Derivs.thy
author urbanc
Wed, 18 May 2011 19:54:43 +0000
changeset 162 e93760534354
child 166 7743d2ad71d1
permissions -rw-r--r--
added directory for journal version; took uptodate version of the theory files

theory Derivs
imports Closure
begin

section {* Experiments with Derivatives -- independent of Myhill-Nerode *}

subsection {* Left-Quotients *}

definition
  Delta :: "lang \<Rightarrow> lang"
where
  "Delta A = (if [] \<in> A then {[]} else {})"

definition
  Der :: "char \<Rightarrow> lang \<Rightarrow> lang"
where
  "Der c A \<equiv> {s. [c] @ s \<in> A}"

definition
  Ders :: "string \<Rightarrow> lang \<Rightarrow> lang"
where
  "Ders s A \<equiv> {s'. s @ s' \<in> A}"

definition
  Ders_set :: "lang \<Rightarrow> lang \<Rightarrow> lang"
where
  "Ders_set A B \<equiv> {s' | s s'. s @ s' \<in> B \<and> s \<in> A}"

lemma Ders_set_Ders:
  shows "Ders_set A B = (\<Union>s \<in> A. Ders s B)"
unfolding Ders_set_def Ders_def
by auto

lemma Der_null [simp]:
  shows "Der c {} = {}"
unfolding Der_def
by auto

lemma Der_empty [simp]:
  shows "Der c {[]} = {}"
unfolding Der_def
by auto

lemma Der_char [simp]:
  shows "Der c {[d]} = (if c = d then {[]} else {})"
unfolding Der_def
by auto

lemma Der_union [simp]:
  shows "Der c (A \<union> B) = Der c A \<union> Der c B"
unfolding Der_def
by auto

lemma Der_seq [simp]:
  shows "Der c (A ;; B) = (Der c A) ;; B \<union> (Delta A ;; Der c B)"
unfolding Der_def Delta_def
unfolding Seq_def
by (auto simp add: Cons_eq_append_conv)

lemma Der_star [simp]:
  shows "Der c (A\<star>) = (Der c A) ;; A\<star>"
proof -
  have incl: "Delta A ;; Der c (A\<star>) \<subseteq> (Der c A) ;; A\<star>"
    unfolding Der_def Delta_def Seq_def
    apply(auto)
    apply(drule star_decom)
    apply(auto simp add: Cons_eq_append_conv)
    done
    
  have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)"
    by (simp only: star_cases[symmetric])
  also have "... = Der c (A ;; A\<star>)"
    by (simp only: Der_union Der_empty) (simp)
  also have "... = (Der c A) ;; A\<star> \<union> (Delta A ;; Der c (A\<star>))"
    by simp
  also have "... =  (Der c A) ;; A\<star>"
    using incl by auto
  finally show "Der c (A\<star>) = (Der c A) ;; A\<star>" . 
qed


lemma Ders_singleton:
  shows "Ders [c] A = Der c A"
unfolding Der_def Ders_def
by simp

lemma Ders_append:
  shows "Ders (s1 @ s2) A = Ders s2 (Ders s1 A)"
unfolding Ders_def by simp 

lemma MN_Rel_Ders:
  shows "x \<approx>A y \<longleftrightarrow> Ders x A = Ders y A"
unfolding Ders_def str_eq_def str_eq_rel_def
by auto

subsection {* Brozowsky's derivatives of regular expressions *}

fun
  nullable :: "rexp \<Rightarrow> bool"
where
  "nullable (NULL) = False"
| "nullable (EMPTY) = True"
| "nullable (CHAR c) = False"
| "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)"
| "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)"
| "nullable (STAR r) = True"

fun
  der :: "char \<Rightarrow> rexp \<Rightarrow> rexp"
where
  "der c (NULL) = NULL"
| "der c (EMPTY) = NULL"
| "der c (CHAR c') = (if c = c' then EMPTY else NULL)"
| "der c (ALT r1 r2) = ALT (der c r1) (der c r2)"
| "der c (SEQ r1 r2) = ALT (SEQ (der c r1) r2) (if nullable r1 then der c r2 else NULL)"
| "der c (STAR r) = SEQ (der c r) (STAR r)"

