prio/PrioG.thy
changeset 291 5ef9f6ebe827
parent 290 6a6d0bd16035
child 294 bc5bf9e9ada2
equal deleted inserted replaced
290:6a6d0bd16035 291:5ef9f6ebe827
  2070     by (unfold s_depend_def, auto simp:cs_waiting_def)
  2070     by (unfold s_depend_def, auto simp:cs_waiting_def)
  2071   from wq_threads [OF vt this] show ?thesis .
  2071   from wq_threads [OF vt this] show ?thesis .
  2072 qed
  2072 qed
  2073 
  2073 
  2074 lemma cp_eq_cpreced: "cp s th = cpreced (wq s) s th"
  2074 lemma cp_eq_cpreced: "cp s th = cpreced (wq s) s th"
  2075 proof(unfold cp_def wq_def, induct s)
  2075 unfolding cp_def wq_def
  2076   case (Cons e s')
  2076 apply(induct s rule: schs.induct)
  2077   show ?case
  2077 apply(simp add: Let_def cpreced_initial)
  2078     by (auto simp:Let_def)
  2078 apply(simp add: Let_def)
  2079 next
  2079 apply(simp add: Let_def)
  2080   case Nil
  2080 apply(simp add: Let_def)
  2081   show ?case by (auto simp:Let_def)
  2081 apply(subst (2) schs.simps)
  2082 qed
  2082 apply(simp add: Let_def)
       
  2083 apply(subst (2) schs.simps)
       
  2084 apply(simp add: Let_def)
       
  2085 done
  2083 
  2086 
  2084 
  2087 
  2085 lemma runing_unique:
  2088 lemma runing_unique:
  2086   fixes th1 th2 s
  2089   fixes th1 th2 s
  2087   assumes vt: "vt step s"
  2090   assumes vt: "vt step s"