theory Derivs
imports Myhill_2
begin
section {* Left-Quotients and Derivatives *}
subsection {* Left-Quotients *}
definition
Delta :: "lang \<Rightarrow> lang"
where
"Delta A = (if [] \<in> A then {[]} else {})"
definition
Der :: "char \<Rightarrow> lang \<Rightarrow> lang"
where
"Der c A \<equiv> {s. [c] @ s \<in> A}"
definition
Ders :: "string \<Rightarrow> lang \<Rightarrow> lang"
where
"Ders s A \<equiv> {s'. s @ s' \<in> A}"
definition
Ders_set :: "lang \<Rightarrow> lang \<Rightarrow> lang"
where
"Ders_set A B \<equiv> {s' | s s'. s @ s' \<in> B \<and> s \<in> A}"
lemma Ders_set_Ders:
shows "Ders_set A B = (\<Union>s \<in> A. Ders s B)"
unfolding Ders_set_def Ders_def
by auto
lemma Der_null [simp]:
shows "Der c {} = {}"
unfolding Der_def
by auto
lemma Der_empty [simp]:
shows "Der c {[]} = {}"
unfolding Der_def
by auto
lemma Der_char [simp]:
shows "Der c {[d]} = (if c = d then {[]} else {})"
unfolding Der_def
by auto
lemma Der_union [simp]:
shows "Der c (A \<union> B) = Der c A \<union> Der c B"
unfolding Der_def
by auto
lemma Der_seq [simp]:
shows "Der c (A \<cdot> B) = (Der c A) \<cdot> B \<union> (Delta A \<cdot> Der c B)"
unfolding Der_def Delta_def
unfolding Seq_def
by (auto simp add: Cons_eq_append_conv)
lemma Der_star [simp]:
shows "Der c (A\<star>) = (Der c A) \<cdot> A\<star>"
proof -
have incl: "Delta A \<cdot> Der c (A\<star>) \<subseteq> (Der c A) \<cdot> A\<star>"
unfolding Der_def Delta_def Seq_def
apply(auto)
apply(drule star_decom)
apply(auto simp add: Cons_eq_append_conv)
done
have "Der c (A\<star>) = Der c ({[]} \<union> A \<cdot> A\<star>)"
by (simp only: star_cases[symmetric])
also have "... = Der c (A \<cdot> A\<star>)"
by (simp only: Der_union Der_empty) (simp)
also have "... = (Der c A) \<cdot> A\<star> \<union> (Delta A \<cdot> Der c (A\<star>))"
by simp
also have "... = (Der c A) \<cdot> A\<star>"
using incl by auto
finally show "Der c (A\<star>) = (Der c A) \<cdot> A\<star>" .
qed
lemma Ders_singleton:
shows "Ders [c] A = Der c A"
unfolding Der_def Ders_def
by simp
lemma Ders_append:
shows "Ders (s1 @ s2) A = Ders s2 (Ders s1 A)"
unfolding Ders_def by simp
lemma MN_Rel_Ders:
shows "x \<approx>A y \<longleftrightarrow> Ders x A = Ders y A"
unfolding Ders_def str_eq_def str_eq_rel_def
by auto
subsection {* Brozowsky's derivatives of regular expressions *}
fun
nullable :: "rexp \<Rightarrow> bool"
where
"nullable (NULL) = False"
| "nullable (EMPTY) = True"
| "nullable (CHAR c) = False"
| "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)"
| "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)"
| "nullable (STAR r) = True"
fun
der :: "char \<Rightarrow> rexp \<Rightarrow> rexp"
where
"der c (NULL) = NULL"
| "der c (EMPTY) = NULL"
| "der c (CHAR c') = (if c = c' then EMPTY else NULL)"
| "der c (ALT r1 r2) = ALT (der c r1) (der c r2)"
| "der c (SEQ r1 r2) = ALT (SEQ (der c r1) r2) (if nullable r1 then der c r2 else NULL)"
| "der c (STAR r) = SEQ (der c r) (STAR r)"
function
ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp"
where
"ders [] r = r"
| "ders (s @ [c]) r = der c (ders s r)"
by (auto) (metis rev_cases)
termination
by (relation "measure (length o fst)") (auto)
lemma Delta_nullable:
shows "Delta (L_rexp r) = (if nullable r then {[]} else {})"
unfolding Delta_def
by (induct r) (auto simp add: Seq_def split: if_splits)
lemma Der_der:
fixes r::rexp
shows "Der c (L_rexp r) = L_rexp (der c r)"
by (induct r) (simp_all add: Delta_nullable)
lemma Ders_ders:
fixes r::rexp
shows "Ders s (L_rexp r) = L_rexp (ders s r)"
apply(induct s rule: rev_induct)
apply(simp add: Ders_def)
apply(simp only: ders.simps)
apply(simp only: Ders_append)
apply(simp only: Ders_singleton)
apply(simp only: Der_der)
done
subsection {* Antimirov's Partial Derivatives *}
abbreviation
"SEQS R r \<equiv> {SEQ r' r | r'. r' \<in> R}"
fun
pder :: "char \<Rightarrow> rexp \<Rightarrow> rexp set"
where
"pder c NULL = {NULL}"
| "pder c EMPTY = {NULL}"
| "pder c (CHAR c') = (if c = c' then {EMPTY} else {NULL})"
| "pder c (ALT r1 r2) = (pder c r1) \<union> (pder c r2)"
| "pder c (SEQ r1 r2) = SEQS (pder c r1) r2 \<union> (if nullable r1 then pder c r2 else {})"
| "pder c (STAR r) = SEQS (pder c r) (STAR r)"
abbreviation
"pder_set c R \<equiv> \<Union>r \<in> R. pder c r"
function
pders :: "string \<Rightarrow> rexp \<Rightarrow> rexp set"
where
"pders [] r = {r}"
| "pders (s @ [c]) r = pder_set c (pders s r)"
by (auto) (metis rev_cases)
termination
by (relation "measure (length o fst)") (auto)
abbreviation
"pders_set A r \<equiv> \<Union>s \<in> A. pders s r"
lemma pders_append:
"pders (s1 @ s2) r = \<Union> (pders s2) ` (pders s1 r)"
apply(induct s2 arbitrary: s1 r rule: rev_induct)
apply(simp)
apply(subst append_assoc[symmetric])
apply(simp only: pders.simps)
apply(auto)
done
lemma pders_singleton:
"pders [c] r = pder c r"
apply(subst append_Nil[symmetric])
apply(simp only: pders.simps)
apply(simp)
done
lemma pder_set_lang:
shows "(\<Union> (L_rexp ` pder_set c R)) = (\<Union>r \<in> R. (\<Union>L_rexp ` (pder c r)))"
unfolding image_def
by auto
lemma
shows seq_UNION_left: "B \<cdot> (\<Union>n\<in>C. A n) = (\<Union>n\<in>C. B \<cdot> A n)"
and seq_UNION_right: "(\<Union>n\<in>C. A n) \<cdot> B = (\<Union>n\<in>C. A n \<cdot> B)"
unfolding Seq_def by auto
lemma Der_pder:
fixes r::rexp
shows "Der c (L_rexp r) = \<Union> L_rexp ` (pder c r)"
by (induct r) (auto simp add: Delta_nullable seq_UNION_right)
lemma Ders_pders:
fixes r::rexp
shows "Ders s (L_rexp r) = \<Union> L_rexp ` (pders s r)"
proof (induct s rule: rev_induct)
case (snoc c s)
have ih: "Ders s (L_rexp r) = \<Union> L_rexp ` (pders s r)" by fact
have "Ders (s @ [c]) (L_rexp r) = Ders [c] (Ders s (L_rexp r))"
by (simp add: Ders_append)
also have "\<dots> = Der c (\<Union> L_rexp ` (pders s r))" using ih
by (simp add: Ders_singleton)
also have "\<dots> = (\<Union>r\<in>pders s r. Der c (L_rexp r))"
unfolding Der_def image_def by auto
also have "\<dots> = (\<Union>r\<in>pders s r. (\<Union> L_rexp ` (pder c r)))"
by (simp add: Der_pder)
also have "\<dots> = (\<Union>L_rexp ` (pder_set c (pders s r)))"
by (simp add: pder_set_lang)
also have "\<dots> = (\<Union>L_rexp ` (pders (s @ [c]) r))"
by simp
finally show "Ders (s @ [c]) (L_rexp r) = \<Union> L_rexp ` pders (s @ [c]) r" .
