--- a/prio/PrioG.thy Fri Feb 10 11:30:47 2012 +0000
+++ b/prio/PrioG.thy Fri Feb 10 21:01:03 2012 +0000
@@ -2072,14 +2072,17 @@
qed
lemma cp_eq_cpreced: "cp s th = cpreced (wq s) s th"
-proof(unfold cp_def wq_def, induct s)
- case (Cons e s')
- show ?case
- by (auto simp:Let_def)
-next
- case Nil
- show ?case by (auto simp:Let_def)
-qed
+unfolding cp_def wq_def
+apply(induct s rule: schs.induct)
+apply(simp add: Let_def cpreced_initial)
+apply(simp add: Let_def)
+apply(simp add: Let_def)
+apply(simp add: Let_def)
+apply(subst (2) schs.simps)
+apply(simp add: Let_def)
+apply(subst (2) schs.simps)
+apply(simp add: Let_def)
+done
lemma runing_unique: