diff -r a3e0056c228b -r 6457e668dee5 Paper/Paper.thy --- a/Paper/Paper.thy Wed Feb 09 03:52:28 2011 +0000 +++ b/Paper/Paper.thy Wed Feb 09 04:50:18 2011 +0000 @@ -238,24 +238,24 @@ version of Arden's lemma. \begin{lemma}[Reverse Arden's Lemma]\label{arden}\mbox{}\\ - If @{thm (prem 1) ardens_revised} then - @{thm (lhs) ardens_revised} has the unique solution - @{thm (rhs) ardens_revised}. + If @{thm (prem 1) arden} then + @{thm (lhs) arden} has the unique solution + @{thm (rhs) arden}. \end{lemma} \begin{proof} - For the right-to-left direction we assume @{thm (rhs) ardens_revised} and show - that @{thm (lhs) ardens_revised} holds. From Prop.~\ref{langprops}@{text "(i)"} + For the right-to-left direction we assume @{thm (rhs) arden} and show + that @{thm (lhs) arden} holds. From Prop.~\ref{langprops}@{text "(i)"} we have @{term "A\ = {[]} \ A ;; A\"}, which is equal to @{term "A\ = {[]} \ A\ ;; A"}. Adding @{text B} to both sides gives @{term "B ;; A\ = B ;; ({[]} \ A\ ;; A)"}, whose right-hand side is equal to @{term "(B ;; A\) ;; A \ B"}. This completes this direction. - For the other direction we assume @{thm (lhs) ardens_revised}. By a simple induction + For the other direction we assume @{thm (lhs) arden}. By a simple induction on @{text n}, we can establish the property \begin{center} - @{text "(*)"}\hspace{5mm} @{thm (concl) ardens_helper} + @{text "(*)"}\hspace{5mm} @{thm (concl) arden_helper} \end{center} \noindent @@ -263,7 +263,7 @@ all @{text n}. From this we can infer @{term "B ;; A\ \ X"} using the definition of @{text "\"}. For the inclusion in the other direction we assume a string @{text s} - with length @{text k} is element in @{text X}. Since @{thm (prem 1) ardens_revised} + with length @{text k} is element in @{text X}. Since @{thm (prem 1) arden} we know by Prop.~\ref{langprops}@{text "(ii)"} that @{term "s \ X ;; (A \ Suc k)"} since its length is only @{text k} (the strings in @{term "X ;; (A \ Suc k)"} are all longer). @@ -392,8 +392,8 @@ equational system as follows \begin{center} - @{thm L_rhs_e.simps(2)[where X="Y" and r="r", THEN eq_reflection]}\hspace{10mm} - @{thm L_rhs_e.simps(1)[where r="r", THEN eq_reflection]} + @{thm L_rhs_item.simps(2)[where X="Y" and r="r", THEN eq_reflection]}\hspace{10mm} + @{thm L_rhs_item.simps(1)[where r="r", THEN eq_reflection]} \end{center} \noindent