26 "(A ;; B) ;; C = A ;; (B ;; C)" |
31 "(A ;; B) ;; C = A ;; (B ;; C)" |
27 apply(auto simp:Seq_def) |
32 apply(auto simp:Seq_def) |
28 apply blast |
33 apply blast |
29 by (metis append_assoc) |
34 by (metis append_assoc) |
30 |
35 |
|
36 lemma star_intro1[rule_format]: "x \<in> lang\<star> \<Longrightarrow> \<forall> y. y \<in> lang\<star> \<longrightarrow> x @ y \<in> lang\<star>" |
|
37 by (erule Star.induct, auto) |
|
38 |
|
39 lemma star_intro2: "y \<in> lang \<Longrightarrow> y \<in> lang\<star>" |
|
40 by (drule step[of y lang "[]"], auto simp:start) |
|
41 |
|
42 lemma star_intro3[rule_format]: |
|
43 "x \<in> lang\<star> \<Longrightarrow> \<forall>y . y \<in> lang \<longrightarrow> x @ y \<in> lang\<star>" |
|
44 by (erule Star.induct, auto intro:star_intro2) |
|
45 |
|
46 lemma star_decom: |
|
47 "\<lbrakk>x \<in> lang\<star>; x \<noteq> []\<rbrakk> \<Longrightarrow>(\<exists> a b. x = a @ b \<and> a \<noteq> [] \<and> a \<in> lang \<and> b \<in> lang\<star>)" |
|
48 by (induct x rule: Star.induct, simp, blast) |
|
49 |
|
50 lemma star_decom': |
|
51 "\<lbrakk>x \<in> lang\<star>; x \<noteq> []\<rbrakk> \<Longrightarrow> \<exists>a b. x = a @ b \<and> a \<in> lang\<star> \<and> b \<in> lang" |
|
52 apply (induct x rule:Star.induct, simp) |
|
53 apply (case_tac "s2 = []") |
|
54 apply (rule_tac x = "[]" in exI, rule_tac x = s1 in exI, simp add:start) |
|
55 apply (simp, (erule exE| erule conjE)+) |
|
56 by (rule_tac x = "s1 @ a" in exI, rule_tac x = b in exI, simp add:step) |
|
57 |
|
58 text {* Ardens lemma expressed at the level of language, rather than the level of regular expression. *} |
|
59 |
31 theorem ardens_revised: |
60 theorem ardens_revised: |
32 assumes nemp: "[] \<notin> A" |
61 assumes nemp: "[] \<notin> A" |
33 shows "(X = X ;; A \<union> B) \<longleftrightarrow> (X = B ;; A\<star>)" |
62 shows "(X = X ;; A \<union> B) \<longleftrightarrow> (X = B ;; A\<star>)" |
34 proof |
63 proof |
35 assume eq: "X = B ;; A\<star>" |
64 assume eq: "X = B ;; A\<star>" |
36 have "A\<star> = {[]} \<union> A\<star> ;; A" sorry |
65 have "A\<star> = {[]} \<union> A\<star> ;; A" |
37 then have "B ;; A\<star> = B ;; ({[]} \<union> A\<star> ;; A)" unfolding Seq_def by simp |
66 by (auto simp:Seq_def star_intro3 star_decom') |
38 also have "\<dots> = B \<union> B ;; (A\<star> ;; A)" unfolding Seq_def by auto |
67 then have "B ;; A\<star> = B ;; ({[]} \<union> A\<star> ;; A)" |
39 also have "\<dots> = B \<union> (B ;; A\<star>) ;; A" unfolding Seq_def |
68 unfolding Seq_def by simp |
40 by (auto) (metis append_assoc)+ |
69 also have "\<dots> = B \<union> B ;; (A\<star> ;; A)" |
41 finally show "X = X ;; A \<union> B" using eq by auto |
70 unfolding Seq_def by auto |
|
71 also have "\<dots> = B \<union> (B ;; A\<star>) ;; A" |
|
72 by (simp only:seq_assoc) |
|
73 finally show "X = X ;; A \<union> B" |
|
74 using eq by blast |
42 next |
75 next |
43 assume "X = X ;; A \<union> B" |
76 assume eq': "X = X ;; A \<union> B" |
44 then have "B \<subseteq> X" "X ;; A \<subseteq> X" by auto |
77 hence c1': "\<And> x. x \<in> B \<Longrightarrow> x \<in> X" |
45 thus "X = B ;; A\<star>" sorry |
78 and c2': "\<And> x y. \<lbrakk>x \<in> X; y \<in> A\<rbrakk> \<Longrightarrow> x @ y \<in> X" |
46 qed |
79 using Seq_def by auto |
47 |
80 show "X = B ;; A\<star>" |
|
81 proof |
|
82 show "B ;; A\<star> \<subseteq> X" |
|
83 proof- |
|
84 { fix x y |
|
85 have "\<lbrakk>y \<in> A\<star>; x \<in> X\<rbrakk> \<Longrightarrow> x @ y \<in> X " |
|
86 apply (induct arbitrary:x rule:Star.induct, simp) |
|
87 by (auto simp only:append_assoc[THEN sym] dest:c2') |
|
88 } thus ?thesis using c1' by (auto simp:Seq_def) |
|
89 qed |
|
90 next |
|
91 show "X \<subseteq> B ;; A\<star>" |
|
92 proof- |
|
93 { fix x |
|
94 have "x \<in> X \<Longrightarrow> x \<in> B ;; A\<star>" |
|
95 proof (induct x taking:length rule:measure_induct) |
|
96 fix z |
|
97 assume hyps: |
|
98 "\<forall>y. length y < length z \<longrightarrow> y \<in> X \<longrightarrow> y \<in> B ;; A\<star>" |
|
99 and z_in: "z \<in> X" |
|
100 show "z \<in> B ;; A\<star>" |
|
101 proof (cases "z \<in> B") |
|
102 case True thus ?thesis by (auto simp:Seq_def start) |
|
103 next |
|
104 case False hence "z \<in> X ;; A" using eq' z_in by auto |
|
105 then obtain za zb where za_in: "za \<in> X" |
|
106 and zab: "z = za @ zb \<and> zb \<in> A" and zbne: "zb \<noteq> []" |
|
107 using nemp unfolding Seq_def by blast |
|
108 from zbne zab have "length za < length z" by auto |
|
109 with za_in hyps have "za \<in> B ;; A\<star>" by blast |
|
110 hence "za @ zb \<in> B ;; A\<star>" using zab |
|
111 by (clarsimp simp:Seq_def, blast dest:star_intro3) |
|
112 thus ?thesis using zab by simp |
|
113 qed |
|
114 qed |
|
115 } thus ?thesis by blast |
|
116 qed |
|
117 qed |
|
118 qed |
|
119 |
|
120 |
|
121 text {* The syntax of regular expressions is defined by the datatype @{text "rexp"}. *} |
48 datatype rexp = |
122 datatype rexp = |
49 NULL |
123 NULL |
50 | EMPTY |
124 | EMPTY |
51 | CHAR char |
125 | CHAR char |
52 | SEQ rexp rexp |
126 | SEQ rexp rexp |
53 | ALT rexp rexp |
127 | ALT rexp rexp |
54 | STAR rexp |
128 | STAR rexp |
55 |
129 |
|
130 |
|
131 text {* |
|
132 The following @{text "L"} is an overloaded operator, where @{text "L(x)"} evaluates to |
|
133 the language represented by the syntactic object @{text "x"}. |
|
134 *} |
56 consts L:: "'a \<Rightarrow> string set" |
135 consts L:: "'a \<Rightarrow> string set" |
57 |
136 |
|
137 |
|
138 text {* |
|
139 The @{text "L(rexp)"} for regular expression @{text "rexp"} is defined by the |
|
140 following overloading function @{text "L_rexp"}. |
|
141 *} |
58 overloading L_rexp \<equiv> "L:: rexp \<Rightarrow> string set" |
142 overloading L_rexp \<equiv> "L:: rexp \<Rightarrow> string set" |
59 begin |
143 begin |
60 |
|
61 fun |
144 fun |
62 L_rexp :: "rexp \<Rightarrow> string set" |
145 L_rexp :: "rexp \<Rightarrow> string set" |
63 where |
146 where |
64 "L_rexp (NULL) = {}" |
147 "L_rexp (NULL) = {}" |
65 | "L_rexp (EMPTY) = {[]}" |
148 | "L_rexp (EMPTY) = {[]}" |
67 | "L_rexp (SEQ r1 r2) = (L_rexp r1) ;; (L_rexp r2)" |
150 | "L_rexp (SEQ r1 r2) = (L_rexp r1) ;; (L_rexp r2)" |
68 | "L_rexp (ALT r1 r2) = (L_rexp r1) \<union> (L_rexp r2)" |
151 | "L_rexp (ALT r1 r2) = (L_rexp r1) \<union> (L_rexp r2)" |
69 | "L_rexp (STAR r) = (L_rexp r)\<star>" |
152 | "L_rexp (STAR r) = (L_rexp r)\<star>" |
70 end |
153 end |
71 |
154 |
|
155 text {* |
|
156 To obtain equational system out of finite set of equivalent classes, a fold operation |
|
157 on finite set @{text "folds"} is defined. The use of @{text "SOME"} makes @{text "fold"} |
|
158 more robust than the @{text "fold"} in Isabelle library. The expression @{text "folds f"} |
|
159 makes sense when @{text "f"} is not @{text "associative"} and @{text "commutitive"}, |
|
160 while @{text "fold f"} does not. |
|
161 *} |
|
162 |
72 definition |
163 definition |
73 folds :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b" |
164 folds :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b" |
74 where |
165 where |
75 "folds f z S \<equiv> SOME x. fold_graph f z S x" |
166 "folds f z S \<equiv> SOME x. fold_graph f z S x" |
76 |
167 |
|
168 text {* |
|
169 The following lemma assures that the arbitrary choice made by the @{text "SOME"} in @{text "folds"} |
|
170 does not affect the @{text "L"}-value of the resultant regular expression. |
|
171 *} |
77 lemma folds_alt_simp [simp]: |
172 lemma folds_alt_simp [simp]: |
78 "finite rs \<Longrightarrow> L (folds ALT NULL rs) = \<Union> (L ` rs)" |
173 "finite rs \<Longrightarrow> L (folds ALT NULL rs) = \<Union> (L ` rs)" |
79 apply (rule set_ext, simp add:folds_def) |
174 apply (rule set_ext, simp add:folds_def) |
80 apply (rule someI2_ex, erule finite_imp_fold_graph) |
175 apply (rule someI2_ex, erule finite_imp_fold_graph) |
81 by (erule fold_graph.induct, auto) |
176 by (erule fold_graph.induct, auto) |
82 |
177 |
|
178 (* Just a technical lemma. *) |
83 lemma [simp]: |
179 lemma [simp]: |
84 shows "(x, y) \<in> {(x, y). P x y} \<longleftrightarrow> P x y" |
180 shows "(x, y) \<in> {(x, y). P x y} \<longleftrightarrow> P x y" |