function 
  ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp"
where
  "ders [] r = r"
| "ders (s @ [c]) r = der c (ders s r)"
by (auto) (metis rev_cases)

termination
  by (relation "measure (length o fst)") (auto)

lemma Delta_nullable:
  shows "Delta (L r) = (if nullable r then {[]} else {})"
unfolding Delta_def
by (induct r) (auto simp add: Seq_def split: if_splits)

lemma Der_der:
  fixes r::rexp
  shows "Der c (L r) = L (der c r)"
by (induct r) (simp_all add: Delta_nullable)

lemma Ders_ders:
  fixes r::rexp
  shows "Ders s (L r) = L (ders s r)"
apply(induct s rule: rev_induct)
apply(simp add: Ders_def)
apply(simp only: ders.simps)
apply(simp only: Ders_append)
apply(simp only: Ders_singleton)
apply(simp only: Der_der)
done


subsection {* Antimirov's Partial Derivatives *}

abbreviation
  "SEQS R r \<equiv> {SEQ r' r | r'. r' \<in> R}"

fun
  pder :: "char \<Rightarrow> rexp \<Rightarrow> rexp set"
where
  "pder c NULL = {NULL}"
| "pder c EMPTY = {NULL}"
| "pder c (CHAR c') = (if c = c' then {EMPTY} else {NULL})"
| "pder c (ALT r1 r2) = (pder c r1) \<union> (pder c r2)"
| "pder c (SEQ r1 r2) = SEQS (pder c r1) r2 \<union> (if nullable r1 then pder c r2 else {})"
| "pder c (STAR r) = SEQS (pder c r) (STAR r)"

abbreviation
  "pder_set c R \<equiv> \<Union>r \<in> R. pder c r"

function 
  pders :: "string \<Rightarrow> rexp \<Rightarrow> rexp set"
where
  "pders [] r = {r}"
| "pders (s @ [c]) r = pder_set c (pders s r)"
by (auto) (metis rev_cases)

termination
  by (relation "measure (length o fst)") (auto)

abbreviation
  "pders_set A r \<equiv> \<Union>s \<in> A. pders s r"

lemma pders_append:
  "pders (s1 @ s2) r = \<Union> (pders s2) ` (pders s1 r)"
apply(induct s2 arbitrary: s1 r rule: rev_induct)
apply(simp)
apply(subst append_assoc[symmetric])
apply(simp only: pders.simps)
apply(auto)
done

lemma pders_singleton:
  "pders [c] r = pder c r"
apply(subst append_Nil[symmetric])
apply(simp only: pders.simps)
apply(simp)
done

lemma pder_set_lang:
  shows "(\<Union> (L ` pder_set c R)) = (\<Union>r \<in> R. (\<Union>L ` (pder c r)))"
unfolding image_def 
by auto

lemma
  shows seq_UNION_left:  "B ;; (\<Union>n\<in>C. A n) = (\<Union>n\<in>C. B ;; A n)"
  and   seq_UNION_right: "(\<Union>n\<in>C. A n) ;; B = (\<Union>n\<in>C. A n ;; B)"
unfolding Seq_def by auto

lemma Der_pder:
  fixes r::rexp
  shows "Der c (L r) = \<Union> L ` (pder c r)"
by (induct r) (auto simp add: Delta_nullable seq_UNION_right)

lemma Ders_pders:
  fixes r::rexp
  shows "Ders s (L r) = \<Union> L ` (pders s r)"
proof (induct s rule: rev_induct)
  case (snoc c s)
  have ih: "Ders s (L r) = \<Union> L ` (pders s r)" by fact
  have "Ders (s @ [c]) (L r) = Ders [c] (Ders s (L r))"
    by (simp add: Ders_append)
  also have "\<dots> = Der c (\<Union> L ` (pders s r))" using ih
    by (simp add: Ders_singleton)
  also have "\<dots> = (\<Union>r\<in>pders s r. Der c (L r))" 
    unfolding Der_def image_def by auto
  also have "\<dots> = (\<Union>r\<in>pders s r. (\<Union> L `  (pder c r)))"
    by (simp add: Der_pder)
  also have "\<dots> = (\<Union>L ` (pder_set c (pders s r)))"
    by (simp add: pder_set_lang)
  also have "\<dots> = (\<Union>L ` (pders (s @ [c]) r))"
    by simp
  finally show "Ders (s @ [c]) (L r) = \<Union>L ` pders (s @ [c]) r" .
qed (simp add: Ders_def)

