq_rel_def)
lemma every_eqclass_has_transition:
assumes has_str: "s @ [c] \<in> X"
and in_CS: "X \<in> UNIV // (\<approx>Lang)"
obtains Y where "Y \<in> UNIV // (\<approx>Lang)" and "Y ;; {[c]} \<subseteq> X" and "s \<in> Y"
proof -
def Y \<equiv> "(\<approx>Lang) `` {s}"
have "Y \<in> UNIV // (\<approx>Lang)"
unfolding Y_def quotient_def by auto
moreover
have "X = (\<approx>Lang) `` {s @ [c]}"
using has_str in_CS defined_by_str by blast
then have "Y ;; {[c]} \<subseteq> X"
unfolding Y_def Image_def Seq_def
unfolding str_eq_rel_def
by clarsimp
moreover
have "s \<in> Y" unfolding Y_def
unfolding Image_def str_eq_rel_def by simp
ultimately show thesis by (blast intro: that)
qed
lemma l_eq_r_in_eqs:
assumes X_in_eqs: "(X, xrhs) \<in> (eqs (UNIV // (\<approx>Lang)))"
shows "X = L xrhs"
proof
show "X \<subseteq> L xrhs"
proof
fix x
assume "(1)": "x \<in> X"
show "x \<in> L xrhs"
proof (cases "x = []")
assume empty: "x = []"
thus ?thesis using X_in_eqs "(1)"
by (auto simp:eqs_def init_rhs_def)
next
assume not_empty: "x \<noteq> []"
then obtain clist c where decom: "x = clist @ [c]"
by (case_tac x rule:rev_cases, auto)
have "X \<in> UNIV // (\<approx>Lang)" using X_in_eqs by (auto simp:eqs_def)
then obtain Y
where "Y \<in> UNIV // (\<approx>Lang)"
and "Y ;; {[c]} \<subseteq> X"
and "clist \<in> Y"
using decom "(1)" every_eqclass_has_transition by blast
hence
"x \<in> L {Trn Y (CHAR c)| Y c. Y \<in> UNIV // (\<approx>Lang) \<and> Y ;; {[c]} \<subseteq> X}"
using "(1)" decom
by (simp, rule_tac x = "Trn Y (CHAR c)" in exI, simp add:Seq_def)
thus ?thesis using X_in_eqs "(1)"
by (simp add:eqs_def init_rhs_def)
qed
qed
next
show "L xrhs \<subseteq> X" using X_in_eqs
by (auto simp:eqs_def init_rhs_def)
qed
lemma finite_init_rhs:
assumes finite: "finite CS"
shows "finite (init_rhs CS X)"
proof-
have "finite {Trn Y (CHAR c) |Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}" (is "finite ?A")
proof -
def S \<equiv> "{(Y, c)| Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}"
def h \<equiv> "\<lambda> (Y, c). Trn Y (CHAR c)"
have "finite (CS \<times> (UNIV::char set))" using finite by auto
hence "finite S" using S_def
by (rule_tac B = "CS \<times> UNIV" in finite_subset, auto)
moreover have "?A = h ` S" by (auto simp: S_def h_def image_def)
ultimately show ?thesis
by auto
qed
thus ?thesis by (simp add:init_rhs_def)
qed
lemma init_ES_satisfy_Inv:
assumes finite_CS: "finite (UNIV // (\<approx>Lang))"
shows "Inv (eqs (UNIV // (\<approx>Lang)))"
proof -
have "finite (eqs (UNIV // (\<approx>Lang)))" using finite_CS
by (simp add:eqs_def)
moreover have "distinct_equas (eqs (UNIV // (\<approx>Lang)))"
by (simp add:distinct_equas_def eqs_def)
moreover have "ardenable (eqs (UNIV // (\<approx>Lang)))"
by (auto simp add:ardenable_def eqs_def init_rhs_def rhs_nonempty_def del:L_rhs.simps)
moreover have "valid_eqns (eqs (UNIV // (\<approx>Lang)))"
using l_eq_r_in_eqs by (simp add:valid_eqns_def)
moreover have "non_empty (eqs (UNIV // (\<approx>Lang)))"
by (auto simp:non_empty_def eqs_def quotient_def Image_def str_eq_rel_def)
moreover have "finite_rhs (eqs (UNIV // (\<approx>Lang)))"
using finite_init_rhs[OF finite_CS]
by (auto simp:finite_rhs_def eqs_def)
moreover have "self_contained (eqs (UNIV // (\<approx>Lang)))"
by (auto simp:self_contained_def eqs_def init_rhs_def classes_of_def lefts_of_def)
ultimately show ?thesis by (simp add:Inv_def)
qed
subsubsection {*
Interation step
*}
text {*
From this point until @{text "iteration_step"}, it is proved
that there exists iteration steps which keep @{text "Inv(ES)"} while
decreasing the size of @{text "ES"}.