85 by simp |
181 by simp |
86 |
182 |
87 definition |
183 |
88 str_eq ("_ \<approx>_ _") |
184 text {* |
89 where |
185 @{text "\<approx>L"} is an equivalent class defined by language @{text "Lang"}. |
90 "x \<approx>Lang y \<equiv> (\<forall>z. x @ z \<in> Lang \<longleftrightarrow> y @ z \<in> Lang)" |
186 *} |
91 |
|
92 definition |
187 definition |
93 str_eq_rel ("\<approx>_") |
188 str_eq_rel ("\<approx>_") |
94 where |
189 where |
95 "\<approx>Lang \<equiv> {(x, y). x \<approx>Lang y}" |
190 "\<approx>Lang \<equiv> {(x, y). (\<forall>z. x @ z \<in> Lang \<longleftrightarrow> y @ z \<in> Lang)}" |
96 |
191 |
97 definition |
192 text {* |
98 final :: "string set \<Rightarrow> string set \<Rightarrow> bool" |
193 Among equivlant clases of @{text "\<approx>Lang"}, the set @{text "finals(Lang)"} singles out |
99 where |
194 those which contains strings from @{text "Lang"}. |
100 "final X Lang \<equiv> (X \<in> UNIV // \<approx>Lang) \<and> (\<forall>s \<in> X. s \<in> Lang)" |
195 *} |
101 |
196 |
|
197 definition |
|
198 "finals Lang \<equiv> {\<approx>Lang `` {x} | x . x \<in> Lang}" |
|
199 |
|
200 text {* |
|
201 The following lemma show the relationshipt between @{text "finals(Lang)"} and @{text "Lang"}. |
|
202 *} |
102 lemma lang_is_union_of_finals: |
203 lemma lang_is_union_of_finals: |
103 "Lang = \<Union> {X. final X Lang}" |
204 "Lang = \<Union> finals(Lang)" |
104 proof |
205 proof |
105 show "Lang \<subseteq> \<Union> {X. final X Lang}" |
206 show "Lang \<subseteq> \<Union> (finals Lang)" |
106 proof |
207 proof |
107 fix x |
208 fix x |
108 assume "x \<in> Lang" |
209 assume "x \<in> Lang" |
109 thus "x \<in> \<Union> {X. final X Lang}" |
210 thus "x \<in> \<Union> (finals Lang)" |
110 apply (simp, rule_tac x = "(\<approx>Lang) `` {x}" in exI) |
211 apply (simp add:finals_def, rule_tac x = "(\<approx>Lang) `` {x}" in exI) |
111 apply (auto simp:final_def quotient_def Image_def str_eq_rel_def str_eq_def) |
212 by (auto simp:Image_def str_eq_rel_def) |
112 by (drule_tac x = "[]" in spec, simp) |
|
113 qed |
213 qed |
114 next |
214 next |
115 show "\<Union>{X. final X Lang} \<subseteq> Lang" |
215 show "\<Union> (finals Lang) \<subseteq> Lang" |
116 by (auto simp:final_def) |
216 apply (clarsimp simp:finals_def str_eq_rel_def) |
117 qed |
217 by (drule_tac x = "[]" in spec, auto) |
118 |
218 qed |
119 section {* finite \<Rightarrow> regular *} |
219 |
|
220 section {* Direction @{text "finite partition \<Rightarrow> regular language"}*} |
|
221 |
|
222 text {* |
|
223 The relationship between equivalent classes can be described by an |
|
224 equational system. |
|
225 For example, in equational system \eqref{example_eqns}, $X_0, X_1$ are equivalent |
|
226 classes. The first equation says every string in $X_0$ is obtained either by |
|
227 appending one $b$ to a string in $X_0$ or by appending one $a$ to a string in |
|
228 $X_1$ or just be an empty string (represented by the regular expression $\lambda$). Similary, |
|
229 the second equation tells how the strings inside $X_1$ are composed. |
|
230 \begin{equation}\label{example_eqns} |
|
231 \begin{aligned} |
|
232 X_0 & = X_0 b + X_1 a + \lambda \\ |
|
233 X_1 & = X_0 a + X_1 b |
|
234 \end{aligned} |
|
235 \end{equation} |
|
236 The summands on the right hand side is represented by the following data type |
|
237 @{text "rhs_item"}, mnemonic for 'right hand side item'. |
|
238 Generally, there are two kinds of right hand side items, one kind corresponds to |
|
239 pure regular expressions, like the $\lambda$ in \eqref{example_eqns}, the other kind corresponds to |
|
240 transitions from one one equivalent class to another, like the $X_0 b, X_1 a$ etc. |
|
241 *} |
120 |
242 |
121 datatype rhs_item = |
243 datatype rhs_item = |
122 Lam "rexp" (* Lambda *) |
244 Lam "rexp" (* Lambda *) |
123 | Trn "string set" "rexp" (* Transition *) |
245 | Trn "(string set)" "rexp" (* Transition *) |
|
246 |
|
247 text {* |
|
248 In this formalization, pure regular expressions like $\lambda$ is |
|
249 repsented by @{text "Lam(EMPTY)"}, while transitions like $X_0 a$ is represented by $Trn~X_0~(CHAR~a)$. |
|
250 *} |
|
251 |
|
252 text {* |
|
253 The functions @{text "the_r"} and @{text "the_Trn"} are used to extract |
|
254 subcomponents from right hand side items. |
|
255 *} |
|
256 |
|
257 fun the_r :: "rhs_item \<Rightarrow> rexp" |
|
258 where "the_r (Lam r) = r" |
124 |
259 |
125 fun the_Trn:: "rhs_item \<Rightarrow> (string set \<times> rexp)" |
260 fun the_Trn:: "rhs_item \<Rightarrow> (string set \<times> rexp)" |
126 where "the_Trn (Trn Y r) = (Y, r)" |
261 where "the_Trn (Trn Y r) = (Y, r)" |
127 |
262 |
128 fun the_r :: "rhs_item \<Rightarrow> rexp" |
263 text {* |
129 where "the_r (Lam r) = r" |
264 Every right hand side item @{text "itm"} defines a string set given |
130 |
265 @{text "L(itm)"}, defined as: |
|
266 *} |
131 overloading L_rhs_e \<equiv> "L:: rhs_item \<Rightarrow> string set" |
267 overloading L_rhs_e \<equiv> "L:: rhs_item \<Rightarrow> string set" |
132 begin |
268 begin |
133 fun L_rhs_e:: "rhs_item \<Rightarrow> string set" |
269 fun L_rhs_e:: "rhs_item \<Rightarrow> string set" |
134 where |
270 where |
135 "L_rhs_e (Lam r) = L r" | |
271 "L_rhs_e (Lam r) = L r" | |
136 "L_rhs_e (Trn X r) = X ;; L r" |
272 "L_rhs_e (Trn X r) = X ;; L r" |
137 end |
273 end |
|
274 |
|
275 text {* |
|
276 The right hand side of every equation is represented by a set of |
|
277 items. The string set defined by such a set @{text "itms"} is given |
|
278 by @{text "L(itms)"}, defined as: |
|
279 *} |
138 |
280 |
139 overloading L_rhs \<equiv> "L:: rhs_item set \<Rightarrow> string set" |
281 overloading L_rhs \<equiv> "L:: rhs_item set \<Rightarrow> string set" |
140 begin |
282 begin |
141 fun L_rhs:: "rhs_item set \<Rightarrow> string set" |
283 fun L_rhs:: "rhs_item set \<Rightarrow> string set" |
142 where |
284 where "L_rhs rhs = \<Union> (L ` rhs)" |
143 "L_rhs rhs = \<Union> (L ` rhs)" |
|
144 end |
285 end |
145 |
286 |
|
287 text {* |
|
288 Given a set of equivalent classses @{text "CS"} and one equivalent class @{text "X"} among |
|
289 @{text "CS"}, the term @{text "init_rhs CS X"} is used to extract the right hand side of |
|
290 the equation describing the formation of @{text "X"}. The definition of @{text "init_rhs"} |
|
291 is: |
|
292 *} |
|
293 |
146 definition |
294 definition |
147 "init_rhs CS X \<equiv> if ([] \<in> X) |
295 "init_rhs CS X \<equiv> |
148 then {Lam EMPTY} \<union> {Trn Y (CHAR c)| Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X} |
296 if ([] \<in> X) then |
149 else {Trn Y (CHAR c)| Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}" |
297 {Lam(EMPTY)} \<union> {Trn Y (CHAR c) | Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X} |
150 |
298 else |
151 definition |
299 {Trn Y (CHAR c)| Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}" |
152 "eqs CS \<equiv> {(X, init_rhs CS X)|X. X \<in> CS}" |
300 |
153 |
301 text {* |
|
302 In the definition of @{text "init_rhs"}, the term |
|
303 @{text "{Trn Y (CHAR c)| Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}"} appearing on both branches |
|
304 describes the formation of strings in @{text "X"} out of transitions, while |
|
305 the term @{text "{Lam(EMPTY)}"} describes the empty string which is intrinsically contained in |
|
306 @{text "X"} rather than by transition. This @{text "{Lam(EMPTY)}"} corresponds to |
|
307 the $\lambda$ in \eqref{example_eqns}. |
|
308 |
|
309 With the help of @{text "init_rhs"}, the equitional system descrbing the formation of every |
|
310 equivalent class inside @{text "CS"} is given by the following @{text "eqs(CS)"}. |
|
311 *} |
|
312 |
|
313 definition "eqs CS \<equiv> {(X, init_rhs CS X) | X. X \<in> CS}" |
154 (************ arden's lemma variation ********************) |
314 (************ arden's lemma variation ********************) |
155 |
315 |
|
316 text {* |
|
317 The following @{text "items_of rhs X"} returns all @{text "X"}-items in @{text "rhs"}. |
|
318 *} |
156 definition |
319 definition |
157 "items_of rhs X \<equiv> {Trn X r | r. (Trn X r) \<in> rhs}" |