lemma Ders_set_pders_set:
  fixes r::rexp
  shows "Ders_set A (L r) = (\<Union> L ` (pders_set A r))"
by (simp add: Ders_set_Ders Ders_pders)

lemma pders_NULL [simp]:
  shows "pders s NULL = {NULL}"
by (induct s rule: rev_induct) (simp_all)

lemma pders_EMPTY [simp]:
  shows "pders s EMPTY = (if s = [] then {EMPTY} else {NULL})"
by (induct s rule: rev_induct) (auto)

lemma pders_CHAR [simp]:
  shows "pders s (CHAR c) = (if s = [] then {CHAR c} else (if s = [c] then {EMPTY} else {NULL}))"
by (induct s rule: rev_induct) (auto)

lemma pders_ALT [simp]:
  shows "pders s (ALT r1 r2) = (if s = [] then {ALT r1 r2} else (pders s r1) \<union> (pders s r2))"
by (induct s rule: rev_induct) (auto)

definition
  "Suf s \<equiv> {v. v \<noteq> [] \<and> (\<exists>u. u @ v = s)}"

lemma Suf:
  shows "Suf (s @ [c]) = (Suf s) ;; {[c]} \<union> {[c]}"
unfolding Suf_def Seq_def
by (auto simp add: append_eq_append_conv2 append_eq_Cons_conv)

lemma Suf_Union:
  shows "(\<Union>v \<in> Suf s ;; {[c]}. P v) = (\<Union>v \<in> Suf s. P (v @ [c]))"
by (auto simp add: Seq_def)

lemma inclusion1:
  shows "pder_set c (SEQS R r2) \<subseteq> SEQS (pder_set c R) r2 \<union> (pder c r2)"
apply(auto simp add: if_splits)
apply(blast)
done

lemma pders_SEQ:
  shows "pders s (SEQ r1 r2) \<subseteq> SEQS (pders s r1) r2 \<union> (\<Union>v \<in> Suf s. pders v r2)"
proof (induct s rule: rev_induct)
  case (snoc c s)
  have ih: "pders s (SEQ r1 r2) \<subseteq> SEQS (pders s r1) r2 \<union> (\<Union>v \<in> Suf s. pders v r2)" 
    by fact
  have "pders (s @ [c]) (SEQ r1 r2) = pder_set c (pders s (SEQ r1 r2))" by simp
  also have "\<dots> \<subseteq> pder_set c (SEQS (pders s r1) r2 \<union> (\<Union>v \<in> Suf s. pders v r2))"
    using ih by auto 
  also have "\<dots> = pder_set c (SEQS (pders s r1) r2) \<union> pder_set c (\<Union>v \<in> Suf s. pders v r2)"
    by (simp)
  also have "\<dots> = pder_set c (SEQS (pders s r1) r2) \<union> (\<Union>v \<in> Suf s. pder_set c (pders v r2))"
    by (simp)
  also have "\<dots> \<subseteq> pder_set c (SEQS (pders s r1) r2) \<union> (pder c r2) \<union> (\<Union>v \<in> Suf s. pders (v @ [c]) r2)"
    by (auto)
  also have "\<dots> \<subseteq> SEQS (pder_set c (pders s r1)) r2 \<union> (pder c r2) \<union> (\<Union>v \<in> Suf s. pders (v @ [c]) r2)"
    using inclusion1 by blast
  also have "\<dots> = SEQS (pders (s @ [c]) r1) r2 \<union> (\<Union>v \<in> Suf (s @ [c]). pders v r2)"
    apply(subst (2) pders.simps)
    apply(simp only: Suf)
    apply(simp add: Suf_Union pders_singleton)
    apply(auto)
    done
  finally show ?case .
qed (simp)

