Journal/Paper.thy
changeset 181 97090fc7aa9f
parent 180 b755090d0f3d
child 182 560712a29a36
--- a/Journal/Paper.thy	Thu Jul 28 17:52:36 2011 +0000
+++ b/Journal/Paper.thy	Sun Jul 31 10:27:41 2011 +0000
@@ -39,8 +39,8 @@
 
 
 notation (latex output)
-  str_eq_rel ("\<approx>\<^bsub>_\<^esub>") and
-  str_eq ("_ \<approx>\<^bsub>_\<^esub> _") and
+  str_eq ("\<approx>\<^bsub>_\<^esub>") and
+  str_eq_applied ("_ \<approx>\<^bsub>_\<^esub> _") and
   conc (infixr "\<cdot>" 100) and
   star ("_\<^bsup>\<star>\<^esup>") and
   pow ("_\<^bsup>_\<^esup>" [100, 100] 100) and
@@ -59,13 +59,13 @@
   Append_rexp_rhs ("_ \<^raw:\ensuremath{\triangleleft}> _" [100, 100] 50) and
   
   uminus ("\<^raw:\ensuremath{\overline{>_\<^raw:}}>" [100] 100) and
-  tag_str_Plus ("tag\<^bsub>PLUS\<^esub> _ _" [100, 100] 100) and
-  tag_str_Plus ("tag\<^bsub>PLUS\<^esub> _ _ _" [100, 100, 100] 100) and
-  tag_str_Times ("tag\<^isub>S\<^isub>E\<^isub>Q _ _" [100, 100] 100) and
-  tag_str_Times ("tag\<^isub>S\<^isub>E\<^isub>Q _ _ _" [100, 100, 100] 100) and
-  tag_str_Star ("tag\<^isub>S\<^isub>T\<^isub>A\<^isub>R _" [100] 100) and
-  tag_str_Star ("tag\<^isub>S\<^isub>T\<^isub>A\<^isub>R _ _" [100, 100] 100) and
-  tag_eq_rel ("\<^raw:$\threesim$>\<^bsub>_\<^esub>") and
+  tag_Plus ("tag\<^bsub>PLUS\<^esub> _ _" [100, 100] 100) and
+  tag_Plus ("tag\<^bsub>PLUS\<^esub> _ _ _" [100, 100, 100] 100) and
+  tag_Times ("tag\<^isub>S\<^isub>E\<^isub>Q _ _" [100, 100] 100) and
+  tag_Times ("tag\<^isub>S\<^isub>E\<^isub>Q _ _ _" [100, 100, 100] 100) and
+  tag_Star ("tag\<^isub>S\<^isub>T\<^isub>A\<^isub>R _" [100] 100) and
+  tag_Star ("tag\<^isub>S\<^isub>T\<^isub>A\<^isub>R _ _" [100, 100] 100) and
+  tag_eq ("\<^raw:$\threesim$>\<^bsub>_\<^esub>") and
   Delta ("\<Delta>'(_')") and
   nullable ("\<delta>'(_')") and
   Cons ("_ :: _" [100, 100] 100)
@@ -74,6 +74,10 @@
   shows "f \<equiv> \<lambda>x. g x \<Longrightarrow> f x \<equiv> g x"
   by auto
 
+lemma str_eq_def':
+  shows "x \<approx>A y \<equiv> (\<forall>z. x @ z \<in> A \<longleftrightarrow> y @ z \<in> A)"
+unfolding str_eq_def by simp
+
 lemma conc_def':
   "A \<cdot> B = {s\<^isub>1 @ s\<^isub>2 | s\<^isub>1 s\<^isub>2. s\<^isub>1 \<in> A \<and> s\<^isub>2 \<in> B}"
 unfolding conc_def by simp
@@ -174,7 +178,7 @@
 
   \begin{center}
   \begin{tabular}{ccc}
-  \begin{tikzpicture}[scale=0.9]
+  \begin{tikzpicture}[scale=1]
   %\draw[step=2mm] (-1,-1) grid (1,1);
   
   \draw[rounded corners=1mm, very thick] (-1.0,-0.3) rectangle (-0.2,0.3);
@@ -190,8 +194,8 @@
   \node (F) at (1.0,-0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
   \node (G) at (1.0,-0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
 