320 "items_of rhs X \<equiv> {Trn X r | r. (Trn X r) \<in> rhs}" |
158 |
321 |
|
322 text {* |
|
323 The following @{text "rexp_of rhs X"} combines all regular expressions in @{text "X"}-items |
|
324 using @{text "ALT"} to form a single regular expression. |
|
325 It will be used later to implement @{text "arden_variate"} and @{text "rhs_subst"}. |
|
326 *} |
|
327 |
|
328 definition |
|
329 "rexp_of rhs X \<equiv> folds ALT NULL ((snd o the_Trn) ` items_of rhs X)" |
|
330 |
|
331 text {* |
|
332 The following @{text "lam_of rhs"} returns all pure regular expression items in @{text "rhs"}. |
|
333 *} |
|
334 |
159 definition |
335 definition |
160 "lam_of rhs \<equiv> {Lam r | r. Lam r \<in> rhs}" |
336 "lam_of rhs \<equiv> {Lam r | r. Lam r \<in> rhs}" |
161 |
337 |
162 definition |
338 text {* |
163 "rexp_of rhs X \<equiv> folds ALT NULL ((snd o the_Trn) ` items_of rhs X)" |
339 The following @{text "rexp_of_lam rhs"} combines pure regular expression items in @{text "rhs"} |
|
340 using @{text "ALT"} to form a single regular expression. |
|
341 When all variables inside @{text "rhs"} are eliminated, @{text "rexp_of_lam rhs"} |
|
342 is used to compute compute the regular expression corresponds to @{text "rhs"}. |
|
343 *} |
164 |
344 |
165 definition |
345 definition |
166 "rexp_of_lam rhs \<equiv> folds ALT NULL (the_r ` lam_of rhs)" |
346 "rexp_of_lam rhs \<equiv> folds ALT NULL (the_r ` lam_of rhs)" |
167 |
347 |
|
348 text {* |
|
349 The following @{text "attach_rexp rexp' itm"} attach |
|
350 the regular expression @{text "rexp'"} to |
|
351 the right of right hand side item @{text "itm"}. |
|
352 *} |
|
353 |
168 fun attach_rexp :: "rexp \<Rightarrow> rhs_item \<Rightarrow> rhs_item" |
354 fun attach_rexp :: "rexp \<Rightarrow> rhs_item \<Rightarrow> rhs_item" |
169 where |
355 where |
170 "attach_rexp r' (Lam r) = Lam (SEQ r r')" |
356 "attach_rexp rexp' (Lam rexp) = Lam (SEQ rexp rexp')" |
171 | "attach_rexp r' (Trn X r) = Trn X (SEQ r r')" |
357 | "attach_rexp rexp' (Trn X rexp) = Trn X (SEQ rexp rexp')" |
|
358 |
|
359 text {* |
|
360 The following @{text "append_rhs_rexp rhs rexp"} attaches |
|
361 @{text "rexp"} to every item in @{text "rhs"}. |
|
362 *} |
172 |
363 |
173 definition |
364 definition |
174 "append_rhs_rexp rhs r \<equiv> (attach_rexp r) ` rhs" |
365 "append_rhs_rexp rhs rexp \<equiv> (attach_rexp rexp) ` rhs" |
175 |
366 |
|
367 text {* |
|
368 With the help of the two functions immediately above, Ardens' |
|
369 transformation on right hand side @{text "rhs"} is implemented |
|
370 by the following function @{text "arden_variate X rhs"}. |
|
371 After this transformation, the recursive occurent of @{text "X"} |
|
372 in @{text "rhs"} will be eliminated, while the |
|
373 string set defined by @{text "rhs"} is kept unchanged. |
|
374 *} |
176 definition |
375 definition |
177 "arden_variate X rhs \<equiv> append_rhs_rexp (rhs - items_of rhs X) (STAR (rexp_of rhs X))" |
376 "arden_variate X rhs \<equiv> |
|
377 append_rhs_rexp (rhs - items_of rhs X) (STAR (rexp_of rhs X))" |
178 |
378 |
179 |
379 |
180 (*********** substitution of ES *************) |
380 (*********** substitution of ES *************) |
181 |
381 |
182 text {* rhs_subst rhs X xrhs: substitude all occurence of X in rhs with xrhs *} |
382 text {* |
|
383 Suppose the equation defining @{text "X"} is $X = xrhs$, |
|
384 the purpose of @{text "rhs_subst"} is to substitute all occurences of @{text "X"} in |
|
385 @{text "rhs"} by @{text "xrhs"}. |
|
386 A litte thought may reveal that the final result |
|
387 should be: first append $(a_1 | a_2 | \ldots | a_n)$ to every item of @{text "xrhs"} and then |
|
388 union the result with all non-@{text "X"}-items of @{text "rhs"}. |
|
389 *} |
183 definition |
390 definition |
184 "rhs_subst rhs X xrhs \<equiv> (rhs - (items_of rhs X)) \<union> (append_rhs_rexp xrhs (rexp_of rhs X))" |
391 "rhs_subst rhs X xrhs \<equiv> |
|
392 (rhs - (items_of rhs X)) \<union> (append_rhs_rexp xrhs (rexp_of rhs X))" |
|
393 |
|
394 text {* |
|
395 Suppose the equation defining @{text "X"} is $X = xrhs$, the follwing |
|
396 @{text "eqs_subst ES X xrhs"} substitute @{text "xrhs"} into every equation |
|
397 of the equational system @{text "ES"}. |
|
398 *} |
185 |
399 |
186 definition |
400 definition |
187 "eqs_subst ES X xrhs \<equiv> {(Y, rhs_subst yrhs X xrhs) | Y yrhs. (Y, yrhs) \<in> ES}" |
401 "eqs_subst ES X xrhs \<equiv> {(Y, rhs_subst yrhs X xrhs) | Y yrhs. (Y, yrhs) \<in> ES}" |
188 |
402 |
189 text {* |
403 text {* |
190 Inv: Invairance of the equation-system, during the decrease of the equation-system, Inv holds. |
404 The computation of regular expressions for equivalent classes is accomplished |
191 *} |
405 using a iteration principle given by the following lemma. |
192 |
406 *} |
193 definition |
|
194 "distinct_equas ES \<equiv> \<forall> X rhs rhs'. (X, rhs) \<in> ES \<and> (X, rhs') \<in> ES \<longrightarrow> rhs = rhs'" |
|
195 |
|
196 definition |
|
197 "valid_eqns ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> (X = L rhs)" |
|
198 |
|
199 definition |
|
200 "rhs_nonempty rhs \<equiv> (\<forall> Y r. Trn Y r \<in> rhs \<longrightarrow> [] \<notin> L r)" |
|
201 |
|
202 definition |
|
203 "ardenable ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> rhs_nonempty rhs" |
|
204 |
|
205 definition |
|
206 "non_empty ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> X \<noteq> {}" |
|
207 |
|
208 definition |
|
209 "finite_rhs ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> finite rhs" |
|
210 |
|
211 definition |
|
212 "classes_of rhs \<equiv> {X. \<exists> r. Trn X r \<in> rhs}" |
|
213 |
|
214 definition |
|
215 "lefts_of ES \<equiv> {Y | Y yrhs. (Y, yrhs) \<in> ES}" |
|
216 |
|
217 definition |
|
218 "self_contained ES \<equiv> \<forall> (X, xrhs) \<in> ES. classes_of xrhs \<subseteq> lefts_of ES" |
|
219 |
|
220 definition |
|
221 "Inv ES \<equiv> valid_eqns ES \<and> finite ES \<and> distinct_equas ES \<and> ardenable ES \<and> |
|
222 non_empty ES \<and> finite_rhs ES \<and> self_contained ES" |
|
223 |
407 |
224 lemma wf_iter [rule_format]: |
408 lemma wf_iter [rule_format]: |
225 fixes f |
409 fixes f |
226 assumes step: "\<And> e. \<lbrakk>P e; \<not> Q e\<rbrakk> \<Longrightarrow> (\<exists> e'. P e' \<and> (f(e'), f(e)) \<in> less_than)" |
410 assumes step: "\<And> e. \<lbrakk>P e; \<not> Q e\<rbrakk> \<Longrightarrow> (\<exists> e'. P e' \<and> (f(e'), f(e)) \<in> less_than)" |
227 shows pe: "P e \<longrightarrow> (\<exists> e'. P e' \<and> Q e')" |
411 shows pe: "P e \<longrightarrow> (\<exists> e'. P e' \<and> Q e')" |
246 from pe' show "P e'" . |
430 from pe' show "P e'" . |
247 qed |
431 qed |
248 qed |
432 qed |
249 qed |
433 qed |
250 |
434 |
251 text {* ************* basic properties of definitions above ************************ *} |
435 text {* |
|
436 The @{text "P"} in lemma @{text "wf_iter"} is an invaiant kept throughout the iteration procedure. |
|
437 The particular invariant used to solve our problem is defined by function @{text "Inv(ES)"}, |
|
438 an invariant over equal system @{text "ES"}. |
|
439 Every definition starting next till @{text "Inv"} stipulates a property to be satisfied by @{text "ES"}. |
|
440 *} |
|
441 |
|
442 text {* |
|
443 Every variable is defined at most onece in @{text "ES"}. |
|
444 *} |
|
445 definition |
|
446 "distinct_equas ES \<equiv> |
|
447 \<forall> X rhs rhs'. (X, rhs) \<in> ES \<and> (X, rhs') \<in> ES \<longrightarrow> rhs = rhs'" |
|
448 text {* |
|
449 Every equation in @{text "ES"} (represented by @{text "(X, rhs)"}) is valid, i.e. @{text "(X = L rhs)"}. |
|
450 *} |
|
451 definition |
|
452 "valid_eqns ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> (X = L rhs)" |
|
453 |
|
454 text {* |
|
455 @{text "rhs_nonempty rhs"} requires regular expressions occuring in transitional |
|
456 items of @{text "rhs"} does not contain empty string. This is necessary for |
|
457 the application of Arden's transformation to @{text "rhs"}. |
|
458 *} |
|
459 definition |
|
460 "rhs_nonempty rhs \<equiv> (\<forall> Y r. Trn Y r \<in> rhs \<longrightarrow> [] \<notin> L r)" |
|
461 |
|
462 text {* |
|
463 @{text "ardenable ES"} requires that Arden's transformation is applicable |
|
464 to every equation of equational system @{text "ES"}. |
|
465 *} |
|
466 definition |
|
467 "ardenable ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> rhs_nonempty rhs" |
|
468 |
|
469 (* The following non_empty seems useless. *) |
|
470 definition |
|
471 "non_empty ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> X \<noteq> {}" |
|
472 |
|
473 text {* |
|
474 The following @{text "finite_rhs ES"} requires every equation in @{text "rhs"} be finite. |
|
475 *} |
|
476 definition |
|
477 "finite_rhs ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> finite rhs" |
|
478 |
|
479 text {* |
|
480 The following @{text "classes_of rhs"} returns all variables (or equivalent classes) |
|
481 occuring in @{text "rhs"}. |
|
482 *} |
|
483 definition |
|
484 "classes_of rhs \<equiv> {X. \<exists> r. Trn X r \<in> rhs}" |
|
485 |
|
486 text {* |
|
487 The following @{text "lefts_of ES"} returns all variables |
|
488 defined by equational system @{text "ES"}. |
|
489 *} |
|
490 definition |
|
491 "lefts_of ES \<equiv> {Y | Y yrhs. (Y, yrhs) \<in> ES}" |
|
492 |
|
493 text {* |
|
494 The following @{text "self_contained ES"} requires that every |
|
495 variable occuring on the right hand side of equations is already defined by some |
|
496 equation in @{text "ES"}. |
|
497 *} |
|
498 definition |
|
499 "self_contained ES \<equiv> \<forall> (X, xrhs) \<in> ES. classes_of xrhs \<subseteq> lefts_of ES" |
|
500 |
|
501 |
|
502 text {* |
|
503 The invariant @{text "Inv(ES)"} is obtained by conjunctioning all the previous |
|
504 defined constaints on @{text "ES"}. |
|
505 *} |
|
506 definition |
|
507 "Inv ES \<equiv> valid_eqns ES \<and> finite ES \<and> distinct_equas ES \<and> ardenable ES \<and> |
|
508 non_empty ES \<and> finite_rhs ES \<and> self_contained ES" |
|
509 |
|
510 subsection {* Proof for this direction *} |
|
511 |
|
512 |
|
513 |
|
514 text {* |
|
515 The following are some basic properties of the above definitions. |
|
516 *} |
252 |
517 |
253 lemma L_rhs_union_distrib: |
518 lemma L_rhs_union_distrib: |
254 " L (A::rhs_item set) \<union> L B = L (A \<union> B)" |
519 " L (A::rhs_item set) \<union> L B = L (A \<union> B)" |
255 by simp |
520 by simp |
256 |
521 |
575 |
854 |
576 lemma eqs_subst_satisfy_Inv: |
855 lemma eqs_subst_satisfy_Inv: |
577 assumes Inv_ES: "Inv (ES \<union> {(Y, yrhs)})" |
856 assumes Inv_ES: "Inv (ES \<union> {(Y, yrhs)})" |
578 shows "Inv (eqs_subst ES Y (arden_variate Y yrhs))" |
857 shows "Inv (eqs_subst ES Y (arden_variate Y yrhs))" |
579 proof - |
858 proof - |
580 have finite_yrhs: "finite yrhs" using Inv_ES by (auto simp:Inv_def finite_rhs_def) |
859 have finite_yrhs: "finite yrhs" |
581 have nonempty_yrhs: "rhs_nonempty yrhs" using Inv_ES by (auto simp:Inv_def ardenable_def) |
860 using Inv_ES by (auto simp:Inv_def finite_rhs_def) |
582 have Y_eq_yrhs: "Y = L yrhs" using Inv_ES by (simp only:Inv_def valid_eqns_def, blast) |
861 have nonempty_yrhs: "rhs_nonempty yrhs" |
583 |
862 using Inv_ES by (auto simp:Inv_def ardenable_def) |
584 have "distinct_equas (eqs_subst ES Y (arden_variate Y yrhs))" using Inv_ES |
863 have Y_eq_yrhs: "Y = L yrhs" |
|
864 using Inv_ES by (simp only:Inv_def valid_eqns_def, blast) |
|
865 have "distinct_equas (eqs_subst ES Y (arden_variate Y yrhs))" |
|
866 using Inv_ES |
585 by (auto simp:distinct_equas_def eqs_subst_def Inv_def) |
867 by (auto simp:distinct_equas_def eqs_subst_def Inv_def) |
586 moreover have "finite (eqs_subst ES Y (arden_variate Y yrhs))" using Inv_ES |
868 moreover have "finite (eqs_subst ES Y (arden_variate Y yrhs))" |
587 by (simp add:Inv_def eqs_subst_keeps_finite) |
869 using Inv_ES by (simp add:Inv_def eqs_subst_keeps_finite) |
588 moreover have "finite_rhs (eqs_subst ES Y (arden_variate Y yrhs))" |
870 moreover have "finite_rhs (eqs_subst ES Y (arden_variate Y yrhs))" |
589 proof- |
871 proof- |
590 have "finite_rhs ES" using Inv_ES by (simp add:Inv_def finite_rhs_def) |
872 have "finite_rhs ES" using Inv_ES |
|
873 by (simp add:Inv_def finite_rhs_def) |
591 moreover have "finite (arden_variate Y yrhs)" |
874 moreover have "finite (arden_variate Y yrhs)" |
592 proof - |
875 proof - |
593 have "finite yrhs" using Inv_ES by (auto simp:Inv_def finite_rhs_def) |
876 have "finite yrhs" using Inv_ES |
|
877 by (auto simp:Inv_def finite_rhs_def) |
594 thus ?thesis using arden_variate_keeps_finite by simp |
878 thus ?thesis using arden_variate_keeps_finite by simp |
595 qed |
879 qed |
596 ultimately show ?thesis by (simp add:eqs_subst_keeps_finite_rhs) |
880 ultimately show ?thesis |
|
881 by (simp add:eqs_subst_keeps_finite_rhs) |
597 qed |
882 qed |
598 moreover have "ardenable (eqs_subst ES Y (arden_variate Y yrhs))" |
883 moreover have "ardenable (eqs_subst ES Y (arden_variate Y yrhs))" |
599 proof - |
884 proof - |
600 { fix X rhs |
885 { fix X rhs |
601 assume "(X, rhs) \<in> ES" |
886 assume "(X, rhs) \<in> ES" |
602 hence "rhs_nonempty rhs" using prems Inv_ES by (simp add:Inv_def ardenable_def) |
887 hence "rhs_nonempty rhs" using prems Inv_ES |
603 with nonempty_yrhs have "rhs_nonempty (rhs_subst rhs Y (arden_variate Y yrhs))" |
888 by (simp add:Inv_def ardenable_def) |
604 by (simp add:nonempty_yrhs rhs_subst_keeps_nonempty arden_variate_keeps_nonempty) |
889 with nonempty_yrhs |
|
890 have "rhs_nonempty (rhs_subst rhs Y (arden_variate Y yrhs))" |
|
891 by (simp add:nonempty_yrhs |
|
892 rhs_subst_keeps_nonempty arden_variate_keeps_nonempty) |
605 } thus ?thesis by (auto simp add:ardenable_def eqs_subst_def) |
893 } thus ?thesis by (auto simp add:ardenable_def eqs_subst_def) |
606 qed |
894 qed |
607 moreover have "valid_eqns (eqs_subst ES Y (arden_variate Y yrhs))" |
895 moreover have "valid_eqns (eqs_subst ES Y (arden_variate Y yrhs))" |
608 proof- |
896 proof- |
609 have "Y = L (arden_variate Y yrhs)" using Y_eq_yrhs Inv_ES finite_yrhs nonempty_yrhs |
897 have "Y = L (arden_variate Y yrhs)" |
610 by (rule_tac arden_variate_keeps_eq, (simp add:rexp_of_empty)+) |
898 using Y_eq_yrhs Inv_ES finite_yrhs nonempty_yrhs |
|
899 by (rule_tac arden_variate_keeps_eq, (simp add:rexp_of_empty)+) |
611 thus ?thesis using Inv_ES |
900 thus ?thesis using Inv_ES |
612 by (clarsimp simp add:valid_eqns_def eqs_subst_def rhs_subst_keeps_eq Inv_def finite_rhs_def |
901 by (clarsimp simp add:valid_eqns_def |
|
902 eqs_subst_def rhs_subst_keeps_eq Inv_def finite_rhs_def |
613 simp del:L_rhs.simps) |
903 simp del:L_rhs.simps) |
614 qed |
904 qed |
615 moreover have non_empty_subst: "non_empty (eqs_subst ES Y (arden_variate Y yrhs))" |
905 moreover have |
|
906 non_empty_subst: "non_empty (eqs_subst ES Y (arden_variate Y yrhs))" |
616 using Inv_ES by (auto simp:Inv_def non_empty_def eqs_subst_def) |
907 using Inv_ES by (auto simp:Inv_def non_empty_def eqs_subst_def) |
617 moreover have self_subst: "self_contained (eqs_subst ES Y (arden_variate Y yrhs))" |
908 moreover |
|
909 have self_subst: "self_contained (eqs_subst ES Y (arden_variate Y yrhs))" |
618 using Inv_ES eqs_subst_keeps_self_contained by (simp add:Inv_def) |
910 using Inv_ES eqs_subst_keeps_self_contained by (simp add:Inv_def) |
619 ultimately show ?thesis using Inv_ES by (simp add:Inv_def) |
911 ultimately show ?thesis using Inv_ES by (simp add:Inv_def) |
620 qed |
912 qed |
621 |
913 |
622 lemma eqs_subst_card_le: |
914 lemma eqs_subst_card_le: |
748 by (auto simp:Inv_def dest!:card_Suc_Diff1 simp:card_eq_0_iff) |
1053 by (auto simp:Inv_def dest!:card_Suc_Diff1 simp:card_eq_0_iff) |
749 thus ?thesis using Inv_ES |
1054 thus ?thesis using Inv_ES |
750 by (rule last_cl_exists_rexp) |
1055 by (rule last_cl_exists_rexp) |
751 qed |
1056 qed |
752 |
1057 |
|
1058 lemma finals_in_partitions: |
|
1059 "finals Lang \<subseteq> (UNIV // (\<approx>Lang))" |
|
1060 by (auto simp:finals_def quotient_def) |
|
1061 |
753 theorem hard_direction: |
1062 theorem hard_direction: |
754 assumes finite_CS: "finite (UNIV // (\<approx>Lang))" |
1063 assumes finite_CS: "finite (UNIV // (\<approx>Lang))" |
