Myhill_2.thy
changeset 63 649ff0b8766d
child 75 d63baacbdb16
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Myhill_2.thy	Thu Feb 03 12:44:46 2011 +0000
@@ -0,0 +1,900 @@
+theory Myhill_2
+  imports Myhill_1
+begin
+
+section {* Direction @{text "regular language \<Rightarrow>finite partition"} *}
+
+subsection {* The scheme*}
+
+text {* 
+  The following convenient notation @{text "x \<approx>Lang y"} means:
+  string @{text "x"} and @{text "y"} are equivalent with respect to 
+  language @{text "Lang"}.
+  *}
+
+definition
+  str_eq :: "string \<Rightarrow> lang \<Rightarrow> string \<Rightarrow> bool" ("_ \<approx>_ _")
+where
+  "x \<approx>Lang y \<equiv> (x, y) \<in> (\<approx>Lang)"
+
+text {*
+  The main lemma (@{text "rexp_imp_finite"}) is proved by a structural induction over regular expressions.
+  While base cases (cases for @{const "NULL"}, @{const "EMPTY"}, @{const "CHAR"}) are quite straight forward,
+  the inductive cases are rather involved. What we have when starting to prove these inductive caes is that
+  the partitions induced by the componet language are finite. The basic idea to show the finiteness of the 
+  partition induced by the composite language is to attach a tag @{text "tag(x)"} to every string 
+  @{text "x"}. The tags are made of equivalent classes from the component partitions. Let @{text "tag"}
+  be the tagging function and @{text "Lang"} be the composite language, it can be proved that
+  if strings with the same tag are equivalent with respect to @{text "Lang"}, expressed as:
+  \[
+  @{text "tag(x) = tag(y) \<Longrightarrow> x \<approx>Lang y"}
+  \]
+  then the partition induced by @{text "Lang"} must be finite. There are two arguments for this. 
+  The first goes as the following:
+  \begin{enumerate}
+    \item First, the tagging function @{text "tag"} induces an equivalent relation @{text "(=tag=)"} 
+          (defiintion of @{text "f_eq_rel"} and lemma @{text "equiv_f_eq_rel"}).
+    \item It is shown that: if the range of @{text "tag"} (denoted @{text "range(tag)"}) is finite, 
+           the partition given rise by @{text "(=tag=)"} is finite (lemma @{text "finite_eq_f_rel"}).
+           Since tags are made from equivalent classes from component partitions, and the inductive
+           hypothesis ensures the finiteness of these partitions, it is not difficult to prove
+           the finiteness of @{text "range(tag)"}.
+    \item It is proved that if equivalent relation @{text "R1"} is more refined than @{text "R2"}
+           (expressed as @{text "R1 \<subseteq> R2"}),
+           and the partition induced by @{text "R1"} is finite, then the partition induced by @{text "R2"}
+           is finite as well (lemma @{text "refined_partition_finite"}).
+    \item The injectivity assumption @{text "tag(x) = tag(y) \<Longrightarrow> x \<approx>Lang y"} implies that
+            @{text "(=tag=)"} is more refined than @{text "(\<approx>Lang)"}.
+    \item Combining the points above, we have: the partition induced by language @{text "Lang"}
+          is finite (lemma @{text "tag_finite_imageD"}).
+  \end{enumerate}
+*}
+
+definition 
+   f_eq_rel ("=_=")
+where
+   "(=f=) = {(x, y) | x y. f x = f y}"
+
+lemma equiv_f_eq_rel:"equiv UNIV (=f=)"
+  by (auto simp:equiv_def f_eq_rel_def refl_on_def sym_def trans_def)
+
+lemma finite_range_image: "finite (range f) \<Longrightarrow> finite (f ` A)"
+  by (rule_tac B = "{y. \<exists>x. y = f x}" in finite_subset, auto simp:image_def)
+
+lemma finite_eq_f_rel:
+  assumes rng_fnt: "finite (range tag)"
+  shows "finite (UNIV // (=tag=))"
+proof -
+  let "?f" =  "op ` tag" and ?A = "(UNIV // (=tag=))"
+  show ?thesis
+  proof (rule_tac f = "?f" and A = ?A in finite_imageD) 
+    -- {* 
+      The finiteness of @{text "f"}-image is a simple consequence of assumption @{text "rng_fnt"}:
+      *}
+    show "finite (?f ` ?A)" 
+    proof -
+      have "\<forall> X. ?f X \<in> (Pow (range tag))" by (auto simp:image_def Pow_def)
+      moreover from rng_fnt have "finite (Pow (range tag))" by simp
+      ultimately have "finite (range ?f)"
+        by (auto simp only:image_def intro:finite_subset)
+      from finite_range_image [OF this] show ?thesis .
+    qed
+  next
+    -- {* 
+      The injectivity of @{text "f"}-image is a consequence of the definition of @{text "(=tag=)"}:
+      *}
+    show "inj_on ?f ?A" 
+    proof-
+      { fix X Y
+        assume X_in: "X \<in> ?A"
+          and  Y_in: "Y \<in> ?A"
+          and  tag_eq: "?f X = ?f Y"
+        have "X = Y"
+        proof -
+          from X_in Y_in tag_eq 
+          obtain x y 
+            where x_in: "x \<in> X" and y_in: "y \<in> Y" and eq_tg: "tag x = tag y"
+            unfolding quotient_def Image_def str_eq_rel_def 
+                                   str_eq_def image_def f_eq_rel_def
+            apply simp by blast
+          with X_in Y_in show ?thesis 
+            by (auto simp:quotient_def str_eq_rel_def str_eq_def f_eq_rel_def) 
+        qed
+      } thus ?thesis unfolding inj_on_def by auto
+    qed
+  qed
+qed
+
+lemma finite_image_finite: "\<lbrakk>\<forall> x \<in> A. f x \<in> B; finite B\<rbrakk> \<Longrightarrow> finite (f ` A)"
+  by (rule finite_subset [of _ B], auto)
+
+lemma refined_partition_finite:
+  fixes R1 R2 A
+  assumes fnt: "finite (A // R1)"
+  and refined: "R1 \<subseteq> R2"
+  and eq1: "equiv A R1" and eq2: "equiv A R2"
+  shows "finite (A // R2)"
+proof -
+  let ?f = "\<lambda> X. {R1 `` {x} | x. x \<in> X}" 
+    and ?A = "(A // R2)" and ?B = "(A // R1)"
+  show ?thesis
+  proof(rule_tac f = ?f and A = ?A in finite_imageD)
+    show "finite (?f ` ?A)"
+    proof(rule finite_subset [of _ "Pow ?B"])
+      from fnt show "finite (Pow (A // R1))" by simp
+    next
+      from eq2
+      show " ?f ` A // R2 \<subseteq> Pow ?B"
+        unfolding image_def Pow_def quotient_def
+        apply auto
+        by (rule_tac x = xb in bexI, simp, 
+                 unfold equiv_def sym_def refl_on_def, blast)
+    qed
+  next
+    show "inj_on ?f ?A"
+    proof -
+      { fix X Y
+        assume X_in: "X \<in> ?A" and Y_in: "Y \<in> ?A" 
+          and eq_f: "?f X = ?f Y" (is "?L = ?R")
+        have "X = Y" using X_in
+        proof(rule quotientE)
+          fix x
+          assume "X = R2 `` {x}" and "x \<in> A" with eq2
+          have x_in: "x \<in> X" 
+            unfolding equiv_def quotient_def refl_on_def by auto
+          with eq_f have "R1 `` {x} \<in> ?R" by auto
+          then obtain y where 
+            y_in: "y \<in> Y" and eq_r: "R1 `` {x} = R1 ``{y}" by auto
+          have "(x, y) \<in> R1"
+          proof -
+            from x_in X_in y_in Y_in eq2
+            have "x \<in> A" and "y \<in> A" 
+              unfolding equiv_def quotient_def refl_on_def by auto
+            from eq_equiv_class_iff [OF eq1 this] and eq_r
+            show ?thesis by simp
+          qed
+          with refined have xy_r2: "(x, y) \<in> R2" by auto
+          from quotient_eqI [OF eq2 X_in Y_in x_in y_in this]
+          show ?thesis .
+        qed
+      } thus ?thesis by (auto simp:inj_on_def)
+    qed
+  qed
+qed
+
+lemma equiv_lang_eq: "equiv UNIV (\<approx>Lang)"
+  unfolding equiv_def str_eq_rel_def sym_def refl_on_def trans_def
+  by blast
+
+lemma tag_finite_imageD:
+  fixes tag
+  assumes rng_fnt: "finite (range tag)" 
+  -- {* Suppose the rang of tagging fucntion @{text "tag"} is finite. *}
+  and same_tag_eqvt: "\<And> m n. tag m = tag (n::string) \<Longrightarrow> m \<approx>Lang n"
+  -- {* And strings with same tag are equivalent *}
+  shows "finite (UNIV // (\<approx>Lang))"
+proof -
+  let ?R1 = "(=tag=)"
+  show ?thesis
+  proof(rule_tac refined_partition_finite [of _ ?R1])
+    from finite_eq_f_rel [OF rng_fnt]
+     show "finite (UNIV // =tag=)" . 
+   next
+     from same_tag_eqvt
+     show "(=tag=) \<subseteq> (\<approx>Lang)"
+       by (auto simp:f_eq_rel_def str_eq_def)
+   next
+     from equiv_f_eq_rel
+     show "equiv UNIV (=tag=)" by blast
+   next
+     from equiv_lang_eq
+     show "equiv UNIV (\<approx>Lang)" by blast
+  qed
+qed
+
+text {*
+  A more concise, but less intelligible argument for @{text "tag_finite_imageD"} 
+  is given as the following. The basic idea is still using standard library 
+  lemma @{thm [source] "finite_imageD"}:
+  \[
+  @{thm "finite_imageD" [no_vars]}
+  \]
+  which says: if the image of injective function @{text "f"} over set @{text "A"} is 
+  finite, then @{text "A"} must be finte, as we did in the lemmas above.
+  *}
+
+lemma 
+  fixes tag
+  assumes rng_fnt: "finite (range tag)" 
+  -- {* Suppose the rang of tagging fucntion @{text "tag"} is finite. *}
+  and same_tag_eqvt: "\<And> m n. tag m = tag (n::string) \<Longrightarrow> m \<approx>Lang n"
+  -- {* And strings with same tag are equivalent *}
+  shows "finite (UNIV // (\<approx>Lang))"
+  -- {* Then the partition generated by @{text "(\<approx>Lang)"} is finite. *}
+proof -
+  -- {* The particular @{text "f"} and @{text "A"} used in @{thm [source] "finite_imageD"} are:*}
+  let "?f" =  "op ` tag" and ?A = "(UNIV // \<approx>Lang)"
+  show ?thesis
+  proof (rule_tac f = "?f" and A = ?A in finite_imageD) 
+    -- {* 
+      The finiteness of @{text "f"}-image is a simple consequence of assumption @{text "rng_fnt"}:
+      *}
+    show "finite (?f ` ?A)" 
+    proof -
+      have "\<forall> X. ?f X \<in> (Pow (range tag))" by (auto simp:image_def Pow_def)
+      moreover from rng_fnt have "finite (Pow (range tag))" by simp
+      ultimately have "finite (range ?f)"
+        by (auto simp only:image_def intro:finite_subset)
+      from finite_range_image [OF this] show ?thesis .
+    qed
+  next
+    -- {* 
+      The injectivity of @{text "f"} is the consequence of assumption @{text "same_tag_eqvt"}:
+      *}
+    show "inj_on ?f ?A" 
+    proof-
+      { fix X Y
+        assume X_in: "X \<in> ?A"
+          and  Y_in: "Y \<in> ?A"
+          and  tag_eq: "?f X = ?f Y"
+        have "X = Y"
+        proof -
+          from X_in Y_in tag_eq 
+          obtain x y where x_in: "x \<in> X" and y_in: "y \<in> Y" and eq_tg: "tag x = tag y"
+            unfolding quotient_def Image_def str_eq_rel_def str_eq_def image_def
+            apply simp by blast 
+          from same_tag_eqvt [OF eq_tg] have "x \<approx>Lang y" .
+          with X_in Y_in x_in y_in
+          show ?thesis by (auto simp:quotient_def str_eq_rel_def str_eq_def) 
+        qed
+      } thus ?thesis unfolding inj_on_def by auto
+    qed
+  qed
+qed
+
+subsection {* The proof*}
+
+text {*
+  Each case is given in a separate section, as well as the final main lemma. Detailed explainations accompanied by
+  illustrations are given for non-trivial cases.