-  \draw (-0.6,0.0) node {\footnotesize$A_1$};
-  \draw ( 0.6,0.0) node {\footnotesize$A_2$};
+  \draw (-0.6,0.0) node {\small$A_1$};
+  \draw ( 0.6,0.0) node {\small$A_2$};
   \end{tikzpicture}
 
   & 
@@ -200,7 +204,7 @@
 
   &
 
-  \begin{tikzpicture}[scale=0.9]
+  \begin{tikzpicture}[scale=1]
   %\draw[step=2mm] (-1,-1) grid (1,1);
   
   \draw[rounded corners=1mm, very thick] (-1.0,-0.3) rectangle (-0.2,0.3);
@@ -219,8 +223,8 @@
   \draw (C) to [very thick, bend left=45] (B);
   \draw (D) to [very thick, bend right=45] (B);
 
-  \draw (-0.6,0.0) node {\footnotesize$A_1$};
-  \draw ( 0.6,0.0) node {\footnotesize$A_2$};
+  \draw (-0.6,0.0) node {\small$A_1$};
+  \draw ( 0.6,0.0) node {\small$A_2$};
   \end{tikzpicture}
 
   \end{tabular}
@@ -300,7 +304,7 @@
   everything is crystal clear. However, paper proofs about automata often
   involve subtle side-conditions which are easily overlooked, but which make
   formal reasoning rather painful. For example Kozen's proof of the
-  Myhill-Nerode theorem requires that the automata do not have inaccessible
+  Myhill-Nerode theorem requires that automata do not have inaccessible
   states \cite{Kozen97}. Another subtle side-condition is completeness of
   automata, that is automata need to have total transition functions and at most one
   `sink' state from which there is no connection to a final state (Brozowski
@@ -346,7 +350,7 @@
   To our best knowledge, our proof of the Myhill-Nerode theorem is the first
   that is based on regular expressions, only. The part of this theorem stating
   that finitely many partitions imply regularity of the language is proved by
-  an argument about solving equational sytems.  This argument appears to be
+  an argument about solving equational systems.  This argument appears to be
   folklore. For the other part, we give two proofs: one direct proof using
   certain tagging-functions, and another indirect proof using Antimirov's
   partial derivatives \cite{Antimirov95}. Again to our best knowledge, the
@@ -403,10 +407,11 @@
   the proofs for these properties, but invite the reader to consult our
   formalisation.\footnote{Available at \url{http://www4.in.tum.de/~urbanc/regexp.html}}
 
-  The notation in Isabelle/HOL for the quotient of a language @{text A} according to an 
-  equivalence relation @{term REL} is @{term "A // REL"}. We will write 
-  @{text "\<lbrakk>x\<rbrakk>\<^isub>\<approx>"} for the equivalence class defined 
-  as \mbox{@{text "{y | y \<approx> x}"}}.
+  The notation in Isabelle/HOL for the quotient of a language @{text A}
+  according to an equivalence relation @{term REL} is @{term "A // REL"}. We
+  will write @{text "\<lbrakk>x\<rbrakk>\<^isub>\<approx>"} for the equivalence class defined as
+  \mbox{@{text "{y | y \<approx> x}"}}, and have @{text "x \<approx> y"} if and only if @{text
+  "\<lbrakk>x\<rbrakk>\<^isub>\<approx> = \<lbrakk>y\<rbrakk>\<^isub>\<approx>"}.
 
 
   Central to our proof will be the solution of equational systems
@@ -426,9 +431,9 @@
   \begin{proof}
   For the right-to-left direction we assume @{thm (rhs) arden} and show
   that @{thm (lhs) arden} holds. From Prop.~\ref{langprops}@{text "(i)"} 
-  we have @{term "A\<star> = {[]} \<union> A \<cdot> A\<star>"},
-  which is equal to @{term "A\<star> = {[]} \<union> A\<star> \<cdot> A"}. Adding @{text B} to both 
-  sides gives @{term "B \<cdot> A\<star> = B \<cdot> ({[]} \<union> A\<star> \<cdot> A)"}, whose right-hand side
+  we have @{term "A\<star> = A \<cdot> A\<star> \<union> {[]}"},
+  which is equal to @{term "A\<star> = A\<star> \<cdot> A \<union> {[]}"}. Adding @{text B} to both 
+  sides gives @{term "B \<cdot> A\<star> = B \<cdot> (A\<star> \<cdot> A \<union> {[]})"}, whose right-hand side
   is equal to @{term "(B \<cdot> A\<star>) \<cdot> A \<union> B"}. This completes this direction. 
 