*}
lemma arden_variate_keeps_eq:
assumes l_eq_r: "X = L rhs"
and not_empty: "[] \<notin> L (rexp_of rhs X)"
and finite: "finite rhs"
shows "X = L (arden_variate X rhs)"
proof -
def A \<equiv> "L (rexp_of rhs X)"
def b \<equiv> "rhs - items_of rhs X"
def B \<equiv> "L b"
have "X = B ;; A\<star>"
proof-
have "rhs = items_of rhs X \<union> b" by (auto simp:b_def items_of_def)
hence "L rhs = L(items_of rhs X \<union> b)" by simp
hence "L rhs = L(items_of rhs X) \<union> B" by (simp only:L_rhs_union_distrib B_def)
with lang_of_rexp_of
have "L rhs = X ;; A \<union> B " using finite by (simp only:B_def b_def A_def)
thus ?thesis
using l_eq_r not_empty
apply (drule_tac B = B and X = X in ardens_revised)
by (auto simp:A_def simp del:L_rhs.simps)
qed
moreover have "L (arden_variate X rhs) = (B ;; A\<star>)" (is "?L = ?R")
by (simp only:arden_variate_def L_rhs_union_distrib lang_of_append_rhs
B_def A_def b_def L_rexp.simps seq_union_distrib)
ultimately show ?thesis by simp
qed
lemma append_keeps_finite:
"finite rhs \<Longrightarrow> finite (append_rhs_rexp rhs r)"
by (auto simp:append_rhs_rexp_def)
lemma arden_variate_keeps_finite:
"finite rhs \<Longrightarrow> finite (arden_variate X rhs)"
by (auto simp:arden_variate_def append_keeps_finite)
lemma append_keeps_nonempty:
"rhs_nonempty rhs \<Longrightarrow> rhs_nonempty (append_rhs_rexp rhs r)"
apply (auto simp:rhs_nonempty_def append_rhs_rexp_def)
by (case_tac x, auto simp:Seq_def)
lemma nonempty_set_sub:
"rhs_nonempty rhs \<Longrightarrow> rhs_nonempty (rhs - A)"
by (auto simp:rhs_nonempty_def)
lemma nonempty_set_union:
"\<lbrakk>rhs_nonempty rhs; rhs_nonempty rhs'\<rbrakk> \<Longrightarrow> rhs_nonempty (rhs \<union> rhs')"
by (auto simp:rhs_nonempty_def)
lemma arden_variate_keeps_nonempty:
"rhs_nonempty rhs \<Longrightarrow> rhs_nonempty (arden_variate X rhs)"
by (simp only:arden_variate_def append_keeps_nonempty nonempty_set_sub)
lemma rhs_subst_keeps_nonempty:
"\<lbrakk>rhs_nonempty rhs; rhs_nonempty xrhs\<rbrakk> \<Longrightarrow> rhs_nonempty (rhs_subst rhs X xrhs)"
by (simp only:rhs_subst_def append_keeps_nonempty nonempty_set_union nonempty_set_sub)
lemma rhs_subst_keeps_eq:
assumes substor: "X = L xrhs"
and finite: "finite rhs"
shows "L (rhs_subst rhs X xrhs) = L rhs" (is "?Left = ?Right")
proof-
def A \<equiv> "L (rhs - items_of rhs X)"
have "?Left = A \<union> L (append_rhs_rexp xrhs (rexp_of rhs X))"
by (simp only:rhs_subst_def L_rhs_union_distrib A_def)
moreover have "?Right = A \<union> L (items_of rhs X)"
proof-
have "rhs = (rhs - items_of rhs X) \<union> (items_of rhs X)" by (auto simp:items_of_def)
thus ?thesis by (simp only:L_rhs_union_distrib A_def)
qed