+
+  For ever inductive case, there are two tasks, the easier one is to show the range finiteness of
+  of the tagging function based on the finiteness of component partitions, the
+  difficult one is to show that strings with the same tag are equivalent with respect to the 
+  composite language. Suppose the composite language be @{text "Lang"}, tagging function be 
+  @{text "tag"}, it amounts to show:
+  \[
+  @{text "tag(x) = tag(y) \<Longrightarrow> x \<approx>Lang y"}
+  \]
+  expanding the definition of @{text "\<approx>Lang"}, it amounts to show:
+  \[
+  @{text "tag(x) = tag(y) \<Longrightarrow> (\<forall> z. x@z \<in> Lang \<longleftrightarrow> y@z \<in> Lang)"}
+  \]
+  Because the assumed tag equlity @{text "tag(x) = tag(y)"} is symmetric,
+  it is suffcient to show just one direction:
+  \[
+  @{text "\<And> x y z. \<lbrakk>tag(x) = tag(y); x@z \<in> Lang\<rbrakk> \<Longrightarrow> y@z \<in> Lang"}
+  \]
+  This is the pattern followed by every inductive case.
+  *}
+
+subsubsection {* The base case for @{const "NULL"} *}
+
+lemma quot_null_eq:
+  shows "(UNIV // \<approx>{}) = ({UNIV}::lang set)"
+  unfolding quotient_def Image_def str_eq_rel_def by auto
+
+lemma quot_null_finiteI [intro]:
+  shows "finite ((UNIV // \<approx>{})::lang set)"
+unfolding quot_null_eq by simp
+
+
+subsubsection {* The base case for @{const "EMPTY"} *}
+
+
+lemma quot_empty_subset:
+  "UNIV // (\<approx>{[]}) \<subseteq> {{[]}, UNIV - {[]}}"
+proof
+  fix x
+  assume "x \<in> UNIV // \<approx>{[]}"
+  then obtain y where h: "x = {z. (y, z) \<in> \<approx>{[]}}" 
+    unfolding quotient_def Image_def by blast
+  show "x \<in> {{[]}, UNIV - {[]}}"
+  proof (cases "y = []")
+    case True with h
+    have "x = {[]}" by (auto simp: str_eq_rel_def)
+    thus ?thesis by simp
+  next
+    case False with h
+    have "x = UNIV - {[]}" by (auto simp: str_eq_rel_def)
+    thus ?thesis by simp
+  qed
+qed
+
+lemma quot_empty_finiteI [intro]:
+  shows "finite (UNIV // (\<approx>{[]}))"
+by (rule finite_subset[OF quot_empty_subset]) (simp)
+
+
+subsubsection {* The base case for @{const "CHAR"} *}
+
+lemma quot_char_subset:
+  "UNIV // (\<approx>{[c]}) \<subseteq> {{[]},{[c]}, UNIV - {[], [c]}}"
+proof 
+  fix x 
+  assume "x \<in> UNIV // \<approx>{[c]}"
+  then obtain y where h: "x = {z. (y, z) \<in> \<approx>{[c]}}" 
+    unfolding quotient_def Image_def by blast
+  show "x \<in> {{[]},{[c]}, UNIV - {[], [c]}}"
+  proof -
+    { assume "y = []" hence "x = {[]}" using h 
+        by (auto simp:str_eq_rel_def)
+    } moreover {
+      assume "y = [c]" hence "x = {[c]}" using h 
+        by (auto dest!:spec[where x = "[]"] simp:str_eq_rel_def)
+    } moreover {
+      assume "y \<noteq> []" and "y \<noteq> [c]"
+      hence "\<forall> z. (y @ z) \<noteq> [c]" by (case_tac y, auto)
+      moreover have "\<And> p. (p \<noteq> [] \<and> p \<noteq> [c]) = (\<forall> q. p @ q \<noteq> [c])" 
+        by (case_tac p, auto)
+      ultimately have "x = UNIV - {[],[c]}" using h
+        by (auto simp add:str_eq_rel_def)
+    } ultimately show ?thesis by blast
+  qed
+qed
+
+lemma quot_char_finiteI [intro]:
+  shows "finite (UNIV // (\<approx>{[c]}))"
+by (rule finite_subset[OF quot_char_subset]) (simp)
+
+
+subsubsection {* The inductive case for @{const ALT} *}
+
+definition 
+  tag_str_ALT :: "lang \<Rightarrow> lang \<Rightarrow> string \<Rightarrow> (lang \<times> lang)"
+where
+  "tag_str_ALT L1 L2 = (\<lambda>x. (\<approx>L1 `` {x}, \<approx>L2 `` {x}))"
+
+lemma quot_union_finiteI [intro]:
+  fixes L1 L2::"lang"
+  assumes finite1: "finite (UNIV // \<approx>L1)"
+  and     finite2: "finite (UNIV // \<approx>L2)"
+  shows "finite (UNIV // \<approx>(L1 \<union> L2))"
+proof (rule_tac tag = "tag_str_ALT L1 L2" in tag_finite_imageD)
+  show "\<And>x y. tag_str_ALT L1 L2 x = tag_str_ALT L1 L2 y \<Longrightarrow> x \<approx>(L1 \<union> L2) y"
+    unfolding tag_str_ALT_def 
+    unfolding str_eq_def
+    unfolding Image_def 
+    unfolding str_eq_rel_def
+    by auto
+next
+  have *: "finite ((UNIV // \<approx>L1) \<times> (UNIV // \<approx>L2))" 
+    using finite1 finite2 by auto
+  show "finite (range (tag_str_ALT L1 L2))"
+    unfolding tag_str_ALT_def
+    apply(rule finite_subset[OF _ *])
+    unfolding quotient_def
+    by auto
+qed
+
+subsubsection {* The inductive case for @{text "SEQ"}*}
+
+text {*
+  For case @{const "SEQ"}, the language @{text "L"} is @{text "L\<^isub>1 ;; L\<^isub>2"}.