755 shows "\<exists> (reg::rexp). Lang = L reg" |
1064 shows "\<exists> (reg::rexp). Lang = L reg" |
756 proof - |
1065 proof - |
757 have "\<forall> X \<in> (UNIV // (\<approx>Lang)). \<exists> (reg::rexp). X = L reg" |
1066 have "\<forall> X \<in> (UNIV // (\<approx>Lang)). \<exists> (reg::rexp). X = L reg" |
758 using finite_CS every_eqcl_has_reg by blast |
1067 using finite_CS every_eqcl_has_reg by blast |
759 then obtain f where f_prop: "\<forall> X \<in> (UNIV // (\<approx>Lang)). X = L ((f X)::rexp)" |
1068 then obtain f |
|
1069 where f_prop: "\<forall> X \<in> (UNIV // (\<approx>Lang)). X = L ((f X)::rexp)" |
760 by (auto dest:bchoice) |
1070 by (auto dest:bchoice) |
761 def rs \<equiv> "f ` {X. final X Lang}" |
1071 def rs \<equiv> "f ` (finals Lang)" |
762 have "Lang = \<Union> {X. final X Lang}" using lang_is_union_of_finals by simp |
1072 have "Lang = \<Union> (finals Lang)" using lang_is_union_of_finals by auto |
763 also have "\<dots> = L (folds ALT NULL rs)" |
1073 also have "\<dots> = L (folds ALT NULL rs)" |
764 proof - |
1074 proof - |
765 have "finite {X. final X Lang}" using finite_CS by (auto simp:final_def) |
1075 have "finite rs" |
766 thus ?thesis using f_prop by (auto simp:rs_def final_def) |
1076 proof - |
|
1077 have "finite (finals Lang)" |
|
1078 using finite_CS finals_in_partitions[of "Lang"] |
|
1079 by (erule_tac finite_subset, simp) |
|
1080 thus ?thesis using rs_def by auto |
|
1081 qed |
|
1082 thus ?thesis |
|
1083 using f_prop rs_def finals_in_partitions[of "Lang"] by auto |
767 qed |
1084 qed |
768 finally show ?thesis by blast |
1085 finally show ?thesis by blast |
769 qed |
1086 qed |
770 |
1087 |
771 section {* regular \<Rightarrow> finite*} |
1088 section {* Direction: @{text "regular language \<Rightarrow>finite partition"} *} |
772 |
1089 |
773 lemma quot_empty_subset: |
1090 subsection {* The scheme for this direction *} |
774 "UNIV // (\<approx>{[]}) \<subseteq> {{[]}, UNIV - {[]}}" |
1091 |
775 proof |
1092 text {* |
776 fix x |
1093 The following convenient notation @{text "x \<approx>Lang y"} means: |
777 assume "x \<in> UNIV // \<approx>{[]}" |
1094 string @{text "x"} and @{text "y"} are equivalent with respect to |
778 then obtain y where h: "x = {z. (y, z) \<in> \<approx>{[]}}" unfolding quotient_def Image_def by blast |
1095 language @{text "Lang"}. |
779 show "x \<in> {{[]}, UNIV - {[]}}" |
1096 *} |
780 proof (cases "y = []") |
1097 |
781 case True with h |
1098 definition |
782 have "x = {[]}" by (auto simp:str_eq_rel_def str_eq_def) |
1099 str_eq ("_ \<approx>_ _") |
783 thus ?thesis by simp |
1100 where |
784 next |
1101 "x \<approx>Lang y \<equiv> (x, y) \<in> (\<approx>Lang)" |
785 case False with h |
1102 |
786 have "x = UNIV - {[]}" by (auto simp:str_eq_rel_def str_eq_def) |
1103 text {* |
787 thus ?thesis by simp |
1104 The very basic scheme to show the finiteness of the partion generated by a language @{text "Lang"} |
788 qed |
1105 is by attaching tags to every string. The set of tags are carfully choosen to make it finite. |
789 qed |
1106 If it can be proved that strings with the same tag are equivlent with respect @{text "Lang"}, |
790 |
1107 then the partition given rise by @{text "Lang"} must be finite. The reason for this is a lemma |
791 lemma quot_char_subset: |
1108 in standard library (@{text "finite_imageD"}), which says: if the image of an injective |
792 "UNIV // (\<approx>{[c]}) \<subseteq> {{[]},{[c]}, UNIV - {[], [c]}}" |
1109 function on a set @{text "A"} is finite, then @{text "A"} is finite. It can be shown that |
793 proof |
1110 the function obtained by llifting @{text "tag"} |
794 fix x |
1111 to the level of equalent classes (i.e. @{text "((op `) tag)"}) is injective |
795 assume "x \<in> UNIV // \<approx>{[c]}" |
1112 (by lemma @{text "tag_image_injI"}) and the image of this function is finite |
796 then obtain y where h: "x = {z. (y, z) \<in> \<approx>{[c]}}" unfolding quotient_def Image_def by blast |
1113 (with the help of lemma @{text "finite_tag_imageI"}). |
797 show "x \<in> {{[]},{[c]}, UNIV - {[], [c]}}" |
1114 |
798 proof - |
1115 BUT, I think this argument can be encapsulated by one lemma instead of the current presentation. |
799 { assume "y = []" hence "x = {[]}" using h by (auto simp:str_eq_rel_def str_eq_def) |
1116 *} |
800 } moreover { |
|
801 assume "y = [c]" hence "x = {[c]}" using h |
|
802 by (auto dest!:spec[where x = "[]"] simp:str_eq_rel_def str_eq_def) |
|
803 } moreover { |
|
804 assume "y \<noteq> []" and "y \<noteq> [c]" |
|
805 hence "\<forall> z. (y @ z) \<noteq> [c]" by (case_tac y, auto) |
|
806 moreover have "\<And> p. (p \<noteq> [] \<and> p \<noteq> [c]) = (\<forall> q. p @ q \<noteq> [c])" by (case_tac p, auto) |
|
807 ultimately have "x = UNIV - {[],[c]}" using h |
|
808 by (auto simp add:str_eq_rel_def str_eq_def) |
|
809 } ultimately show ?thesis by blast |
|
810 qed |
|
811 qed |
|
812 |
|
813 text {* *************** Some common lemmas for following ALT, SEQ & STAR cases ******************* *} |
|
814 |
|
815 lemma finite_tag_imageI: |
|
816 "finite (range tag) \<Longrightarrow> finite (((op `) tag) ` S)" |
|
817 apply (rule_tac B = "Pow (tag ` UNIV)" in finite_subset) |
|
818 by (auto simp add:image_def Pow_def) |
|
819 |
1117 |
820 lemma eq_class_equalI: |
1118 lemma eq_class_equalI: |
821 "\<lbrakk>X \<in> UNIV // \<approx>lang; Y \<in> UNIV // \<approx>lang; x \<in> X; y \<in> Y; x \<approx>lang y\<rbrakk> \<Longrightarrow> X = Y" |
1119 "\<lbrakk>X \<in> UNIV // \<approx>lang; Y \<in> UNIV // \<approx>lang; x \<in> X; y \<in> Y; x \<approx>lang y\<rbrakk> |
|
1120 \<Longrightarrow> X = Y" |
822 by (auto simp:quotient_def str_eq_rel_def str_eq_def) |
1121 by (auto simp:quotient_def str_eq_rel_def str_eq_def) |
823 |
1122 |
824 lemma tag_image_injI: |
1123 lemma tag_image_injI: |
825 assumes str_inj: "\<And> m n. tag m = tag (n::string) \<Longrightarrow> m \<approx>lang n" |
1124 assumes str_inj: "\<And> x y. tag x = tag (y::string) \<Longrightarrow> x \<approx>lang y" |
826 shows "inj_on ((op `) tag) (UNIV // \<approx>lang)" |
1125 shows "inj_on ((op `) tag) (UNIV // \<approx>lang)" |
827 proof- |
1126 proof- |
828 { fix X Y |
1127 { fix X Y |
829 assume X_in: "X \<in> UNIV // \<approx>lang" |
1128 assume X_in: "X \<in> UNIV // \<approx>lang" |
830 and Y_in: "Y \<in> UNIV // \<approx>lang" |
1129 and Y_in: "Y \<in> UNIV // \<approx>lang" |
882 apply (induct y, simp) |
1191 apply (induct y, simp) |
883 apply (clarify, drule_tac x = "x @ [a]" in spec) |
1192 apply (clarify, drule_tac x = "x @ [a]" in spec) |
884 by (clarsimp, auto simp:prefix_def) |
1193 by (clarsimp, auto simp:prefix_def) |
885 |
1194 |
886 lemma app_eq_dest: |
1195 lemma app_eq_dest: |
887 "x @ y = m @ n \<Longrightarrow> (x \<le> m \<and> (m - x) @ n = y) \<or> (m \<le> x \<and> (x - m) @ y = n)" |
1196 "x @ y = m @ n \<Longrightarrow> |
|
1197 (x \<le> m \<and> (m - x) @ n = y) \<or> (m \<le> x \<and> (x - m) @ y = n)" |
888 by (frule_tac app_eq_cases, auto elim:prefixE) |
1198 by (frule_tac app_eq_cases, auto elim:prefixE) |
889 |
1199 |
|
1200 subsection {* Lemmas for basic cases *} |
|
1201 |
|
1202 text {* |
|
1203 The the final result of this direction is in @{text "easier_direction"}, which |
|
1204 is an induction on the structure of regular expressions. There is one case |
|
1205 for each regular expression operator. For basic operators such as @{text "NULL, EMPTY, CHAR c"}, |
|
1206 the finiteness of their language partition can be established directly with no need |
|
1207 of taggiing. This section contains several technical lemma for these base cases. |
|
1208 |
|
1209 The inductive cases involve operators @{text "ALT, SEQ"} and @{text "STAR"}. |
|
1210 Tagging functions need to be defined individually for each of them. There will be one |
|
1211 dedicated section for each of these cases, and each section goes virtually the same way: |
|
1212 gives definition of the tagging function and prove that strings |
|
1213 with the same tag are equivalent. |
|
1214 *} |
|
1215 |
|
1216 lemma quot_empty_subset: |
|
1217 "UNIV // (\<approx>{[]}) \<subseteq> {{[]}, UNIV - {[]}}" |
|
1218 proof |
|
1219 fix x |
|
1220 assume "x \<in> UNIV // \<approx>{[]}" |
|
1221 then obtain y where h: "x = {z. (y, z) \<in> \<approx>{[]}}" |
|
1222 unfolding quotient_def Image_def by blast |
|
1223 show "x \<in> {{[]}, UNIV - {[]}}" |
|
1224 proof (cases "y = []") |
|
1225 case True with h |
|
1226 have "x = {[]}" by (auto simp:str_eq_rel_def) |
|
1227 thus ?thesis by simp |
|
1228 next |
|
1229 case False with h |
|
1230 have "x = UNIV - {[]}" by (auto simp:str_eq_rel_def) |
|
1231 thus ?thesis by simp |
|
1232 qed |
|
1233 qed |
|
1234 |
|
1235 lemma quot_char_subset: |
|
1236 "UNIV // (\<approx>{[c]}) \<subseteq> {{[]},{[c]}, UNIV - {[], [c]}}" |
|
1237 proof |
|
1238 fix x |
|
1239 assume "x \<in> UNIV // \<approx>{[c]}" |
|
1240 then obtain y where h: "x = {z. (y, z) \<in> \<approx>{[c]}}" |
|
1241 unfolding quotient_def Image_def by blast |
|
1242 show "x \<in> {{[]},{[c]}, UNIV - {[], [c]}}" |
|
1243 proof - |
|
1244 { assume "y = []" hence "x = {[]}" using h |
|
1245 by (auto simp:str_eq_rel_def) |
|
1246 } moreover { |
|
1247 assume "y = [c]" hence "x = {[c]}" using h |
|
1248 by (auto dest!:spec[where x = "[]"] simp:str_eq_rel_def) |
|
1249 } moreover { |
|
1250 assume "y \<noteq> []" and "y \<noteq> [c]" |
|
1251 hence "\<forall> z. (y @ z) \<noteq> [c]" by (case_tac y, auto) |
|
1252 moreover have "\<And> p. (p \<noteq> [] \<and> p \<noteq> [c]) = (\<forall> q. p @ q \<noteq> [c])" |
|
1253 by (case_tac p, auto) |
|
1254 ultimately have "x = UNIV - {[],[c]}" using h |
|
1255 by (auto simp add:str_eq_rel_def) |
|
1256 } ultimately show ?thesis by blast |
|
1257 qed |
|
1258 qed |
|
1259 |
|
1260 subsection {* The case for @{text "SEQ"}*} |
|
1261 |
890 definition |
1262 definition |
891 "tag_str_SEQ L\<^isub>1 L\<^isub>2 x \<equiv> ((\<approx>L\<^isub>1) `` {x}, {(\<approx>L\<^isub>2) `` {x - xa}| xa. xa \<le> x \<and> xa \<in> L\<^isub>1})" |
1263 "tag_str_SEQ L\<^isub>1 L\<^isub>2 x \<equiv> |
|
1264 ((\<approx>L\<^isub>1) `` {x}, {(\<approx>L\<^isub>2) `` {x - xa}| xa. xa \<le> x \<and> xa \<in> L\<^isub>1})" |
892 |
1265 |
893 lemma tag_str_seq_range_finite: |
1266 lemma tag_str_seq_range_finite: |
894 "\<lbrakk>finite (UNIV // \<approx>L\<^isub>1); finite (UNIV // \<approx>L\<^isub>2)\<rbrakk> \<Longrightarrow> finite (range (tag_str_SEQ L\<^isub>1 L\<^isub>2))" |
1267 "\<lbrakk>finite (UNIV // \<approx>L\<^isub>1); finite (UNIV // \<approx>L\<^isub>2)\<rbrakk> |
|
1268 \<Longrightarrow> finite (range (tag_str_SEQ L\<^isub>1 L\<^isub>2))" |
895 apply (rule_tac B = "(UNIV // \<approx>L\<^isub>1) \<times> (Pow (UNIV // \<approx>L\<^isub>2))" in finite_subset) |
1269 apply (rule_tac B = "(UNIV // \<approx>L\<^isub>1) \<times> (Pow (UNIV // \<approx>L\<^isub>2))" in finite_subset) |
896 by (auto simp:tag_str_SEQ_def Image_def quotient_def split:if_splits) |
1270 by (auto simp:tag_str_SEQ_def Image_def quotient_def split:if_splits) |
897 |
1271 |
898 lemma append_seq_elim: |
1272 lemma append_seq_elim: |
899 assumes "x @ y \<in> L\<^isub>1 ;; L\<^isub>2" |
1273 assumes "x @ y \<in> L\<^isub>1 ;; L\<^isub>2" |
900 shows "(\<exists> xa \<le> x. xa \<in> L\<^isub>1 \<and> (x - xa) @ y \<in> L\<^isub>2) \<or> (\<exists> ya \<le> y. (x @ ya) \<in> L\<^isub>1 \<and> (y - ya) \<in> L\<^isub>2)" |
1274 shows "(\<exists> xa \<le> x. xa \<in> L\<^isub>1 \<and> (x - xa) @ y \<in> L\<^isub>2) \<or> |
|
1275 (\<exists> ya \<le> y. (x @ ya) \<in> L\<^isub>1 \<and> (y - ya) \<in> L\<^isub>2)" |
901 proof- |
1276 proof- |
902 from assms obtain s\<^isub>1 s\<^isub>2 where "x @ y = s\<^isub>1 @ s\<^isub>2" and in_seq: "s\<^isub>1 \<in> L\<^isub>1 \<and> s\<^isub>2 \<in> L\<^isub>2" |
1277 from assms obtain s\<^isub>1 s\<^isub>2 |
|
1278 where "x @ y = s\<^isub>1 @ s\<^isub>2" |
|
1279 and in_seq: "s\<^isub>1 \<in> L\<^isub>1 \<and> s\<^isub>2 \<in> L\<^isub>2" |
903 by (auto simp:Seq_def) |
1280 by (auto simp:Seq_def) |
904 hence "(x \<le> s\<^isub>1 \<and> (s\<^isub>1 - x) @ s\<^isub>2 = y) \<or> (s\<^isub>1 \<le> x \<and> (x - s\<^isub>1) @ y = s\<^isub>2)" |
1281 hence "(x \<le> s\<^isub>1 \<and> (s\<^isub>1 - x) @ s\<^isub>2 = y) \<or> (s\<^isub>1 \<le> x \<and> (x - s\<^isub>1) @ y = s\<^isub>2)" |
905 using app_eq_dest by auto |
1282 using app_eq_dest by auto |
906 moreover have "\<lbrakk>x \<le> s\<^isub>1; (s\<^isub>1 - x) @ s\<^isub>2 = y\<rbrakk> \<Longrightarrow> \<exists> ya \<le> y. (x @ ya) \<in> L\<^isub>1 \<and> (y - ya) \<in> L\<^isub>2" using in_seq |
1283 moreover have "\<lbrakk>x \<le> s\<^isub>1; (s\<^isub>1 - x) @ s\<^isub>2 = y\<rbrakk> \<Longrightarrow> |
907 by (rule_tac x = "s\<^isub>1 - x" in exI, auto elim:prefixE) |
1284 \<exists> ya \<le> y. (x @ ya) \<in> L\<^isub>1 \<and> (y - ya) \<in> L\<^isub>2" |
908 moreover have "\<lbrakk>s\<^isub>1 \<le> x; (x - s\<^isub>1) @ y = s\<^isub>2\<rbrakk> \<Longrightarrow> \<exists> xa \<le> x. xa \<in> L\<^isub>1 \<and> (x - xa) @ y \<in> L\<^isub>2" using in_seq |
1285 using in_seq by (rule_tac x = "s\<^isub>1 - x" in exI, auto elim:prefixE) |
909 by (rule_tac x = s\<^isub>1 in exI, auto) |
1286 moreover have "\<lbrakk>s\<^isub>1 \<le> x; (x - s\<^isub>1) @ y = s\<^isub>2\<rbrakk> \<Longrightarrow> |
|
1287 \<exists> xa \<le> x. xa \<in> L\<^isub>1 \<and> (x - xa) @ y \<in> L\<^isub>2" |
|
1288 using in_seq by (rule_tac x = s\<^isub>1 in exI, auto) |
910 ultimately show ?thesis by blast |
1289 ultimately show ?thesis by blast |
911 qed |
1290 qed |
912 |
1291 |
913 lemma tag_str_SEQ_injI: |
1292 lemma tag_str_SEQ_injI: |
914 "tag_str_SEQ L\<^isub>1 L\<^isub>2 m = tag_str_SEQ L\<^isub>1 L\<^isub>2 n \<Longrightarrow> m \<approx>(L\<^isub>1 ;; L\<^isub>2) n" |
1293 "tag_str_SEQ L\<^isub>1 L\<^isub>2 m = tag_str_SEQ L\<^isub>1 L\<^isub>2 n \<Longrightarrow> m \<approx>(L\<^isub>1 ;; L\<^isub>2) n" |
956 lemma quot_seq_finiteI: |
1340 lemma quot_seq_finiteI: |
957 assumes finite1: "finite (UNIV // \<approx>(L\<^isub>1::string set))" |
1341 assumes finite1: "finite (UNIV // \<approx>(L\<^isub>1::string set))" |
958 and finite2: "finite (UNIV // \<approx>L\<^isub>2)" |
1342 and finite2: "finite (UNIV // \<approx>L\<^isub>2)" |
959 shows "finite (UNIV // \<approx>(L\<^isub>1 ;; L\<^isub>2))" |
1343 shows "finite (UNIV // \<approx>(L\<^isub>1 ;; L\<^isub>2))" |
960 proof(rule_tac f = "(op `) (tag_str_SEQ L\<^isub>1 L\<^isub>2)" in finite_imageD) |
1344 proof(rule_tac f = "(op `) (tag_str_SEQ L\<^isub>1 L\<^isub>2)" in finite_imageD) |
961 show "finite (op ` (tag_str_SEQ L\<^isub>1 L\<^isub>2) ` UNIV // \<approx>L\<^isub>1 ;; L\<^isub>2)" using finite1 finite2 |
1345 show "finite (op ` (tag_str_SEQ L\<^isub>1 L\<^isub>2) ` UNIV // \<approx>L\<^isub>1 ;; L\<^isub>2)" |
|
1346 using finite1 finite2 |
962 by (auto intro:finite_tag_imageI tag_str_seq_range_finite) |
1347 by (auto intro:finite_tag_imageI tag_str_seq_range_finite) |
963 next |
1348 next |
964 show "inj_on (op ` (tag_str_SEQ L\<^isub>1 L\<^isub>2)) (UNIV // \<approx>L\<^isub>1 ;; L\<^isub>2)" |
1349 show "inj_on (op ` (tag_str_SEQ L\<^isub>1 L\<^isub>2)) (UNIV // \<approx>L\<^isub>1 ;; L\<^isub>2)" |
965 apply (rule tag_image_injI) |
1350 apply (rule tag_image_injI) |
966 apply (rule tag_str_SEQ_injI) |
1351 apply (rule tag_str_SEQ_injI) |
967 by (auto intro:tag_image_injI tag_str_SEQ_injI simp:) |
1352 by (auto intro:tag_image_injI tag_str_SEQ_injI simp:) |
968 qed |
1353 qed |
969 |
1354 |
970 text {* **************** the ALT case ************************ *} |
1355 subsection {* The case for @{text "ALT"} *} |
971 |
1356 |
972 definition |
1357 definition |
973 "tag_str_ALT L\<^isub>1 L\<^isub>2 (x::string) \<equiv> ((\<approx>L\<^isub>1) `` {x}, (\<approx>L\<^isub>2) `` {x})" |
1358 "tag_str_ALT L\<^isub>1 L\<^isub>2 (x::string) \<equiv> ((\<approx>L\<^isub>1) `` {x}, (\<approx>L\<^isub>2) `` {x})" |
974 |
1359 |
975 lemma tag_str_alt_range_finite: |
1360 lemma tag_str_alt_range_finite: |
976 "\<lbrakk>finite (UNIV // \<approx>L\<^isub>1); finite (UNIV // \<approx>L\<^isub>2)\<rbrakk> \<Longrightarrow> finite (range (tag_str_ALT L\<^isub>1 L\<^isub>2))" |
1361 "\<lbrakk>finite (UNIV // \<approx>L\<^isub>1); finite (UNIV // \<approx>L\<^isub>2)\<rbrakk> |
|