lemma pders_STAR:
  assumes a: "s \<noteq> []"
  shows "pders s (STAR r) \<subseteq> (\<Union>v \<in> Suf s. SEQS (pders v r) (STAR r))"
using a
proof (induct s rule: rev_induct)
  case (snoc c s)
  have ih: "s \<noteq> [] \<Longrightarrow> pders s (STAR r) \<subseteq> (\<Union>v\<in>Suf s. SEQS (pders v r) (STAR r))" by fact
  { assume asm: "s \<noteq> []"
    have "pders (s @ [c]) (STAR r) = pder_set c (pders s (STAR r))" by simp
    also have "\<dots> \<subseteq> (pder_set c (\<Union>v\<in>Suf s. SEQS (pders v r) (STAR r)))"
      using ih[OF asm] by blast
    also have "\<dots> = (\<Union>v\<in>Suf s. pder_set c (SEQS (pders v r) (STAR r)))"
      by simp
    also have "\<dots> \<subseteq> (\<Union>v\<in>Suf s. (SEQS (pder_set c (pders v r)) (STAR r) \<union> pder c (STAR r)))"
      using inclusion1 by blast
    also have "\<dots> = (\<Union>v\<in>Suf s. (SEQS (pder_set c (pders v r)) (STAR r))) \<union> pder c (STAR r)"
      using asm by (auto simp add: Suf_def)
    also have "\<dots> = (\<Union>v\<in>Suf s. (SEQS (pders (v @ [c]) r) (STAR r))) \<union> (SEQS (pder c r) (STAR r))"
      by simp
    also have "\<dots> = (\<Union>v\<in>Suf (s @ [c]). (SEQS (pders v r) (STAR r)))"
      apply(simp only: Suf)
      apply(simp add: Suf_Union pders_singleton)
      apply(auto)
      done
    finally have ?case .
  }
  moreover
  { assume asm: "s = []"
    then have ?case
      apply(simp add: pders_singleton Suf_def)
      apply(auto)
      apply(rule_tac x="[c]" in exI)
      apply(simp add: pders_singleton)
      done
  }
  ultimately show ?case by blast
qed (simp)

abbreviation 
  "UNIV1 \<equiv> UNIV - {[]}"

lemma pders_set_NULL:
  shows "pders_set UNIV1 NULL = {NULL}"
by auto

lemma pders_set_EMPTY:
  shows "pders_set UNIV1 EMPTY = {NULL}"
by (auto split: if_splits)

lemma pders_set_CHAR:
  shows "pders_set UNIV1 (CHAR c) \<subseteq> {EMPTY, NULL}"
by (auto split: if_splits)

lemma pders_set_ALT:
  shows "pders_set UNIV1 (ALT r1 r2) = pders_set UNIV1 r1 \<union> pders_set UNIV1 r2"
by auto

lemma pders_set_SEQ_aux:
  assumes a: "s \<in> UNIV1"
  shows "pders_set (Suf s) r2 \<subseteq> pders_set UNIV1 r2"
using a by (auto simp add: Suf_def)

lemma pders_set_SEQ:
  shows "pders_set UNIV1 (SEQ r1 r2) \<subseteq> SEQS (pders_set UNIV1 r1) r2 \<union> pders_set UNIV1 r2"
apply(rule UN_least)
apply(rule subset_trans)
apply(rule pders_SEQ)
apply(simp)
apply(rule conjI) 
apply(auto)[1]
apply(rule subset_trans)
apply(rule pders_set_SEQ_aux)
apply(auto)
done

lemma pders_set_STAR:
  shows "pders_set UNIV1 (STAR r) \<subseteq> SEQS (pders_set UNIV1 r) (STAR r)"
apply(rule UN_least)
apply(rule subset_trans)
apply(rule pders_STAR)
apply(simp)
apply(simp add: Suf_def)
apply(auto)
done

lemma finite_SEQS:
  assumes a: "finite A"
  shows "finite (SEQS A r)"
using a by (auto)

lemma finite_pders_set_UNIV1:
  shows "finite (pders_set UNIV1 r)"
apply(induct r)
apply(simp)
apply(simp only: pders_set_EMPTY)
apply(simp)
apply(rule finite_subset)
apply(rule pders_set_CHAR)
apply(simp)
apply(rule finite_subset)
apply(rule pders_set_SEQ)
apply(simp only: finite_SEQS finite_Un)
apply(simp)
apply(simp only: pders_set_ALT)
apply(simp)
apply(rule finite_subset)
apply(rule pders_set_STAR)
apply(simp only: finite_SEQS)
done
    