qed (simp add: Ders_def)
lemma Ders_set_pders_set:
fixes r::rexp
shows "Ders_set A (L_rexp r) = (\<Union> L_rexp ` (pders_set A r))"
by (simp add: Ders_set_Ders Ders_pders)
lemma pders_NULL [simp]:
shows "pders s NULL = {NULL}"
by (induct s rule: rev_induct) (simp_all)
lemma pders_EMPTY [simp]:
shows "pders s EMPTY = (if s = [] then {EMPTY} else {NULL})"
by (induct s rule: rev_induct) (auto)
lemma pders_CHAR [simp]:
shows "pders s (CHAR c) = (if s = [] then {CHAR c} else (if s = [c] then {EMPTY} else {NULL}))"
by (induct s rule: rev_induct) (auto)
lemma pders_ALT [simp]:
shows "pders s (ALT r1 r2) = (if s = [] then {ALT r1 r2} else (pders s r1) \<union> (pders s r2))"
by (induct s rule: rev_induct) (auto)
definition
"Suf s \<equiv> {v. v \<noteq> [] \<and> (\<exists>u. u @ v = s)}"
lemma Suf:
shows "Suf (s @ [c]) = (Suf s) \<cdot> {[c]} \<union> {[c]}"
unfolding Suf_def Seq_def
by (auto simp add: append_eq_append_conv2 append_eq_Cons_conv)
lemma Suf_Union:
shows "(\<Union>v \<in> Suf s \<cdot> {[c]}. P v) = (\<Union>v \<in> Suf s. P (v @ [c]))"
by (auto simp add: Seq_def)
lemma inclusion1:
shows "pder_set c (SEQS R r2) \<subseteq> SEQS (pder_set c R) r2 \<union> (pder c r2)"
apply(auto simp add: if_splits)
apply(blast)
done
lemma pders_SEQ:
shows "pders s (SEQ r1 r2) \<subseteq> SEQS (pders s r1) r2 \<union> (\<Union>v \<in> Suf s. pders v r2)"
proof (induct s rule: rev_induct)
case (snoc c s)
have ih: "pders s (SEQ r1 r2) \<subseteq> SEQS (pders s r1) r2 \<union> (\<Union>v \<in> Suf s. pders v r2)"
by fact
have "pders (s @ [c]) (SEQ r1 r2) = pder_set c (pders s (SEQ r1 r2))" by simp
also have "\<dots> \<subseteq> pder_set c (SEQS (pders s r1) r2 \<union> (\<Union>v \<in> Suf s. pders v r2))"
using ih by (auto) (blast)
also have "\<dots> = pder_set c (SEQS (pders s r1) r2) \<union> pder_set c (\<Union>v \<in> Suf s. pders v r2)"
by (simp)
also have "\<dots> = pder_set c (SEQS (pders s r1) r2) \<union> (\<Union>v \<in> Suf s. pder_set c (pders v r2))"
by (simp)
also have "\<dots> \<subseteq> pder_set c (SEQS (pders s r1) r2) \<union> (pder c r2) \<union> (\<Union>v \<in> Suf s. pders (v @ [c]) r2)"
by (auto)
also have "\<dots> \<subseteq> SEQS (pder_set c (pders s r1)) r2 \<union> (pder c r2) \<union> (\<Union>v \<in> Suf s. pders (v @ [c]) r2)"
using inclusion1 by blast
also have "\<dots> = SEQS (pders (s @ [c]) r1) r2 \<union> (\<Union>v \<in> Suf (s @ [c]). pders v r2)"
apply(subst (2) pders.simps)
apply(simp only: Suf)
apply(simp add: Suf_Union pders_singleton)
apply(auto)
done
finally show ?case .