+  Given @{text "x @ z \<in> L\<^isub>1 ;; L\<^isub>2"}, according to the defintion of @{text " L\<^isub>1 ;; L\<^isub>2"},
+  string @{text "x @ z"} can be splitted with the prefix in @{text "L\<^isub>1"} and suffix in @{text "L\<^isub>2"}.
+  The split point can either be in @{text "x"} (as shown in Fig. \ref{seq_first_split}),
+  or in @{text "z"} (as shown in Fig. \ref{seq_snd_split}). Whichever way it goes, the structure
+  on @{text "x @ z"} cn be transfered faithfully onto @{text "y @ z"} 
+  (as shown in Fig. \ref{seq_trans_first_split} and \ref{seq_trans_snd_split}) with the the help of the assumed 
+  tag equality. The following tag function @{text "tag_str_SEQ"} is such designed to facilitate
+  such transfers and lemma @{text "tag_str_SEQ_injI"} formalizes the informal argument above. The details 
+  of structure transfer will be given their.
+\input{fig_seq}
+
+  *}
+
+definition 
+  tag_str_SEQ :: "lang \<Rightarrow> lang \<Rightarrow> string \<Rightarrow> (lang \<times> lang set)"
+where
+  "tag_str_SEQ L1 L2 = 
+     (\<lambda>x. (\<approx>L1 `` {x}, {(\<approx>L2 `` {x - xa}) | xa.  xa \<le> x \<and> xa \<in> L1}))"
+
+text {* The following is a techical lemma which helps to split the @{text "x @ z \<in> L\<^isub>1 ;; L\<^isub>2"} mentioned above.*}
+
+lemma append_seq_elim:
+  assumes "x @ y \<in> L\<^isub>1 ;; L\<^isub>2"
+  shows "(\<exists> xa \<le> x. xa \<in> L\<^isub>1 \<and> (x - xa) @ y \<in> L\<^isub>2) \<or> 
+          (\<exists> ya \<le> y. (x @ ya) \<in> L\<^isub>1 \<and> (y - ya) \<in> L\<^isub>2)"
+proof-
+  from assms obtain s\<^isub>1 s\<^isub>2 
+    where eq_xys: "x @ y = s\<^isub>1 @ s\<^isub>2" 
+    and in_seq: "s\<^isub>1 \<in> L\<^isub>1 \<and> s\<^isub>2 \<in> L\<^isub>2" 
+    by (auto simp:Seq_def)
+  from app_eq_dest [OF eq_xys]
+  have
+    "(x \<le> s\<^isub>1 \<and> (s\<^isub>1 - x) @ s\<^isub>2 = y) \<or> (s\<^isub>1 \<le> x \<and> (x - s\<^isub>1) @ y = s\<^isub>2)" 
+               (is "?Split1 \<or> ?Split2") .
+  moreover have "?Split1 \<Longrightarrow> \<exists> ya \<le> y. (x @ ya) \<in> L\<^isub>1 \<and> (y - ya) \<in> L\<^isub>2" 
+    using in_seq by (rule_tac x = "s\<^isub>1 - x" in exI, auto elim:prefixE)
+  moreover have "?Split2 \<Longrightarrow> \<exists> xa \<le> x. xa \<in> L\<^isub>1 \<and> (x - xa) @ y \<in> L\<^isub>2" 
+    using in_seq by (rule_tac x = s\<^isub>1 in exI, auto)
+  ultimately show ?thesis by blast
+qed
+
+
+lemma tag_str_SEQ_injI:
+  fixes v w 
+  assumes eq_tag: "tag_str_SEQ L\<^isub>1 L\<^isub>2 v = tag_str_SEQ L\<^isub>1 L\<^isub>2 w" 
+  shows "v \<approx>(L\<^isub>1 ;; L\<^isub>2) w"
+proof-
+    -- {* As explained before, a pattern for just one direction needs to be dealt with:*}
+  { fix x y z
+    assume xz_in_seq: "x @ z \<in> L\<^isub>1 ;; L\<^isub>2"
+    and tag_xy: "tag_str_SEQ L\<^isub>1 L\<^isub>2 x = tag_str_SEQ L\<^isub>1 L\<^isub>2 y"
+    have"y @ z \<in> L\<^isub>1 ;; L\<^isub>2" 
+    proof-
+      -- {* There are two ways to split @{text "x@z"}: *}
+      from append_seq_elim [OF xz_in_seq]
+      have "(\<exists> xa \<le> x. xa \<in> L\<^isub>1 \<and> (x - xa) @ z \<in> L\<^isub>2) \<or> 
+               (\<exists> za \<le> z. (x @ za) \<in> L\<^isub>1 \<and> (z - za) \<in> L\<^isub>2)" .