   For the other direction we assume @{thm (lhs) arden}. By a simple induction
@@ -515,7 +520,7 @@
   Given a language @{text A}, two strings @{text x} and
   @{text y} are Myhill-Nerode related provided
   \begin{center}
-  @{thm str_eq_def[simplified str_eq_rel_def Pair_Collect]}
+  @{thm str_eq_def'}
   \end{center}
   \end{dfntn}
 
@@ -641,7 +646,7 @@
   
   \noindent
   where @{text "d\<^isub>1\<dots>d\<^isub>n"} is the sequence of all characters
-  except @{text c}, and @{text "c\<^isub>1\<dots>c\<^isub>m"} is the sequence of all
+  but not containing @{text c}, and @{text "c\<^isub>1\<dots>c\<^isub>m"} is the sequence of all
   characters.  
 
   Overloading the function @{text \<calL>} for the two kinds of terms in the
@@ -1067,7 +1072,7 @@
 
 text {*
   \noindent
-  In this section and the next we will give two proofs for establishing the second 
+  In this section we will give a proof for establishing the second 
   part of the Myhill-Nerode theorem. It can be formulated in our setting as follows:
 
   \begin{thrm}
@@ -1075,7 +1080,7 @@
   \end{thrm}  
 
   \noindent
-  The first proof will be by induction on the structure of @{text r}. It turns out
+  The proof will be by induction on the structure of @{text r}. It turns out
   the base cases are straightforward.
 
 
@@ -1099,11 +1104,11 @@
   Much more interesting, however, are the inductive cases. They seem hard to solve 
   directly. The reader is invited to try. 
 
-  In order how to see how our first proof proceeds we use the following suggestive picture 
-  from Constable et al \cite{Constable00}:
+  In order to see how our proof proceeds consider the following suggestive picture 
+  taken from Constable et al \cite{Constable00}:
 
-  \begin{center}
-  \begin{tabular}{c@ {\hspace{10mm}}c@ {\hspace{10mm}}c}
+  \begin{equation}\label{pics}
+  \mbox{\begin{tabular}{c@ {\hspace{10mm}}c@ {\hspace{10mm}}c}
   \begin{tikzpicture}[scale=1]
   %Circle
   \draw[thick] (0,0) circle (1.1);    
@@ -1129,10 +1134,17 @@
       \draw (\a: 0.77) node {$a_{\l}$};
   \end{tikzpicture}\\
   @{term UNIV} & @{term "UNIV // (\<approx>(lang r))"} & @{term "UNIV // R"}
-  \end{tabular}
-  \end{center}
+  \end{tabular}}
+  \end{equation}
 
-  Our first proof will rely on some
+  \noindent
+  The relation @{term "\<approx>(lang r)"} partitions the set of all strings into some
+  equivalence classes. To show that there are only finitely many of
+  them, it suffices to show in each induction step the existence of another
+  relation, say @{text R}, for which we can show that there are finitely many
+  equivalence classes and which refines @{term "\<approx>(lang r)"}. A relation @{text
+  "R\<^isub>1"} is said to \emph{refine} @{text "R\<^isub>2"} provided @{text
+  "R\<^isub>1 \<subseteq> R\<^isub>2"}. For constructing @{text R} will rely on some
   \emph{tagging-functions} defined over strings. Given the inductive hypothesis, it will 
   be easy to prove that the \emph{range} of these tagging-functions is finite. 
   The range of a function @{text f} is defined as 
@@ -1142,13 +1154,14 @@
   \end{center}
 
   \noindent
-  that means we take the image of @{text f} w.r.t.~all elements in the domain. 
-  With this we will be able to infer that the tagging-functions, seen as relations,
-  give rise to finitely many equivalence classes of @{const UNIV}. Finally we 
-  will show that the tagging-relations are more refined than @{term "\<approx>(lang r)"}, which
-  implies that @{term "UNIV // \<approx>(lang r)"} must also be finite---a relation @{text "R\<^isub>1"} 
-  is said to \emph{refine} @{text "R\<^isub>2"} provided @{text "R\<^isub>1 \<subseteq> R\<^isub>2"}.
-  We formally define the notion of a \emph{tagging-relation} as follows.
+  that means we take the image of @{text f} w.r.t.~all elements in the
+  domain. With this we will be able to infer that the tagging-functions, seen
+  as relations, give rise to finitely many equivalence classes of @{const
+  UNIV}. Finally we will show that the tagging-relations are more refined than
+  @{term "\<approx>(lang r)"}, which implies that @{term "UNIV // \<approx>(lang r)"} must
+  also be finite.  We formally define the notion of a \emph{tagging-relation}
+  as follows.
+
 
   \begin{dfntn}[Tagging-Relation] Given a tagging-function @{text tag}, then two strings @{text x}
   and @{text y} are \emph{tag-related} provided
@@ -1212,7 +1225,7 @@
 
   \noindent
   Chaining Lem.~\ref{finone} and \ref{fintwo} together, means in order to show
-  that @{term "UNIV // \<approx>(lang r)"} is finite, we have to find a tagging-function whose
+  that @{term "UNIV // \<approx>(lang r)"} is finite, we have to construct a tagging-function whose
   range can be shown to be finite and whose tagging-relation refines @{term "\<approx>(lang r)"}.
   Let us attempt the @{const PLUS}-case first.
 
@@ -1220,14 +1233,14 @@
   We take as tagging-function 
   %
   \begin{center}
-  @{thm tag_str_Plus_def[where A="A" and B="B", THEN meta_eq_app]}
+  @{thm tag_Plus_def[where A="A" and B="B", THEN meta_eq_app]}
   \end{center}
 
   \noindent
   where @{text "A"} and @{text "B"} are some arbitrary languages.
   We can show in general, if @{term "finite (UNIV // \<approx>A)"} and @{term "finite (UNIV // \<approx>B)"}
   then @{term "finite ((UNIV // \<approx>A) \<times> (UNIV // \<approx>B))"} holds. The range of
-  @{term "tag_str_Plus A B"} is a subset of this product set---so finite. It remains to be shown
+  @{term "tag_Plus A B"} is a subset of this product set---so finite. It remains to be shown
   that @{text "=tag\<^isub>A\<^isub>L\<^isub>T A B="} refines @{term "\<approx>(A \<union> B)"}. This amounts to 
   showing
   %
@@ -1269,17 +1282,21 @@
   notions of \emph{string prefixes} 
   %
   \begin{center}
-  @{text "x \<le> y \<equiv> \<exists>z. y = x @ z"}\hspace{10mm}
+  \begin{tabular}{l}
+  @{text "x \<le> y \<equiv> \<exists>z. y = x @ z"}\\
   @{text "x < y \<equiv> x \<le> y \<and> x \<noteq> y"}
+  \end{tabular}
   \end{center}
   %
   \noindent
   and \emph{string subtraction}:
   %
   \begin{center}
-  @{text "[] - y \<equiv> []"}\hspace{10mm}
-  @{text "x - [] \<equiv> x"}\hspace{10mm}
-  @{text "cx - dy \<equiv> if c = d then x - y else cx"}
+  \begin{tabular}{r@ {\hspace{1mm}}c@ {\hspace{1mm}}l}
+  @{text "[] - y"}  & @{text "\<equiv>"} & @{text "[]"}\\
+  @{text "x - []"}  & @{text "\<equiv>"} & @{text "x"}\\
+  @{text "cx - dy"} & @{text "\<equiv>"} & @{text "if c = d then x - y else cx"}
+  \end{tabular}
   \end{center}
   %
   \noindent
@@ -1289,8 +1306,8 @@
   this string to be in @{term "A \<cdot> B"}:
   %
   \begin{center}
-  \begin{tabular}{@ {}c@ {\hspace{10mm}}c@ {}}
-  \scalebox{0.7}{
+  \begin{tabular}{c}
+  \scalebox{0.9}{
   \begin{tikzpicture}
     \node[draw,minimum height=3.8ex] (xa) { $\hspace{3em}@{text "x'"}\hspace{3em}$ };
     \node[draw,minimum height=3.8ex, right=-0.03em of xa] (xxa) { $\hspace{0.2em}@{text "x - x'"}\hspace{0.2em}$ };
@@ -1316,8 +1333,8 @@
            ($(xa.south east)+(0em,0ex)$) -- ($(xa.south west)+(0em,0ex)$)
                node[midway, below=0.5em]{@{term "x' \<in> A"}};
   \end{tikzpicture}}
-  &
-  \scalebox{0.7}{
+  \\
+  \scalebox{0.9}{
   \begin{tikzpicture}
     \node[draw,minimum height=3.8ex] (x) { $\hspace{4.8em}@{text x}\hspace{4.8em}$ };
     \node[draw,minimum height=3.8ex, right=-0.03em of x] (za) { $\hspace{0.6em}@{text "z'"}\hspace{0.6em}$ };
@@ -1353,7 +1370,7 @@
   following tagging-function
   %
   \begin{center}
-  @{thm tag_str_Times_def[where ?L1.0="A" and ?L2.0="B", THEN meta_eq_app]}
+  @{thm tag_Times_def[where ?A="A" and ?B="B", THEN meta_eq_app]}
   \end{center}
 
