--- a/Paper/Paper.thy Wed Feb 09 03:52:28 2011 +0000
+++ b/Paper/Paper.thy Wed Feb 09 04:50:18 2011 +0000
@@ -238,24 +238,24 @@
version of Arden's lemma.
\begin{lemma}[Reverse Arden's Lemma]\label{arden}\mbox{}\\
- If @{thm (prem 1) ardens_revised} then
- @{thm (lhs) ardens_revised} has the unique solution
- @{thm (rhs) ardens_revised}.
+ If @{thm (prem 1) arden} then
+ @{thm (lhs) arden} has the unique solution
+ @{thm (rhs) arden}.
\end{lemma}
\begin{proof}
- For the right-to-left direction we assume @{thm (rhs) ardens_revised} and show
- that @{thm (lhs) ardens_revised} holds. From Prop.~\ref{langprops}@{text "(i)"}
+ For the right-to-left direction we assume @{thm (rhs) arden} and show
+ that @{thm (lhs) arden} holds. From Prop.~\ref{langprops}@{text "(i)"}
we have @{term "A\<star> = {[]} \<union> A ;; A\<star>"},
which is equal to @{term "A\<star> = {[]} \<union> A\<star> ;; A"}. Adding @{text B} to both
sides gives @{term "B ;; A\<star> = B ;; ({[]} \<union> A\<star> ;; A)"}, whose right-hand side
is equal to @{term "(B ;; A\<star>) ;; A \<union> B"}. This completes this direction.
- For the other direction we assume @{thm (lhs) ardens_revised}. By a simple induction
+ For the other direction we assume @{thm (lhs) arden}. By a simple induction
on @{text n}, we can establish the property
\begin{center}
- @{text "(*)"}\hspace{5mm} @{thm (concl) ardens_helper}
+ @{text "(*)"}\hspace{5mm} @{thm (concl) arden_helper}
\end{center}
\noindent
@@ -263,7 +263,7 @@
all @{text n}. From this we can infer @{term "B ;; A\<star> \<subseteq> X"} using the definition
of @{text "\<star>"}.
For the inclusion in the other direction we assume a string @{text s}
- with length @{text k} is element in @{text X}. Since @{thm (prem 1) ardens_revised}
+ with length @{text k} is element in @{text X}. Since @{thm (prem 1) arden}
we know by Prop.~\ref{langprops}@{text "(ii)"} that
@{term "s \<notin> X ;; (A \<up> Suc k)"} since its length is only @{text k}
(the strings in @{term "X ;; (A \<up> Suc k)"} are all longer).
@@ -392,8 +392,8 @@
equational system as follows
\begin{center}
- @{thm L_rhs_e.simps(2)[where X="Y" and r="r", THEN eq_reflection]}\hspace{10mm}
- @{thm L_rhs_e.simps(1)[where r="r", THEN eq_reflection]}
+ @{thm L_rhs_item.simps(2)[where X="Y" and r="r", THEN eq_reflection]}\hspace{10mm}
+ @{thm L_rhs_item.simps(1)[where r="r", THEN eq_reflection]}
\end{center}
\noindent