--- a/Myhill_2.thy Mon Feb 07 13:17:01 2011 +0000
+++ b/Myhill_2.thy Mon Feb 07 20:30:10 2011 +0000
@@ -1,5 +1,5 @@
theory Myhill_2
- imports Myhill_1
+ imports Myhill_1 List_Prefix Prefix_subtract
begin
section {* Direction @{text "regular language \<Rightarrow>finite partition"} *}
@@ -7,15 +7,15 @@
subsection {* The scheme*}
text {*
- The following convenient notation @{text "x \<approx>Lang y"} means:
+ The following convenient notation @{text "x \<approx>A y"} means:
string @{text "x"} and @{text "y"} are equivalent with respect to
- language @{text "Lang"}.
+ language @{text "A"}.
*}
definition
str_eq :: "string \<Rightarrow> lang \<Rightarrow> string \<Rightarrow> bool" ("_ \<approx>_ _")
where
- "x \<approx>Lang y \<equiv> (x, y) \<in> (\<approx>Lang)"
+ "x \<approx>A y \<equiv> (x, y) \<in> (\<approx>A)"
text {*
The main lemma (@{text "rexp_imp_finite"}) is proved by a structural induction over regular expressions.