lemma pders_set_UNIV_UNIV1:
  shows "pders_set UNIV r = pders [] r \<union> pders_set UNIV1 r"
apply(auto)
apply(rule_tac x="[]" in exI)
apply(simp)
done

lemma finite_pders_set_UNIV:
  shows "finite (pders_set UNIV r)"
unfolding pders_set_UNIV_UNIV1
by (simp add: finite_pders_set_UNIV1)

lemma finite_pders_set:
  shows "finite (pders_set A r)"
apply(rule rev_finite_subset)
apply(rule_tac r="r" in finite_pders_set_UNIV)
apply(auto)
done

lemma finite_pders:
  shows "finite (pders s r)"
using finite_pders_set[where A="{s}" and r="r"]
by simp

lemma finite_pders2:
  shows "finite {pders s r | s. s \<in> A}"
proof -
  have "{pders s r | s. s \<in> A} \<subseteq> Pow (pders_set A r)" by auto
  moreover
  have "finite (Pow (pders_set A r))"
    using finite_pders_set by simp
  ultimately 
  show "finite {pders s r | s. s \<in> A}"
    by(rule finite_subset)
qed


lemma Myhill_Nerode3:
  fixes r::"rexp"
  shows "finite (UNIV // \<approx>(L r))"
proof -
  have "finite (UNIV // =(\<lambda>x. pders x r)=)"
  proof - 
    have "range (\<lambda>x. pders x r) \<subseteq> {pders s r | s. s \<in> UNIV}" by auto
    moreover 
    have "finite {pders s r | s. s \<in> UNIV}" by (rule finite_pders2)
    ultimately
    have "finite (range (\<lambda>x. pders x r))"
      by (rule finite_subset)
    then show "finite (UNIV // =(\<lambda>x. pders x r)=)" 
      by (rule finite_eq_tag_rel)
  qed
  moreover 
  have " =(\<lambda>x. pders x r)= \<subseteq> \<approx>(L r)"
    unfolding tag_eq_rel_def
    by (auto simp add: str_eq_def[symmetric] MN_Rel_Ders Ders_pders)
  moreover 
  have "equiv UNIV =(\<lambda>x. pders x r)="
    unfolding equiv_def refl_on_def sym_def trans_def
    unfolding tag_eq_rel_def
    by auto
  moreover
  have "equiv UNIV (\<approx>(L r))"
    unfolding equiv_def refl_on_def sym_def trans_def
    unfolding str_eq_rel_def
    by auto
  ultimately show "finite (UNIV // \<approx>(L r))" 
    by (rule refined_partition_finite)
qed


section {* Closure under Left-Quotients *}

lemma closure_left_quotient:
  assumes "regular A"
  shows "regular (Ders_set B A)"
proof -
  from assms obtain r::rexp where eq: "L r = A" by auto
  have fin: "finite (pders_set B r)" by (rule finite_pders_set)
  
  have "Ders_set B (L r) = (\<Union> L ` (pders_set B r))"
    by (simp add: Ders_set_pders_set)
  also have "\<dots> = L (\<Uplus>(pders_set B r))" using fin by simp
  finally have "Ders_set B A = L (\<Uplus>(pders_set B r))" using eq
    by simp
  then show "regular (Ders_set B A)" by auto
qed


section {* Relating standard and partial derivations *}

lemma
  shows "(\<Union> L ` (pder c r)) = L (der c r)"
unfolding Der_der[symmetric] Der_pder by simp

lemma
  shows "(\<Union> L ` (pders s r)) = L (ders s r)"
unfolding Ders_ders[symmetric] Ders_pders by simp



fun
  width :: "rexp \<Rightarrow> nat"
where
  "width (NULL) = 0"
| "width (EMPTY) = 0"
| "width (CHAR c) = 1"
| "width (ALT r1 r2) = width r1 + width r2"
| "width (SEQ r1 r2) = width r1 + width r2"
| "width (STAR r) = width r"


 
end