1362 \<Longrightarrow> finite (range (tag_str_ALT L\<^isub>1 L\<^isub>2))" |
977 apply (rule_tac B = "(UNIV // \<approx>L\<^isub>1) \<times> (UNIV // \<approx>L\<^isub>2)" in finite_subset) |
1363 apply (rule_tac B = "(UNIV // \<approx>L\<^isub>1) \<times> (UNIV // \<approx>L\<^isub>2)" in finite_subset) |
978 by (auto simp:tag_str_ALT_def Image_def quotient_def) |
1364 by (auto simp:tag_str_ALT_def Image_def quotient_def) |
979 |
1365 |
980 lemma quot_union_finiteI: |
1366 lemma quot_union_finiteI: |
981 assumes finite1: "finite (UNIV // \<approx>(L\<^isub>1::string set))" |
1367 assumes finite1: "finite (UNIV // \<approx>(L\<^isub>1::string set))" |
982 and finite2: "finite (UNIV // \<approx>L\<^isub>2)" |
1368 and finite2: "finite (UNIV // \<approx>L\<^isub>2)" |
983 shows "finite (UNIV // \<approx>(L\<^isub>1 \<union> L\<^isub>2))" |
1369 shows "finite (UNIV // \<approx>(L\<^isub>1 \<union> L\<^isub>2))" |
984 proof(rule_tac f = "(op `) (tag_str_ALT L\<^isub>1 L\<^isub>2)" in finite_imageD) |
1370 proof(rule_tac f = "(op `) (tag_str_ALT L\<^isub>1 L\<^isub>2)" in finite_imageD) |
985 show "finite (op ` (tag_str_ALT L\<^isub>1 L\<^isub>2) ` UNIV // \<approx>L\<^isub>1 \<union> L\<^isub>2)" using finite1 finite2 |
1371 show "finite (op ` (tag_str_ALT L\<^isub>1 L\<^isub>2) ` UNIV // \<approx>L\<^isub>1 \<union> L\<^isub>2)" |
|
1372 using finite1 finite2 |
986 by (auto intro:finite_tag_imageI tag_str_alt_range_finite) |
1373 by (auto intro:finite_tag_imageI tag_str_alt_range_finite) |
987 next |
1374 next |
988 show "inj_on (op ` (tag_str_ALT L\<^isub>1 L\<^isub>2)) (UNIV // \<approx>L\<^isub>1 \<union> L\<^isub>2)" |
1375 show "inj_on (op ` (tag_str_ALT L\<^isub>1 L\<^isub>2)) (UNIV // \<approx>L\<^isub>1 \<union> L\<^isub>2)" |
989 proof- |
1376 proof- |
990 have "\<And>m n. tag_str_ALT L\<^isub>1 L\<^isub>2 m = tag_str_ALT L\<^isub>1 L\<^isub>2 n \<Longrightarrow> m \<approx>(L\<^isub>1 \<union> L\<^isub>2) n" |
1377 have "\<And>m n. tag_str_ALT L\<^isub>1 L\<^isub>2 m = tag_str_ALT L\<^isub>1 L\<^isub>2 n |
|
1378 \<Longrightarrow> m \<approx>(L\<^isub>1 \<union> L\<^isub>2) n" |
991 unfolding tag_str_ALT_def str_eq_def Image_def str_eq_rel_def by auto |
1379 unfolding tag_str_ALT_def str_eq_def Image_def str_eq_rel_def by auto |
992 thus ?thesis by (auto intro:tag_image_injI) |
1380 thus ?thesis by (auto intro:tag_image_injI) |
993 qed |
1381 qed |
994 qed |
1382 qed |
995 |
1383 |
996 text {* **************** the Star case ****************** *} |
1384 |
997 |
1385 subsection {* |
998 lemma finite_set_has_max: "\<lbrakk>finite A; A \<noteq> {}\<rbrakk> \<Longrightarrow> (\<exists> max \<in> A. \<forall> a \<in> A. f a <= (f max :: nat))" |
1386 The case for @{text "STAR"} |
|
1387 *} |
|
1388 |
|
1389 text {* |
|
1390 This turned out to be the most tricky case. |
|
1391 *} (* I will make some illustrations for it. *) |
|
1392 |
|
1393 definition |
|
1394 "tag_str_STAR L\<^isub>1 x \<equiv> {(\<approx>L\<^isub>1) `` {x - xa} | xa. xa < x \<and> xa \<in> L\<^isub>1\<star>}" |
|
1395 |
|
1396 lemma finite_set_has_max: "\<lbrakk>finite A; A \<noteq> {}\<rbrakk> \<Longrightarrow> |
|
1397 (\<exists> max \<in> A. \<forall> a \<in> A. f a <= (f max :: nat))" |
999 proof (induct rule:finite.induct) |
1398 proof (induct rule:finite.induct) |
1000 case emptyI thus ?case by simp |
1399 case emptyI thus ?case by simp |
1001 next |
1400 next |
1002 case (insertI A a) |
1401 case (insertI A a) |
1003 show ?case |
1402 show ?case |
1004 proof (cases "A = {}") |
1403 proof (cases "A = {}") |
1005 case True thus ?thesis by (rule_tac x = a in bexI, auto) |
1404 case True thus ?thesis by (rule_tac x = a in bexI, auto) |
1006 next |
1405 next |
1007 case False |
1406 case False |
1008 with prems obtain max where h1: "max \<in> A" and h2: "\<forall>a\<in>A. f a \<le> f max" by blast |
1407 with prems obtain max |
|
1408 where h1: "max \<in> A" |
|
1409 and h2: "\<forall>a\<in>A. f a \<le> f max" by blast |
1009 show ?thesis |
1410 show ?thesis |
1010 proof (cases "f a \<le> f max") |
1411 proof (cases "f a \<le> f max") |
1011 assume "f a \<le> f max" |
1412 assume "f a \<le> f max" |
1012 with h1 h2 show ?thesis by (rule_tac x = max in bexI, auto) |
1413 with h1 h2 show ?thesis by (rule_tac x = max in bexI, auto) |
1013 next |
1414 next |
1015 thus ?thesis using h2 by (rule_tac x = a in bexI, auto) |
1416 thus ?thesis using h2 by (rule_tac x = a in bexI, auto) |
1016 qed |
1417 qed |
1017 qed |
1418 qed |
1018 qed |
1419 qed |
1019 |
1420 |
1020 lemma star_intro1[rule_format]: "x \<in> lang\<star> \<Longrightarrow> \<forall> y. y \<in> lang\<star> \<longrightarrow> x @ y \<in> lang\<star>" |
|
1021 by (erule Star.induct, auto) |
|
1022 |
|
1023 lemma star_intro2: "y \<in> lang \<Longrightarrow> y \<in> lang\<star>" |
|
1024 by (drule step[of y lang "[]"], auto simp:start) |
|
1025 |
|
1026 lemma star_intro3[rule_format]: "x \<in> lang\<star> \<Longrightarrow> \<forall>y . y \<in> lang \<longrightarrow> x @ y \<in> lang\<star>" |
|
1027 by (erule Star.induct, auto intro:star_intro2) |
|
1028 |
|
1029 lemma star_decom: "\<lbrakk>x \<in> lang\<star>; x \<noteq> []\<rbrakk> \<Longrightarrow>(\<exists> a b. x = a @ b \<and> a \<noteq> [] \<and> a \<in> lang \<and> b \<in> lang\<star>)" |
|
1030 by (induct x rule: Star.induct, simp, blast) |
|
1031 |
|
1032 lemma finite_strict_prefix_set: "finite {xa. xa < (x::string)}" |
1421 lemma finite_strict_prefix_set: "finite {xa. xa < (x::string)}" |
1033 apply (induct x rule:rev_induct, simp) |
1422 apply (induct x rule:rev_induct, simp) |
1034 apply (subgoal_tac "{xa. xa < xs @ [x]} = {xa. xa < xs} \<union> {xs}") |
1423 apply (subgoal_tac "{xa. xa < xs @ [x]} = {xa. xa < xs} \<union> {xs}") |
1035 by (auto simp:strict_prefix_def) |
1424 by (auto simp:strict_prefix_def) |
1036 |
1425 |
1037 definition |
|
1038 "tag_str_STAR L\<^isub>1 x \<equiv> {(\<approx>L\<^isub>1) `` {x - xa} | xa. xa < x \<and> xa \<in> L\<^isub>1\<star>}" |
|
1039 |
1426 |
1040 lemma tag_str_star_range_finite: |
1427 lemma tag_str_star_range_finite: |
1041 "finite (UNIV // \<approx>L\<^isub>1) \<Longrightarrow> finite (range (tag_str_STAR L\<^isub>1))" |
1428 "finite (UNIV // \<approx>L\<^isub>1) \<Longrightarrow> finite (range (tag_str_STAR L\<^isub>1))" |
1042 apply (rule_tac B = "Pow (UNIV // \<approx>L\<^isub>1)" in finite_subset) |
1429 apply (rule_tac B = "Pow (UNIV // \<approx>L\<^isub>1)" in finite_subset) |
1043 by (auto simp:tag_str_STAR_def Image_def quotient_def split:if_splits) |
1430 by (auto simp:tag_str_STAR_def Image_def |
|
1431 quotient_def split:if_splits) |
1044 |
1432 |
1045 lemma tag_str_STAR_injI: |
1433 lemma tag_str_STAR_injI: |
1046 "tag_str_STAR L\<^isub>1 m = tag_str_STAR L\<^isub>1 n \<Longrightarrow> m \<approx>(L\<^isub>1\<star>) n" |
1434 "tag_str_STAR L\<^isub>1 m = tag_str_STAR L\<^isub>1 n \<Longrightarrow> m \<approx>(L\<^isub>1\<star>) n" |
1047 proof- |
1435 proof- |
1048 { fix x y z |
1436 { fix x y z |
1049 assume xz_in_star: "x @ z \<in> L\<^isub>1\<star>" |
1437 assume xz_in_star: "x @ z \<in> L\<^isub>1\<star>" |
1050 and tag_xy: "tag_str_STAR L\<^isub>1 x = tag_str_STAR L\<^isub>1 y" |
1438 and tag_xy: "tag_str_STAR L\<^isub>1 x = tag_str_STAR L\<^isub>1 y" |
1051 have "y @ z \<in> L\<^isub>1\<star>" |
1439 have "y @ z \<in> L\<^isub>1\<star>" |
1052 proof(cases "x = []") |
1440 proof(cases "x = []") |
1053 case True |
1441 case True |
1054 with tag_xy have "y = []" by (auto simp:tag_str_STAR_def strict_prefix_def) |
1442 with tag_xy have "y = []" |
|
1443 by (auto simp:tag_str_STAR_def strict_prefix_def) |
1055 thus ?thesis using xz_in_star True by simp |
1444 thus ?thesis using xz_in_star True by simp |
1056 next |
1445 next |
1057 case False |
1446 case False |
1058 obtain x_max where h1: "x_max < x" and h2: "x_max \<in> L\<^isub>1\<star>" and h3: "(x - x_max) @ z \<in> L\<^isub>1\<star>" |
1447 obtain x_max |
1059 and h4:"\<forall> xa < x. xa \<in> L\<^isub>1\<star> \<and> (x - xa) @ z \<in> L\<^isub>1\<star> \<longrightarrow> length xa \<le> length x_max" |
1448 where h1: "x_max < x" |
|
1449 and h2: "x_max \<in> L\<^isub>1\<star>" |
|