moreover have "L (append_rhs_rexp xrhs (rexp_of rhs X)) = L (items_of rhs X)"
using finite substor by (simp only:lang_of_append_rhs lang_of_rexp_of)
ultimately show ?thesis by simp
qed
lemma rhs_subst_keeps_finite_rhs:
"\<lbrakk>finite rhs; finite yrhs\<rbrakk> \<Longrightarrow> finite (rhs_subst rhs Y yrhs)"
by (auto simp:rhs_subst_def append_keeps_finite)
lemma eqs_subst_keeps_finite:
assumes finite:"finite (ES:: (string set \<times> rhs_item set) set)"
shows "finite (eqs_subst ES Y yrhs)"
proof -
have "finite {(Ya, rhs_subst yrhsa Y yrhs) |Ya yrhsa. (Ya, yrhsa) \<in> ES}"
(is "finite ?A")
proof-
def eqns' \<equiv> "{((Ya::string set), yrhsa)| Ya yrhsa. (Ya, yrhsa) \<in> ES}"
def h \<equiv> "\<lambda> ((Ya::string set), yrhsa). (Ya, rhs_subst yrhsa Y yrhs)"
have "finite (h ` eqns')" using finite h_def eqns'_def by auto
moreover have "?A = h ` eqns'" by (auto simp:h_def eqns'_def)
ultimately show ?thesis by auto
qed
thus ?thesis by (simp add:eqs_subst_def)
qed
lemma eqs_subst_keeps_finite_rhs:
"\<lbrakk>finite_rhs ES; finite yrhs\<rbrakk> \<Longrightarrow> finite_rhs (eqs_subst ES Y yrhs)"
by (auto intro:rhs_subst_keeps_finite_rhs simp add:eqs_subst_def finite_rhs_def)
lemma append_rhs_keeps_cls:
"classes_of (append_rhs_rexp rhs r) = classes_of rhs"
apply (auto simp:classes_of_def append_rhs_rexp_def)
apply (case_tac xa, auto simp:image_def)
by (rule_tac x = "SEQ ra r" in exI, rule_tac x = "Trn x ra" in bexI, simp+)
lemma arden_variate_removes_cl:
"classes_of (arden_variate Y yrhs) = classes_of yrhs - {Y}"
apply (simp add:arden_variate_def append_rhs_keeps_cls items_of_def)
by (auto simp:classes_of_def)
lemma lefts_of_keeps_cls:
"lefts_of (eqs_subst ES Y yrhs) = lefts_of ES"
by (auto simp:lefts_of_def eqs_subst_def)
lemma rhs_subst_updates_cls:
"X \<notin> classes_of xrhs \<Longrightarrow>
classes_of (rhs_subst rhs X xrhs) = classes_of rhs \<union> classes_of xrhs - {X}"
apply (simp only:rhs_subst_def append_rhs_keeps_cls
classes_of_union_distrib[THEN sym])
by (auto simp:classes_of_def items_of_def)
lemma eqs_subst_keeps_self_contained:
fixes Y
assumes sc: "self_contained (ES \<union> {(Y, yrhs)})" (is "self_contained ?A")
shows "self_contained (eqs_subst ES Y (arden_variate Y yrhs))"
(is "self_contained ?B")
proof-
{ fix X xrhs'
assume "(X, xrhs') \<in> ?B"
then obtain xrhs
where xrhs_xrhs': "xrhs' = rhs_subst xrhs Y (arden_variate Y yrhs)"
and X_in: "(X, xrhs) \<in> ES" by (simp add:eqs_subst_def, blast)
have "classes_of xrhs' \<subseteq> lefts_of ?B"
proof-
have "lefts_of ?B = lefts_of ES" by (auto simp add:lefts_of_def eqs_subst_def)
moreover have "classes_of xrhs' \<subseteq> lefts_of ES"
proof-
have "classes_of xrhs' \<subseteq>
classes_of xrhs \<union> classes_of (arden_variate Y yrhs) - {Y}"
proof-
have "Y \<notin> classes_of (arden_variate Y yrhs)"
using arden_variate_removes_cl by simp
thus ?thesis using xrhs_xrhs' by (auto simp:rhs_subst_updates_cls)
qed
moreover have "classes_of xrhs \<subseteq> lefts_of ES \<union> {Y}" using X_in sc
apply (simp only:self_contained_def lefts_of_union_distrib[THEN sym])
by (drule_tac x = "(X, xrhs)" in bspec, auto simp:lefts_of_def)
moreover have "classes_of (arden_variate Y yrhs) \<subseteq> lefts_of ES \<union> {Y}"
using sc
by (auto simp add:arden_variate_removes_cl self_contained_def lefts_of_def)
ultimately show ?thesis by auto
qed
ultimately show ?thesis by simp
qed
} thus ?thesis by (auto simp only:eqs_subst_def self_contained_def)
qed
lemma eqs_subst_satisfy_Inv:
assumes Inv_ES: "Inv (ES \<union> {(Y, yrhs)})"
shows "Inv (eqs_subst ES Y (arden_variate Y yrhs))"
proof -
have finite_yrhs: "finite yrhs"
using Inv_ES by (auto simp:Inv_def finite_rhs_def)
have nonempty_yrhs: "rhs_nonempty yrhs"
using Inv_ES by (auto simp:Inv_def ardenable_def)
have Y_eq_yrhs: "Y = L yrhs"
using Inv_ES by (simp only:Inv_def valid_eqns_def, blast)
have "distinct_equas (eqs_subst ES Y (arden_variate Y yrhs))"
using Inv_ES
by (auto simp:distinct_equas_def eqs_subst_def Inv_def)
moreover have "finite (eqs_subst ES Y (arden_variate Y yrhs))"
using Inv_ES by (simp add:Inv_def eqs_subst_keeps_finite)
moreover have "finite_rhs (eqs_subst ES Y (arden_variate Y yrhs))"
proof-
have "finite_rhs ES" using Inv_ES
by (simp add:Inv_def finite_rhs_def)
moreover have "finite (arden_variate Y yrhs)"
proof -
have "finite yrhs" using Inv_ES
by (auto simp:Inv_def finite_rhs_def)
thus ?thesis using arden_variate_keeps_finite by simp
qed
ultimately show ?thesis
by (simp add:eqs_subst_keeps_finite_rhs)
qed
moreover have "ardenable (eqs_subst ES Y (arden_variate Y yrhs))"
proof -
{ fix X rhs
assume "(X, rhs) \<in> ES"
hence "rhs_nonempty rhs" using prems Inv_ES
by (simp add:Inv_def ardenable_def)
with nonempty_yrhs
have "rhs_nonempty (rhs_subst rhs Y (arden_variate Y yrhs))"
by (simp add:nonempty_yrhs
rhs_subst_keeps_nonempty arden_variate_keeps_nonempty)
} thus ?thesis by (auto simp add:ardenable_def eqs_subst_def)
qed
moreover have "valid_eqns (eqs_subst ES Y (arden_variate Y yrhs))"
proof-
have "Y = L (arden_variate Y yrhs)"
using Y_eq_yrhs Inv_ES finite_yrhs nonempty_yrhs
by (rule_tac arden_variate_keeps_eq, (simp add:rexp_of_empty)+)
thus ?thesis using Inv_ES
by (clarsimp simp add:valid_eqns_def
eqs_subst_def rhs_subst_keeps_eq Inv_def finite_rhs_def
simp del:L_rhs.simps)
qed
moreover have
non_empty_subst: "non_empty (eqs_subst ES Y (arden_variate Y yrhs))"
using Inv_ES by (auto simp:Inv_def non_empty_def eqs_subst_def)
moreover
have self_subst: "self_contained (eqs_subst ES Y (arden_variate Y yrhs))"
using Inv_ES eqs_subst_keeps_self_contained by (simp add:Inv_def)
ultimately show ?thesis using Inv_ES by (simp add:Inv_def)
qed
lemma eqs_subst_card_le:
assumes finite: "finite (ES::(string set \<times> rhs_item set) set)"
shows "card (eqs_subst ES Y yrhs) <= card ES"
proof-
def f \<equiv> "\<lambda> x. ((fst x)::string set, rhs_subst (snd x) Y yrhs)"
have "eqs_subst ES Y yrhs = f ` ES"
apply (auto simp:eqs_subst_def f_def image_def)
by (rule_tac x = "(Ya, yrhsa)" in bexI, simp+)
thus ?thesis using finite by (auto intro:card_image_le)
qed
lemma eqs_subst_cls_remains:
"(X, xrhs) \<in> ES \<Longrightarrow> \<exists> xrhs'. (X, xrhs') \<in> (eqs_subst ES Y yrhs)"
by (auto simp:eqs_subst_def)
lemma card_noteq_1_has_more:
assumes card:"card S \<noteq> 1"
and e_in: "e \<in> S"
and finite: "finite S"
obtains e' where "e' \<in> S \<and> e \<noteq> e'"
proof-
have "card (S - {e}) > 0"
proof -
have "card S > 1" using card e_in finite
by (case_tac "card S", auto)
thus ?thesis using finite e_in by auto
qed
hence "S - {e} \<noteq> {}" using finite by (rule_tac notI, simp)
thus "(\<And>e'. e' \<in> S \<and> e \<noteq> e' \<Longrightarrow> thesis) \<Longrightarrow> thesis" by auto
qed
lemma iteration_step:
assumes Inv_ES: "Inv ES"
and X_in_ES: "(X, xrhs) \<in> ES"
and not_T: "card ES \<noteq> 1"
shows "\<exists> ES'. (Inv ES' \<and> (\<exists> xrhs'.(X, xrhs') \<in> ES')) \<and>
(card ES', card ES) \<in> less_than" (is "\<exists> ES'. ?P ES'")
proof -
have finite_ES: "finite ES" using Inv_ES by (simp add:Inv_def)
then obtain Y yrhs
where Y_in_ES: "(Y, yrhs) \<in> ES" and not_eq: "(X, xrhs) \<noteq> (Y, yrhs)"
using not_T X_in_ES by (drule_tac card_noteq_1_has_more, auto)
def ES' == "ES - {(Y, yrhs)}"
let ?ES'' = "eqs_subst ES' Y (arden_variate Y yrhs)"
have "?P ?ES''"
proof -
have "Inv ?ES''" using Y_in_ES Inv_ES
by (rule_tac eqs_subst_satisfy_Inv, simp add:ES'_def insert_absorb)
moreover have "\<exists>xrhs'. (X, xrhs') \<in> ?ES''" using not_eq X_in_ES
by (rule_tac ES = ES' in eqs_subst_cls_remains, auto simp add:ES'_def)
moreover have "(card ?ES'', card ES) \<in> less_than"
proof -
have "finite ES'" using finite_ES ES'_def by auto
moreover have "card ES' < card ES" using finite_ES Y_in_ES
by (auto simp:ES'_def card_gt_0_iff intro:diff_Suc_less)
ultimately show ?thesis
by (auto dest:eqs_subst_card_le elim:le_less_trans)
qed
ultimately show ?thesis by simp
qed
thus ?thesis by blast
qed
subsubsection {*
Conclusion of the proof
*}
text {*
From this point until @{text "hard_direction"}, the hard direction is proved
through a simple application of the iteration principle.