+      -- {* It can be shown that @{text "?thesis"} holds in either case: *}
+      moreover {
+        -- {* The case for the first split:*}
+        fix xa
+        assume h1: "xa \<le> x" and h2: "xa \<in> L\<^isub>1" and h3: "(x - xa) @ z \<in> L\<^isub>2"
+        -- {* The following subgoal implements the structure transfer:*}
+        obtain ya 
+          where "ya \<le> y" 
+          and "ya \<in> L\<^isub>1" 
+          and "(y - ya) @ z \<in> L\<^isub>2"
+        proof -
+        -- {*
+            \begin{minipage}{0.8\textwidth}
+            By expanding the definition of 
+            @{thm [display] "tag_xy"}
+            and extracting the second compoent, we get:
+            \end{minipage}
+            *}
+          have "{\<approx>L\<^isub>2 `` {x - xa} |xa. xa \<le> x \<and> xa \<in> L\<^isub>1} = 
+                   {\<approx>L\<^isub>2 `` {y - ya} |ya. ya \<le> y \<and> ya \<in> L\<^isub>1}" (is "?Left = ?Right")
+            using tag_xy unfolding tag_str_SEQ_def by simp
+            -- {* Since @{thm "h1"} and @{thm "h2"} hold, it is not difficult to show: *}
+          moreover have "\<approx>L\<^isub>2 `` {x - xa} \<in> ?Left" using h1 h2 by auto
+            -- {* 
+            \begin{minipage}{0.7\textwidth}
+            Through tag equality, equivalent class @{term "\<approx>L\<^isub>2 `` {x - xa}"} also 
+                  belongs to the @{text "?Right"}:
+            \end{minipage}
+            *}
+          ultimately have "\<approx>L\<^isub>2 `` {x - xa} \<in> ?Right" by simp
+            -- {* From this, the counterpart of @{text "xa"} in @{text "y"} is obtained:*}
+          then obtain ya 
+            where eq_xya: "\<approx>L\<^isub>2 `` {x - xa} = \<approx>L\<^isub>2 `` {y - ya}" 
+            and pref_ya: "ya \<le> y" and ya_in: "ya \<in> L\<^isub>1"
+            by simp blast
+          -- {* It can be proved that @{text "ya"} has the desired property:*}
+          have "(y - ya)@z \<in> L\<^isub>2" 
+          proof -
+            from eq_xya have "(x - xa)  \<approx>L\<^isub>2 (y - ya)" 
+              unfolding Image_def str_eq_rel_def str_eq_def by auto
+            with h3 show ?thesis unfolding str_eq_rel_def str_eq_def by simp
+          qed
+          -- {* Now, @{text "ya"} has all properties to be a qualified candidate:*}
+          with pref_ya ya_in 
+          show ?thesis using that by blast
+        qed
+          -- {* From the properties of @{text "ya"}, @{text "y @ z \<in> L\<^isub>1 ;; L\<^isub>2"} is derived easily.*}
+        hence "y @ z \<in> L\<^isub>1 ;; L\<^isub>2" by (erule_tac prefixE, auto simp:Seq_def)
+      } moreover {
+        -- {* The other case is even more simpler: *}
+        fix za
+        assume h1: "za \<le> z" and h2: "(x @ za) \<in> L\<^isub>1" and h3: "z - za \<in> L\<^isub>2"
+        have "y @ za \<in> L\<^isub>1"
+        proof-
+          have "\<approx>L\<^isub>1 `` {x} = \<approx>L\<^isub>1 `` {y}" 
+            using tag_xy unfolding tag_str_SEQ_def by simp
+          with h2 show ?thesis
+            unfolding Image_def str_eq_rel_def str_eq_def by auto
+        qed
+        with h1 h3 have "y @ z \<in> L\<^isub>1 ;; L\<^isub>2" 
+          by (drule_tac A = L\<^isub>1 in seq_intro, auto elim:prefixE)
+      }
+      ultimately show ?thesis by blast
+    qed
+  } 
+  -- {* 
+      \begin{minipage}{0.8\textwidth}
+      @{text "?thesis"} is proved by exploiting the symmetry of 
+      @{thm [source] "eq_tag"}:
+      \end{minipage}
+      *}
+  from this [OF _ eq_tag] and this [OF _ eq_tag [THEN sym]]
+    show ?thesis unfolding str_eq_def str_eq_rel_def by blast
+qed 
+
+lemma quot_seq_finiteI [intro]:
+  fixes L1 L2::"lang"
+  assumes fin1: "finite (UNIV // \<approx>L1)" 
+  and     fin2: "finite (UNIV // \<approx>L2)" 
+  shows "finite (UNIV // \<approx>(L1 ;; L2))"
+proof (rule_tac tag = "tag_str_SEQ L1 L2" in tag_finite_imageD)
+  show "\<And>x y. tag_str_SEQ L1 L2 x = tag_str_SEQ L1 L2 y \<Longrightarrow> x \<approx>(L1 ;; L2) y"
+    by (rule tag_str_SEQ_injI)
+next
+  have *: "finite ((UNIV // \<approx>L1) \<times> (Pow (UNIV // \<approx>L2)))" 
+    using fin1 fin2 by auto
+  show "finite (range (tag_str_SEQ L1 L2))" 
+    unfolding tag_str_SEQ_def
+    apply(rule finite_subset[OF _ *])
+    unfolding quotient_def
+    by auto
+qed
+
+subsubsection {* The inductive case for @{const "STAR"} *}
+
+text {* 
+  This turned out to be the trickiest case. The essential goal is 
+  to proved @{text "y @ z \<in>  L\<^isub>1*"} under the assumptions that @{text "x @ z \<in>  L\<^isub>1*"}
+  and that @{text "x"} and @{text "y"} have the same tag. The reasoning goes as the following:
+  \begin{enumerate}
+    \item Since @{text "x @ z \<in>  L\<^isub>1*"} holds, a prefix @{text "xa"} of @{text "x"} can be found
+          such that @{text "xa \<in> L\<^isub>1*"} and @{text "(x - xa)@z \<in> L\<^isub>1*"}, as shown in Fig. \ref{first_split}.
+          Such a prefix always exists, @{text "xa = []"}, for example, is one. 
+    \item There could be many but fintie many of such @{text "xa"}, from which we can find the longest
+          and name it @{text "xa_max"}, as shown in Fig. \ref{max_split}.
+    \item The next step is to split @{text "z"} into @{text "za"} and @{text "zb"} such that
+           @{text "(x - xa_max) @ za \<in> L\<^isub>1"} and @{text "zb \<in> L\<^isub>1*"}  as shown in Fig. \ref{last_split}.
+          Such a split always exists because:
+          \begin{enumerate}
+            \item Because @{text "(x - x_max) @ z \<in> L\<^isub>1*"}, it can always be splitted into prefix @{text "a"}
+              and suffix @{text "b"}, such that @{text "a \<in> L\<^isub>1"} and @{text "b \<in> L\<^isub>1*"},
+              as shown in Fig. \ref{ab_split}.
+            \item But the prefix @{text "a"} CANNOT be shorter than @{text "x - xa_max"} 
+              (as shown in Fig. \ref{ab_split_wrong}), becasue otherwise,
+                   @{text "ma_max@a"} would be in the same kind as @{text "xa_max"} but with 
+                   a larger size, conflicting with the fact that @{text "xa_max"} is the longest.
+          \end{enumerate}
+    \item  \label{tansfer_step} 
+         By the assumption that @{text "x"} and @{text "y"} have the same tag, the structure on @{text "x @ z"}
+          can be transferred to @{text "y @ z"} as shown in Fig. \ref{trans_split}. The detailed steps are:
+          \begin{enumerate}
+            \item A @{text "y"}-prefix @{text "ya"} corresponding to @{text "xa"} can be found, 
+                  which satisfies conditions: @{text "ya \<in> L\<^isub>1*"} and @{text "(y - ya)@za \<in> L\<^isub>1"}.