   \noindent
@@ -1363,11 +1380,11 @@
   \begin{proof}[@{const TIMES}-Case]
   If @{term "finite (UNIV // \<approx>A)"} and @{term "finite (UNIV // \<approx>B)"}
   then @{term "finite ((UNIV // \<approx>A) \<times> (Pow (UNIV // \<approx>B)))"} holds. The range of
-  @{term "tag_str_TIMES A B"} is a subset of this product set, and therefore finite.
+  @{term "tag_Times A B"} is a subset of this product set, and therefore finite.
   We have to show injectivity of this tagging-function as
   %
   \begin{center}
-  @{term "\<forall>z. tag_str_TIMES A B x = tag_str_TIMES A B y \<and> x @ z \<in> A \<cdot> B \<longrightarrow> y @ z \<in> A \<cdot> B"}
+  @{term "\<forall>z. tag_Times A B x = tag_Times A B y \<and> x @ z \<in> A \<cdot> B \<longrightarrow> y @ z \<in> A \<cdot> B"}
   \end{center}
   %
   \noindent
@@ -1380,7 +1397,7 @@
   \end{center}
   %
   \noindent
-  and by the assumption about @{term "tag_str_TIMES A B"} also 
+  and by the assumption about @{term "tag_Times A B"} also 
   %
   \begin{center}
   @{term "(\<approx>B `` {x - x'}) \<in> ({\<approx>B `` {y - y'} |y'. y' \<le> y \<and> y' \<in> A})"}
@@ -1395,7 +1412,7 @@
   @{term "y @ z \<in> A \<cdot> B"}, as needed in this case.
 
   Second, there exists a @{text "z'"} such that @{term "x @ z' \<in> A"} and @{text "z - z' \<in> B"}.
-  By the assumption about @{term "tag_str_TIMES A B"} we have
+  By the assumption about @{term "tag_Times A B"} we have
   @{term "\<approx>A `` {x} = \<approx>A `` {y}"} and thus @{term "x \<approx>A y"}. Which means by the Myhill-Nerode
   relation that @{term "y @ z' \<in> A"} holds. Using @{text "z - z' \<in> B"}, we can conclude also in this case
   with @{term "y @ z \<in> A \<cdot> B"}. We again can complete the @{const TIMES}-case
@@ -1467,17 +1484,17 @@
   the following tagging-function:
   %
   \begin{center}
-  @{thm tag_str_Star_def[where ?L1.0="A", THEN meta_eq_app]}\smallskip
+  @{thm tag_Star_def[where ?A="A", THEN meta_eq_app]}\smallskip
   \end{center}
 
   \begin{proof}[@{const Star}-Case]
   If @{term "finite (UNIV // \<approx>A)"} 
   then @{term "finite (Pow (UNIV // \<approx>A))"} holds. The range of
-  @{term "tag_str_Star A"} is a subset of this set, and therefore finite.
+  @{term "tag_Star A"} is a subset of this set, and therefore finite.
   Again we have to show injectivity of this tagging-function as  
   %
   \begin{center}
-  @{term "\<forall>z. tag_str_Star A x = tag_str_Star A y \<and> x @ z \<in> A\<star> \<longrightarrow> y @ z \<in> A\<star>"}
+  @{term "\<forall>z. tag_Star A x = tag_Star A y \<and> x @ z \<in> A\<star> \<longrightarrow> y @ z \<in> A\<star>"}
   \end{center}  
   %
   \noindent