--- a/Journal/Paper.thy Thu Jul 28 14:22:10 2011 +0000
+++ b/Journal/Paper.thy Thu Jul 28 17:52:36 2011 +0000
@@ -67,7 +67,8 @@
tag_str_Star ("tag\<^isub>S\<^isub>T\<^isub>A\<^isub>R _ _" [100, 100] 100) and
tag_eq_rel ("\<^raw:$\threesim$>\<^bsub>_\<^esub>") and
Delta ("\<Delta>'(_')") and
- nullable ("\<delta>'(_')")
+ nullable ("\<delta>'(_')") and
+ Cons ("_ :: _" [100, 100] 100)
lemma meta_eq_app:
shows "f \<equiv> \<lambda>x. g x \<Longrightarrow> f x \<equiv> g x"
@@ -389,7 +390,7 @@
\begin{prpstn}\label{langprops}\mbox{}\\
\begin{tabular}{@ {}ll}
- (i) & @{thm star_cases} \\
+ (i) & @{thm star_unfold_left} \\
(ii) & @{thm[mode=IfThen] pow_length}\\
(iii) & @{thm conc_Union_left} \\
\end{tabular}
@@ -1098,8 +1099,38 @@
Much more interesting, however, are the inductive cases. They seem hard to solve
directly. The reader is invited to try.
- Constable et al \cite{Constable00} give the following suggestive picture about
- equivalence classes:
+ In order how to see how our first proof proceeds we use the following suggestive picture
+ from Constable et al \cite{Constable00}:
+
+ \begin{center}
+ \begin{tabular}{c@ {\hspace{10mm}}c@ {\hspace{10mm}}c}
+ \begin{tikzpicture}[scale=1]
+ %Circle
+ \draw[thick] (0,0) circle (1.1);
+ \end{tikzpicture}
+ &
+ \begin{tikzpicture}[scale=1]
+ %Circle
+ \draw[thick] (0,0) circle (1.1);
+ %Main rays
+ \foreach \a in {0, 90,...,359}
+ \draw[very thick] (0, 0) -- (\a:1.1);
+ \foreach \a / \l in {45/1, 135/2, 225/3, 315/4}
+ \draw (\a: 0.65) node {$a_\l$};
+ \end{tikzpicture}
+ &
+ \begin{tikzpicture}[scale=1]
+ %Circle
+ \draw[thick] (0,0) circle (1.1);
+ %Main rays
+ \foreach \a in {0, 45,...,359}
+ \draw[very thick] (0, 0) -- (\a:1.1);
+ \foreach \a / \l in {22.5/1.1, 67.5/1.2, 112.5/2.1, 157.5/2.2, 202.4/3.1, 247.5/3.2, 292.5/4.1, 337.5/4.2}
+ \draw (\a: 0.77) node {$a_{\l}$};
+ \end{tikzpicture}\\
+ @{term UNIV} & @{term "UNIV // (\<approx>(lang r))"} & @{term "UNIV // R"}
+ \end{tabular}
+ \end{center}
Our first proof will rely on some
\emph{tagging-functions} defined over strings. Given the inductive hypothesis, it will