+            \item Since we already know @{text "zb \<in> L\<^isub>1*"}, we get @{text "(y - ya)@za@zb \<in> L\<^isub>1*"},
+                  and this is just @{text "(y - ya)@z \<in> L\<^isub>1*"}.
+            \item With fact @{text "ya \<in> L\<^isub>1*"}, we finally get @{text "y@z \<in> L\<^isub>1*"}.
+          \end{enumerate}
+  \end{enumerate}
+
+  The formal proof of lemma @{text "tag_str_STAR_injI"} faithfully follows this informal argument 
+  while the tagging function @{text "tag_str_STAR"} is defined to make the transfer in step
+  \ref{ansfer_step} feasible.
+
+  \input{fig_star}
+*} 
+
+definition 
+  tag_str_STAR :: "lang \<Rightarrow> string \<Rightarrow> lang set"
+where
+  "tag_str_STAR L1 = (\<lambda>x. {\<approx>L1 `` {x - xa} | xa. xa < x \<and> xa \<in> L1\<star>})"
+
+text {* A technical lemma. *}
+lemma finite_set_has_max: "\<lbrakk>finite A; A \<noteq> {}\<rbrakk> \<Longrightarrow> 
+           (\<exists> max \<in> A. \<forall> a \<in> A. f a <= (f max :: nat))"
+proof (induct rule:finite.induct)
+  case emptyI thus ?case by simp
+next
+  case (insertI A a)
+  show ?case
+  proof (cases "A = {}")
+    case True thus ?thesis by (rule_tac x = a in bexI, auto)
+  next
+    case False
+    with insertI.hyps and False  
+    obtain max 
+      where h1: "max \<in> A" 
+      and h2: "\<forall>a\<in>A. f a \<le> f max" by blast
+    show ?thesis
+    proof (cases "f a \<le> f max")
+      assume "f a \<le> f max"
+      with h1 h2 show ?thesis by (rule_tac x = max in bexI, auto)
+    next
+      assume "\<not> (f a \<le> f max)"
+      thus ?thesis using h2 by (rule_tac x = a in bexI, auto)
+    qed
+  qed
+qed
+
+
+text {* The following is a technical lemma.which helps to show the range finiteness of tag function. *}
+lemma finite_strict_prefix_set: "finite {xa. xa < (x::string)}"
+apply (induct x rule:rev_induct, simp)
+apply (subgoal_tac "{xa. xa < xs @ [x]} = {xa. xa < xs} \<union> {xs}")
+by (auto simp:strict_prefix_def)
+
+
+lemma tag_str_STAR_injI:
+  fixes v w
+  assumes eq_tag: "tag_str_STAR L\<^isub>1 v = tag_str_STAR L\<^isub>1 w"
+  shows "(v::string) \<approx>(L\<^isub>1\<star>) w"
+proof-
+    -- {* As explained before, a pattern for just one direction needs to be dealt with:*}
+  { fix x y z
+    assume xz_in_star: "x @ z \<in> L\<^isub>1\<star>" 
+      and tag_xy: "tag_str_STAR L\<^isub>1 x = tag_str_STAR L\<^isub>1 y"
+    have "y @ z \<in> L\<^isub>1\<star>"
+    proof(cases "x = []")
+      -- {* 
+        The degenerated case when @{text "x"} is a null string is easy to prove:
+        *}
+      case True
+      with tag_xy have "y = []" 
+        by (auto simp add: tag_str_STAR_def strict_prefix_def)
+      thus ?thesis using xz_in_star True by simp
+    next
+        -- {* The nontrival case:
+        *}
+      case False
+      -- {* 
+        \begin{minipage}{0.8\textwidth}
+        Since @{text "x @ z \<in> L\<^isub>1\<star>"}, @{text "x"} can always be splitted
+        by a prefix @{text "xa"} together with its suffix @{text "x - xa"}, such
+        that both @{text "xa"} and @{text "(x - xa) @ z"} are in @{text "L\<^isub>1\<star>"},
+        and there could be many such splittings.Therefore, the following set @{text "?S"} 
+        is nonempty, and finite as well:
+        \end{minipage}
+        *}
+      let ?S = "{xa. xa < x \<and> xa \<in> L\<^isub>1\<star> \<and> (x - xa) @ z \<in> L\<^isub>1\<star>}"
+      have "finite ?S"
+        by (rule_tac B = "{xa. xa < x}" in finite_subset, 
+          auto simp:finite_strict_prefix_set)
+      moreover have "?S \<noteq> {}" using False xz_in_star
+        by (simp, rule_tac x = "[]" in exI, auto simp:strict_prefix_def)
+      -- {* \begin{minipage}{0.7\textwidth} 
+            Since @{text "?S"} is finite, we can always single out the longest and name it @{text "xa_max"}: 
+            \end{minipage}
+          *}
+      ultimately have "\<exists> xa_max \<in> ?S. \<forall> xa \<in> ?S. length xa \<le> length xa_max" 
+        using finite_set_has_max by blast
+      then obtain xa_max 
+        where h1: "xa_max < x" 
+        and h2: "xa_max \<in> L\<^isub>1\<star>" 
+        and h3: "(x - xa_max) @ z \<in> L\<^isub>1\<star>" 
+        and h4:"\<forall> xa < x. xa \<in> L\<^isub>1\<star> \<and> (x - xa) @ z \<in> L\<^isub>1\<star>  
+                                     \<longrightarrow> length xa \<le> length xa_max"
+        by blast
+      -- {*
+          \begin{minipage}{0.8\textwidth}
+          By the equality of tags, the counterpart of @{text "xa_max"} among 
+          @{text "y"}-prefixes, named @{text "ya"}, can be found:
+          \end{minipage}
+          *}
+      obtain ya 
+        where h5: "ya < y" and h6: "ya \<in> L\<^isub>1\<star>" 
+        and eq_xya: "(x - xa_max) \<approx>L\<^isub>1 (y - ya)"
+      proof-
+        from tag_xy have "{\<approx>L\<^isub>1 `` {x - xa} |xa. xa < x \<and> xa \<in> L\<^isub>1\<star>} = 
+          {\<approx>L\<^isub>1 `` {y - xa} |xa. xa < y \<and> xa \<in> L\<^isub>1\<star>}" (is "?left = ?right")
+          by (auto simp:tag_str_STAR_def)
+        moreover have "\<approx>L\<^isub>1 `` {x - xa_max} \<in> ?left" using h1 h2 by auto
+        ultimately have "\<approx>L\<^isub>1 `` {x - xa_max} \<in> ?right" by simp
+        thus ?thesis using that 
+          apply (simp add:Image_def str_eq_rel_def str_eq_def) by blast
+      qed 
+      -- {*
+          \begin{minipage}{0.8\textwidth}
+          The @{text "?thesis"}, @{prop "y @ z \<in> L\<^isub>1\<star>"}, is a simple consequence
+          of the following proposition:
+          \end{minipage}
+          *}
+      have "(y - ya) @ z \<in> L\<^isub>1\<star>" 
+      proof-
+        -- {* The idea is to split the suffix @{text "z"} into @{text "za"} and @{text "zb"}, 
+          such that: *}
+        obtain za zb where eq_zab: "z = za @ zb" 
+          and l_za: "(y - ya)@za \<in> L\<^isub>1" and ls_zb: "zb \<in> L\<^isub>1\<star>"
+        proof -
+          -- {* 
+            \begin{minipage}{0.8\textwidth}
+            Since @{thm "h1"}, @{text "x"} can be splitted into
+            @{text "a"} and @{text "b"} such that:
+            \end{minipage}
+            *}
+          from h1 have "(x - xa_max) @ z \<noteq> []" 
+            by (auto simp:strict_prefix_def elim:prefixE)
+          from star_decom [OF h3 this]
+          obtain a b where a_in: "a \<in> L\<^isub>1" 
+            and a_neq: "a \<noteq> []" and b_in: "b \<in> L\<^isub>1\<star>" 
+            and ab_max: "(x - xa_max) @ z = a @ b" by blast
+          -- {* Now the candiates for @{text "za"} and @{text "zb"} are found:*}
+          let ?za = "a - (x - xa_max)" and ?zb = "b"
+          have pfx: "(x - xa_max) \<le> a" (is "?P1") 
+            and eq_z: "z = ?za @ ?zb" (is "?P2")
+          proof -
+            -- {* 
+              \begin{minipage}{0.8\textwidth}
+              Since @{text "(x - xa_max) @ z = a @ b"}, string @{text "(x - xa_max) @ z"}
+              can be splitted in two ways:
+              \end{minipage}
+              *}
+            have "((x - xa_max) \<le> a \<and> (a - (x - xa_max)) @ b = z) \<or> 
+              (a < (x - xa_max) \<and> ((x - xa_max) - a) @ z = b)" 
+              using app_eq_dest[OF ab_max] by (auto simp:strict_prefix_def)
+            moreover {
+              -- {* However, the undsired way can be refuted by absurdity: *}
+              assume np: "a < (x - xa_max)" 
+                and b_eqs: "((x - xa_max) - a) @ z = b"
+              have "False"
+              proof -
+                let ?xa_max' = "xa_max @ a"
+                have "?xa_max' < x" 
+                  using np h1 by (clarsimp simp:strict_prefix_def diff_prefix) 
+                moreover have "?xa_max' \<in> L\<^isub>1\<star>" 
+                  using a_in h2 by (simp add:star_intro3) 
+                moreover have "(x - ?xa_max') @ z \<in> L\<^isub>1\<star>" 
+                  using b_eqs b_in np h1 by (simp add:diff_diff_appd)
+                moreover have "\<not> (length ?xa_max' \<le> length xa_max)" 
+                  using a_neq by simp
+                ultimately show ?thesis using h4 by blast
+              qed }
+            -- {* Now it can be shown that the splitting goes the way we desired. *}
+            ultimately show ?P1 and ?P2 by auto
+          qed
+          hence "(x - xa_max)@?za \<in> L\<^isub>1" using a_in by (auto elim:prefixE)
+          -- {* Now candidates @{text "?za"} and @{text "?zb"} have all the requred properteis. *}
+          with eq_xya have "(y - ya) @ ?za \<in> L\<^isub>1" 
+            by (auto simp:str_eq_def str_eq_rel_def)
+           with eq_z and b_in 
+          show ?thesis using that by blast
+        qed
+        -- {* 
+           @{text "?thesis"} can easily be shown using properties of @{text "za"} and @{text "zb"}:
+            *}
+        have "((y - ya) @ za) @ zb \<in> L\<^isub>1\<star>" using  l_za ls_zb by blast
+        with eq_zab show ?thesis by simp
+      qed
+      with h5 h6 show ?thesis 
+        by (drule_tac star_intro1, auto simp:strict_prefix_def elim:prefixE)
+    qed
+  } 
+  -- {* By instantiating the reasoning pattern just derived for both directions:*} 
+  from this [OF _ eq_tag] and this [OF _ eq_tag [THEN sym]]
+  -- {* The thesis is proved as a trival consequence: *} 
+    show  ?thesis unfolding str_eq_def str_eq_rel_def by blast
+qed
+
+lemma -- {* The oringal version with less explicit details. *}
+  fixes v w
+  assumes eq_tag: "tag_str_STAR L\<^isub>1 v = tag_str_STAR L\<^isub>1 w"
+  shows "(v::string) \<approx>(L\<^isub>1\<star>) w"
+proof-
+    -- {* 
+    \begin{minipage}{0.8\textwidth}
+    According to the definition of @{text "\<approx>Lang"}, 
+    proving @{text "v \<approx>(L\<^isub>1\<star>) w"} amounts to
+    showing: for any string @{text "u"},
+    if @{text "v @ u \<in> (L\<^isub>1\<star>)"} then @{text "w @ u \<in> (L\<^isub>1\<star>)"} and vice versa.
+    The reasoning pattern for both directions are the same, as derived
+    in the following:
+    \end{minipage}
+    *}
+  { fix x y z
+    assume xz_in_star: "x @ z \<in> L\<^isub>1\<star>" 
+      and tag_xy: "tag_str_STAR L\<^isub>1 x = tag_str_STAR L\<^isub>1 y"
+    have "y @ z \<in> L\<^isub>1\<star>"
+    proof(cases "x = []")
+      -- {* 
+        The degenerated case when @{text "x"} is a null string is easy to prove:
+        *}
+      case True
+      with tag_xy have "y = []" 
+        by (auto simp:tag_str_STAR_def strict_prefix_def)
+      thus ?thesis using xz_in_star True by simp
+    next
+        -- {*
+        \begin{minipage}{0.8\textwidth}
+        The case when @{text "x"} is not null, and
+        @{text "x @ z"} is in @{text "L\<^isub>1\<star>"}, 
+        \end{minipage}
+        *}
+      case False
+      obtain x_max 
+        where h1: "x_max < x" 
+        and h2: "x_max \<in> L\<^isub>1\<star>" 
+        and h3: "(x - x_max) @ z \<in> L\<^isub>1\<star>" 
+        and h4:"\<forall> xa < x. xa \<in> L\<^isub>1\<star> \<and> (x - xa) @ z \<in> L\<^isub>1\<star> 
+                                     \<longrightarrow> length xa \<le> length x_max"
+      proof-
+        let ?S = "{xa. xa < x \<and> xa \<in> L\<^isub>1\<star> \<and> (x - xa) @ z \<in> L\<^isub>1\<star>}"
+        have "finite ?S"
+          by (rule_tac B = "{xa. xa < x}" in finite_subset, 
+                                auto simp:finite_strict_prefix_set)
+        moreover have "?S \<noteq> {}" using False xz_in_star
+          by (simp, rule_tac x = "[]" in exI, auto simp:strict_prefix_def)
+        ultimately have "\<exists> max \<in> ?S. \<forall> a \<in> ?S. length a \<le> length max" 
+          using finite_set_has_max by blast
+        thus ?thesis using that by blast
+      qed
+      obtain ya 
+        where h5: "ya < y" and h6: "ya \<in> L\<^isub>1\<star>" and h7: "(x - x_max) \<approx>L\<^isub>1 (y - ya)"
+      proof-
+        from tag_xy have "{\<approx>L\<^isub>1 `` {x - xa} |xa. xa < x \<and> xa \<in> L\<^isub>1\<star>} = 
+          {\<approx>L\<^isub>1 `` {y - xa} |xa. xa < y \<and> xa \<in> L\<^isub>1\<star>}" (is "?left = ?right")
+          by (auto simp:tag_str_STAR_def)
+        moreover have "\<approx>L\<^isub>1 `` {x - x_max} \<in> ?left" using h1 h2 by auto
+        ultimately have "\<approx>L\<^isub>1 `` {x - x_max} \<in> ?right" by simp
+        with that show ?thesis apply 
+          (simp add:Image_def str_eq_rel_def str_eq_def) by blast
+      qed      
+      have "(y - ya) @ z \<in> L\<^isub>1\<star>" 
+      proof-
+        from h3 h1 obtain a b where a_in: "a \<in> L\<^isub>1" 
+          and a_neq: "a \<noteq> []" and b_in: "b \<in> L\<^isub>1\<star>" 
+          and ab_max: "(x - x_max) @ z = a @ b" 
+          by (drule_tac star_decom, auto simp:strict_prefix_def elim:prefixE)
+        have "(x - x_max) \<le> a \<and> (a - (x - x_max)) @ b = z" 
+        proof -
+          have "((x - x_max) \<le> a \<and> (a - (x - x_max)) @ b = z) \<or> 
+                            (a < (x - x_max) \<and> ((x - x_max) - a) @ z = b)" 
+            using app_eq_dest[OF ab_max] by (auto simp:strict_prefix_def)
+          moreover { 
+            assume np: "a < (x - x_max)" and b_eqs: " ((x - x_max) - a) @ z = b"
+            have "False"
+            proof -
+              let ?x_max' = "x_max @ a"
+              have "?x_max' < x" 
+                using np h1 by (clarsimp simp:strict_prefix_def diff_prefix) 
+              moreover have "?x_max' \<in> L\<^isub>1\<star>" 
+                using a_in h2 by (simp add:star_intro3) 
+              moreover have "(x - ?x_max') @ z \<in> L\<^isub>1\<star>" 
+                using b_eqs b_in np h1 by (simp add:diff_diff_appd)
+              moreover have "\<not> (length ?x_max' \<le> length x_max)" 
+                using a_neq by simp
+              ultimately show ?thesis using h4 by blast
+            qed 
+          } ultimately show ?thesis by blast
+        qed
+        then obtain za where z_decom: "z = za @ b" 
+          and x_za: "(x - x_max) @ za \<in> L\<^isub>1" 
+          using a_in by (auto elim:prefixE)        
+        from x_za h7 have "(y - ya) @ za \<in> L\<^isub>1" 
+          by (auto simp:str_eq_def str_eq_rel_def)
+	with b_in have "((y - ya) @ za) @ b \<in> L\<^isub>1\<star>" by blast
+        with z_decom show ?thesis by auto 
+      qed
+      with h5 h6 show ?thesis 
+        by (drule_tac star_intro1, auto simp:strict_prefix_def elim:prefixE)
+    qed
+  } 
+  -- {* By instantiating the reasoning pattern just derived for both directions:*} 
+  from this [OF _ eq_tag] and this [OF _ eq_tag [THEN sym]]
+  -- {* The thesis is proved as a trival consequence: *} 
+    show  ?thesis unfolding str_eq_def str_eq_rel_def by blast
+qed
+
+lemma quot_star_finiteI [intro]:
+  fixes L1::"lang"
+  assumes finite1: "finite (UNIV // \<approx>L1)"
+  shows "finite (UNIV // \<approx>(L1\<star>))"
+proof (rule_tac tag = "tag_str_STAR L1" in tag_finite_imageD)
+  show "\<And>x y. tag_str_STAR L1 x = tag_str_STAR L1 y \<Longrightarrow> x \<approx>(L1\<star>) y"
+    by (rule tag_str_STAR_injI)
+next
+  have *: "finite (Pow (UNIV // \<approx>L1))" 
+    using finite1 by auto
+  show "finite (range (tag_str_STAR L1))"
+    unfolding tag_str_STAR_def
+    apply(rule finite_subset[OF _ *])
+    unfolding quotient_def
+    by auto
+qed
+
+subsubsection{* The conclusion *}
+
+lemma rexp_imp_finite:
+  fixes r::"rexp"
+  shows "finite (UNIV // \<approx>(L r))"
+by (induct r) (auto)
+
+end