qed (simp)
lemma pders_STAR:
assumes a: "s \<noteq> []"
shows "pders s (STAR r) \<subseteq> (\<Union>v \<in> Suf s. SEQS (pders v r) (STAR r))"
using a
proof (induct s rule: rev_induct)
case (snoc c s)
have ih: "s \<noteq> [] \<Longrightarrow> pders s (STAR r) \<subseteq> (\<Union>v\<in>Suf s. SEQS (pders v r) (STAR r))" by fact
{ assume asm: "s \<noteq> []"
have "pders (s @ [c]) (STAR r) = pder_set c (pders s (STAR r))" by simp
also have "\<dots> \<subseteq> (pder_set c (\<Union>v\<in>Suf s. SEQS (pders v r) (STAR r)))"
using ih[OF asm] by blast
also have "\<dots> = (\<Union>v\<in>Suf s. pder_set c (SEQS (pders v r) (STAR r)))"
by simp
also have "\<dots> \<subseteq> (\<Union>v\<in>Suf s. (SEQS (pder_set c (pders v r)) (STAR r) \<union> pder c (STAR r)))"
using inclusion1 by (auto split: if_splits)
also have "\<dots> = (\<Union>v\<in>Suf s. (SEQS (pder_set c (pders v r)) (STAR r))) \<union> pder c (STAR r)"
using asm by (auto simp add: Suf_def)
also have "\<dots> = (\<Union>v\<in>Suf s. (SEQS (pders (v @ [c]) r) (STAR r))) \<union> (SEQS (pder c r) (STAR r))"
by simp
also have "\<dots> = (\<Union>v\<in>Suf (s @ [c]). (SEQS (pders v r) (STAR r)))"
apply(simp only: Suf)
apply(simp add: Suf_Union pders_singleton)
apply(auto)
done
finally have ?case .
}
moreover
{ assume asm: "s = []"
then have ?case
apply(simp add: pders_singleton Suf_def)
apply(auto)
apply(rule_tac x="[c]" in exI)
apply(simp add: pders_singleton)
done
}
ultimately show ?case by blast
qed (simp)
abbreviation
"UNIV1 \<equiv> UNIV - {[]}"
lemma pders_set_NULL:
shows "pders_set UNIV1 NULL = {NULL}"
by auto
lemma pders_set_EMPTY:
shows "pders_set UNIV1 EMPTY = {NULL}"
by (auto split: if_splits)
lemma pders_set_CHAR:
shows "pders_set UNIV1 (CHAR c) \<subseteq> {EMPTY, NULL}"
by (auto split: if_splits)
lemma pders_set_ALT:
shows "pders_set UNIV1 (ALT r1 r2) = pders_set UNIV1 r1 \<union> pders_set UNIV1 r2"
by auto
lemma pders_set_SEQ_aux:
assumes a: "s \<in> UNIV1"
shows "pders_set (Suf s) r2 \<subseteq> pders_set UNIV1 r2"
using a by (auto simp add: Suf_def)
lemma pders_set_SEQ:
shows "pders_set UNIV1 (SEQ r1 r2) \<subseteq> SEQS (pders_set UNIV1 r1) r2 \<union> pders_set UNIV1 r2"
apply(rule UN_least)
apply(rule subset_trans)
apply(rule pders_SEQ)
apply(simp)
apply(rule conjI)
apply(auto)[1]
apply(rule subset_trans)
apply(rule pders_set_SEQ_aux)
apply(auto)
done
lemma pders_set_STAR:
shows "pders_set UNIV1 (STAR r) \<subseteq> SEQS (pders_set UNIV1 r) (STAR r)"
apply(rule UN_least)
apply(rule subset_trans)
apply(rule pders_STAR)
apply(simp)
apply(simp add: Suf_def)
apply(auto)
done
lemma finite_SEQS:
assumes a: "finite A"
shows "finite (SEQS A r)"
using a by (auto)
lemma finite_pders_set_UNIV1:
shows "finite (pders_set UNIV1 r)"
apply(induct r)
apply(simp)
apply(simp only: pders_set_EMPTY)
apply(simp)
apply(rule finite_subset)
apply(rule pders_set_CHAR)
apply(simp)
apply(rule finite_subset)
apply(rule pders_set_SEQ)
apply(simp only: finite_SEQS finite_Un)
apply(simp)
apply(simp only: pders_set_ALT)
apply(simp)
apply(rule finite_subset)
apply(rule pders_set_STAR)
apply(simp only: finite_SEQS)
done
lemma pders_set_UNIV_UNIV1:
shows "pders_set UNIV r = pders [] r \<union> pders_set UNIV1 r"
apply(auto)
apply(rule_tac x="[]" in exI)
apply(simp)
done
lemma finite_pders_set_UNIV:
shows "finite (pders_set UNIV r)"
unfolding pders_set_UNIV_UNIV1
by (simp add: finite_pders_set_UNIV1)
lemma finite_pders_set:
shows "finite (pders_set A r)"
apply(rule rev_finite_subset)
apply(rule_tac r="r" in finite_pders_set_UNIV)
apply(auto)
done
lemma finite_pders:
shows "finite (pders s r)"
using finite_pders_set[where A="{s}" and r="r"]
by simp
lemma finite_pders2:
shows "finite {pders s r | s. s \<in> A}"
proof -
have "{pders s r | s. s \<in> A} \<subseteq> Pow (pders_set A r)" by auto
moreover
have "finite (Pow (pders_set A r))"
using finite_pders_set by simp
ultimately
show "finite {pders s r | s. s \<in> A}"
by(rule finite_subset)
qed
lemma Myhill_Nerode3:
fixes r::"rexp"
shows "finite (UNIV // \<approx>(L_rexp r))"
proof -
have "finite (UNIV // =(\<lambda>x. pders x r)=)"
proof -
have "range (\<lambda>x. pders x r) = {pders s r | s. s \<in> UNIV}" by auto
moreover
have "finite {pders s r | s. s \<in> UNIV}" by (rule finite_pders2)
ultimately
have "finite (range (\<lambda>x. pders x r))"
by simp
then show "finite (UNIV // =(\<lambda>x. pders x r)=)"
by (rule finite_eq_tag_rel)
qed
moreover
have "=(\<lambda>x. pders x r)= \<subseteq> \<approx>(L_rexp r)"
unfolding tag_eq_rel_def
unfolding str_eq_def2
unfolding MN_Rel_Ders
unfolding Ders_pders
by auto
moreover
have "equiv UNIV =(\<lambda>x. pders x r)="
unfolding equiv_def refl_on_def sym_def trans_def
unfolding tag_eq_rel_def
by auto
moreover
have "equiv UNIV (\<approx>(L_rexp r))"
unfolding equiv_def refl_on_def sym_def trans_def
unfolding str_eq_rel_def
by auto
ultimately show "finite (UNIV // \<approx>(L_rexp r))"
by (rule refined_partition_finite)
qed
section {* Relating derivatives and partial derivatives *}
lemma
shows "(\<Union> L_rexp ` (pder c r)) = L_rexp (der c r)"
unfolding Der_der[symmetric] Der_pder by simp
lemma
shows "(\<Union> L_rexp ` (pders s r)) = L_rexp (ders s r)"
unfolding Ders_ders[symmetric] Ders_pders by simp
end