*}
lemma iteration_conc:
assumes history: "Inv ES"
and X_in_ES: "\<exists> xrhs. (X, xrhs) \<in> ES"
shows
"\<exists> ES'. (Inv ES' \<and> (\<exists> xrhs'. (X, xrhs') \<in> ES')) \<and> card ES' = 1"
(is "\<exists> ES'. ?P ES'")
proof (cases "card ES = 1")
case True
thus ?thesis using history X_in_ES
by blast
next
case False
thus ?thesis using history iteration_step X_in_ES
by (rule_tac f = card in wf_iter, auto)
qed
lemma last_cl_exists_rexp:
assumes ES_single: "ES = {(X, xrhs)}"
and Inv_ES: "Inv ES"
shows "\<exists> (r::rexp). L r = X" (is "\<exists> r. ?P r")
proof-
let ?A = "arden_variate X xrhs"
have "?P (rexp_of_lam ?A)"
proof -
have "L (rexp_of_lam ?A) = L (lam_of ?A)"
proof(rule rexp_of_lam_eq_lam_set)
show "finite (arden_variate X xrhs)" using Inv_ES ES_single
by (rule_tac arden_variate_keeps_finite,
auto simp add:Inv_def finite_rhs_def)
qed
also have "\<dots> = L ?A"
proof-
have "lam_of ?A = ?A"
proof-
have "classes_of ?A = {}" using Inv_ES ES_single
by (simp add:arden_variate_removes_cl
self_contained_def Inv_def lefts_of_def)
thus ?thesis
by (auto simp only:lam_of_def classes_of_def, case_tac x, auto)
qed
thus ?thesis by simp
qed
also have "\<dots> = X"
proof(rule arden_variate_keeps_eq [THEN sym])
show "X = L xrhs" using Inv_ES ES_single
by (auto simp only:Inv_def valid_eqns_def)
next
from Inv_ES ES_single show "[] \<notin> L (rexp_of xrhs X)"
by(simp add:Inv_def ardenable_def rexp_of_empty finite_rhs_def)
next
from Inv_ES ES_single show "finite xrhs"
by (simp add:Inv_def finite_rhs_def)
qed
finally show ?thesis by simp
qed
thus ?thesis by auto
qed
lemma every_eqcl_has_reg:
assumes finite_CS: "finite (UNIV // (\<approx>Lang))"
and X_in_CS: "X \<in> (UNIV // (\<approx>Lang))"
shows "\<exists> (reg::rexp). L reg = X" (is "\<exists> r. ?E r")
proof -
from X_in_CS have "\<exists> xrhs. (X, xrhs) \<in> (eqs (UNIV // (\<approx>Lang)))"
by (auto simp:eqs_def init_rhs_def)
then obtain ES xrhs where Inv_ES: "Inv ES"
and X_in_ES: "(X, xrhs) \<in> ES"
and card_ES: "card ES = 1"
using finite_CS X_in_CS init_ES_satisfy_Inv iteration_conc
by blast
hence ES_single_equa: "ES = {(X, xrhs)}"
by (auto simp:Inv_def dest!:card_Suc_Diff1 simp:card_eq_0_iff)
thus ?thesis using Inv_ES
by (rule last_cl_exists_rexp)
qed
lemma finals_in_partitions:
"finals Lang \<subseteq> (UNIV // (\<approx>Lang))"
by (auto simp:finals_def quotient_def)
theorem hard_direction:
assumes finite_CS: "finite (UNIV // (\<approx>Lang))"
shows "\<exists> (reg::rexp). Lang = L reg"
proof -
have "\<forall> X \<in> (UNIV // (\<approx>Lang)). \<exists> (reg::rexp). X = L reg"
using finite_CS every_eqcl_has_reg by blast
then obtain f
where f_prop: "\<forall> X \<in> (UNIV // (\<approx>Lang)). X = L ((f X)::rexp)"
by (auto dest:bchoice)
def rs \<equiv> "f ` (finals Lang)"
have "Lang = \<Union> (finals Lang)" using lang_is_union_of_finals by auto
also have "\<dots> = L (folds ALT NULL rs)"
proof -
have "finite rs"
proof -
have "finite (finals Lang)"
using finite_CS finals_in_partitions[of "Lang"]
by (erule_tac finite_subset, simp)
thus ?thesis using rs_def by auto
qed
thus ?thesis
using f_prop rs_def finals_in_partitions[of "Lang"] by auto
qed
finally show ?thesis by blast
qed
end