1450 and h3: "(x - x_max) @ z \<in> L\<^isub>1\<star>" |
|
1451 and h4:"\<forall> xa < x. xa \<in> L\<^isub>1\<star> \<and> (x - xa) @ z \<in> L\<^isub>1\<star> |
|
1452 \<longrightarrow> length xa \<le> length x_max" |
1060 proof- |
1453 proof- |
1061 let ?S = "{xa. xa < x \<and> xa \<in> L\<^isub>1\<star> \<and> (x - xa) @ z \<in> L\<^isub>1\<star>}" |
1454 let ?S = "{xa. xa < x \<and> xa \<in> L\<^isub>1\<star> \<and> (x - xa) @ z \<in> L\<^isub>1\<star>}" |
1062 have "finite ?S" |
1455 have "finite ?S" |
1063 by (rule_tac B = "{xa. xa < x}" in finite_subset, auto simp:finite_strict_prefix_set) |
1456 by (rule_tac B = "{xa. xa < x}" in finite_subset, |
|
1457 auto simp:finite_strict_prefix_set) |
1064 moreover have "?S \<noteq> {}" using False xz_in_star |
1458 moreover have "?S \<noteq> {}" using False xz_in_star |
1065 by (simp, rule_tac x = "[]" in exI, auto simp:strict_prefix_def) |
1459 by (simp, rule_tac x = "[]" in exI, auto simp:strict_prefix_def) |
1066 ultimately have "\<exists> max \<in> ?S. \<forall> a \<in> ?S. length a \<le> length max" using finite_set_has_max by blast |
1460 ultimately have "\<exists> max \<in> ?S. \<forall> a \<in> ?S. length a \<le> length max" |
|
1461 using finite_set_has_max by blast |
1067 with prems show ?thesis by blast |
1462 with prems show ?thesis by blast |
1068 qed |
1463 qed |
1069 obtain ya where h5: "ya < y" and h6: "ya \<in> L\<^isub>1\<star>" and h7: "(x - x_max) \<approx>L\<^isub>1 (y - ya)" |
1464 obtain ya |
|
1465 where h5: "ya < y" and h6: "ya \<in> L\<^isub>1\<star>" and h7: "(x - x_max) \<approx>L\<^isub>1 (y - ya)" |
1070 proof- |
1466 proof- |
1071 from tag_xy have "{\<approx>L\<^isub>1 `` {x - xa} |xa. xa < x \<and> xa \<in> L\<^isub>1\<star>} = |
1467 from tag_xy have "{\<approx>L\<^isub>1 `` {x - xa} |xa. xa < x \<and> xa \<in> L\<^isub>1\<star>} = |
1072 {\<approx>L\<^isub>1 `` {y - xa} |xa. xa < y \<and> xa \<in> L\<^isub>1\<star>}" (is "?left = ?right") |
1468 {\<approx>L\<^isub>1 `` {y - xa} |xa. xa < y \<and> xa \<in> L\<^isub>1\<star>}" (is "?left = ?right") |
1073 by (auto simp:tag_str_STAR_def) |
1469 by (auto simp:tag_str_STAR_def) |
1074 moreover have "\<approx>L\<^isub>1 `` {x - x_max} \<in> ?left" using h1 h2 by auto |
1470 moreover have "\<approx>L\<^isub>1 `` {x - x_max} \<in> ?left" using h1 h2 by auto |
1075 ultimately have "\<approx>L\<^isub>1 `` {x - x_max} \<in> ?right" by simp |
1471 ultimately have "\<approx>L\<^isub>1 `` {x - x_max} \<in> ?right" by simp |
1076 with prems show ?thesis apply (simp add:Image_def str_eq_rel_def str_eq_def) by blast |
1472 with prems show ?thesis apply |
|
1473 (simp add:Image_def str_eq_rel_def str_eq_def) by blast |
1077 qed |
1474 qed |
1078 have "(y - ya) @ z \<in> L\<^isub>1\<star>" |
1475 have "(y - ya) @ z \<in> L\<^isub>1\<star>" |
1079 proof- |
1476 proof- |
1080 from h3 h1 obtain a b where a_in: "a \<in> L\<^isub>1" and a_neq: "a \<noteq> []" and b_in: "b \<in> L\<^isub>1\<star>" |
1477 from h3 h1 obtain a b where a_in: "a \<in> L\<^isub>1" |
|
1478 and a_neq: "a \<noteq> []" and b_in: "b \<in> L\<^isub>1\<star>" |
1081 and ab_max: "(x - x_max) @ z = a @ b" |
1479 and ab_max: "(x - x_max) @ z = a @ b" |
1082 by (drule_tac star_decom, auto simp:strict_prefix_def elim:prefixE) |
1480 by (drule_tac star_decom, auto simp:strict_prefix_def elim:prefixE) |
1083 have "(x - x_max) \<le> a \<and> (a - (x - x_max)) @ b = z" |
1481 have "(x - x_max) \<le> a \<and> (a - (x - x_max)) @ b = z" |
1084 proof - |
1482 proof - |
1085 have "((x - x_max) \<le> a \<and> (a - (x - x_max)) @ b = z) \<or> (a < (x - x_max) \<and> ((x - x_max) - a) @ z = b)" |
1483 have "((x - x_max) \<le> a \<and> (a - (x - x_max)) @ b = z) \<or> |
|
1484 (a < (x - x_max) \<and> ((x - x_max) - a) @ z = b)" |
1086 using app_eq_dest[OF ab_max] by (auto simp:strict_prefix_def) |
1485 using app_eq_dest[OF ab_max] by (auto simp:strict_prefix_def) |
1087 moreover { |
1486 moreover { |
1088 assume np: "a < (x - x_max)" and b_eqs: " ((x - x_max) - a) @ z = b" |
1487 assume np: "a < (x - x_max)" and b_eqs: " ((x - x_max) - a) @ z = b" |
1089 have "False" |
1488 have "False" |
1090 proof - |
1489 proof - |
1091 let ?x_max' = "x_max @ a" |
1490 let ?x_max' = "x_max @ a" |
1092 have "?x_max' < x" using np h1 by (clarsimp simp:strict_prefix_def diff_prefix) |
1491 have "?x_max' < x" |
1093 moreover have "?x_max' \<in> L\<^isub>1\<star>" using a_in h2 by (simp add:star_intro3) |
1492 using np h1 by (clarsimp simp:strict_prefix_def diff_prefix) |
1094 moreover have "(x - ?x_max') @ z \<in> L\<^isub>1\<star>" using b_eqs b_in np h1 by (simp add:diff_diff_appd) |
1493 moreover have "?x_max' \<in> L\<^isub>1\<star>" |
1095 moreover have "\<not> (length ?x_max' \<le> length x_max)" using a_neq by simp |
1494 using a_in h2 by (simp add:star_intro3) |
|
1495 moreover have "(x - ?x_max') @ z \<in> L\<^isub>1\<star>" |
|
1496 using b_eqs b_in np h1 by (simp add:diff_diff_appd) |
|
1497 moreover have "\<not> (length ?x_max' \<le> length x_max)" |
|
1498 using a_neq by simp |
1096 ultimately show ?thesis using h4 by blast |
1499 ultimately show ?thesis using h4 by blast |
1097 qed |
1500 qed |
1098 } ultimately show ?thesis by blast |
1501 } ultimately show ?thesis by blast |
1099 qed |
1502 qed |
1100 then obtain za where z_decom: "z = za @ b" and x_za: "(x - x_max) @ za \<in> L\<^isub>1" |
1503 then obtain za where z_decom: "z = za @ b" |
|
1504 and x_za: "(x - x_max) @ za \<in> L\<^isub>1" |
1101 using a_in by (auto elim:prefixE) |
1505 using a_in by (auto elim:prefixE) |
1102 from x_za h7 have "(y - ya) @ za \<in> L\<^isub>1" by (auto simp:str_eq_def) |
1506 from x_za h7 have "(y - ya) @ za \<in> L\<^isub>1" |
|
1507 by (auto simp:str_eq_def str_eq_rel_def) |
1103 with z_decom b_in show ?thesis by (auto dest!:step[of "(y - ya) @ za"]) |
1508 with z_decom b_in show ?thesis by (auto dest!:step[of "(y - ya) @ za"]) |
1104 qed |
1509 qed |
1105 with h5 h6 show ?thesis by (drule_tac star_intro1, auto simp:strict_prefix_def elim:prefixE) |
1510 with h5 h6 show ?thesis |
|
1511 by (drule_tac star_intro1, auto simp:strict_prefix_def elim:prefixE) |
1106 qed |
1512 qed |
1107 } thus "tag_str_STAR L\<^isub>1 m = tag_str_STAR L\<^isub>1 n \<Longrightarrow> m \<approx>(L\<^isub>1\<star>) n" |
1513 } thus "tag_str_STAR L\<^isub>1 m = tag_str_STAR L\<^isub>1 n \<Longrightarrow> m \<approx>(L\<^isub>1\<star>) n" |
1108 by (auto simp add:str_eq_def str_eq_rel_def) |
1514 by (auto simp add:str_eq_def str_eq_rel_def) |
1109 qed |
1515 qed |
1110 |
1516 |
1117 next |
1523 next |
1118 show "inj_on (op ` (tag_str_STAR L\<^isub>1)) (UNIV // \<approx>L\<^isub>1\<star>)" |
1524 show "inj_on (op ` (tag_str_STAR L\<^isub>1)) (UNIV // \<approx>L\<^isub>1\<star>)" |
1119 by (auto intro:tag_image_injI tag_str_STAR_injI) |
1525 by (auto intro:tag_image_injI tag_str_STAR_injI) |
1120 qed |
1526 qed |
1121 |
1527 |
1122 text {* **************** the Other Direction ************ *} |
1528 subsection {* |
1123 |
1529 The main lemma |
1124 lemma other_direction: |
1530 *} |
|
1531 |
|
1532 lemma easier_directio\<nu>: |
1125 "Lang = L (r::rexp) \<Longrightarrow> finite (UNIV // (\<approx>Lang))" |
1533 "Lang = L (r::rexp) \<Longrightarrow> finite (UNIV // (\<approx>Lang))" |
1126 proof (induct arbitrary:Lang rule:rexp.induct) |
1534 proof (induct arbitrary:Lang rule:rexp.induct) |
1127 case NULL |
1535 case NULL |
1128 have "UNIV // (\<approx>{}) \<subseteq> {UNIV} " |
1536 have "UNIV // (\<approx>{}) \<subseteq> {UNIV} " |
1129 by (auto simp:quotient_def str_eq_rel_def str_eq_def) |
1537 by (auto simp:quotient_def str_eq_rel_def str_eq_def) |
1130 with prems show "?case" by (auto intro:finite_subset) |
1538 with prems show "?case" by (auto intro:finite_subset) |
1131 next |
1539 next |
1132 case EMPTY |
1540 case EMPTY |
1133 have "UNIV // (\<approx>{[]}) \<subseteq> {{[]}, UNIV - {[]}}" by (rule quot_empty_subset) |
1541 have "UNIV // (\<approx>{[]}) \<subseteq> {{[]}, UNIV - {[]}}" |
|
1542 by (rule quot_empty_subset) |
1134 with prems show ?case by (auto intro:finite_subset) |
1543 with prems show ?case by (auto intro:finite_subset) |
1135 next |
1544 next |
1136 case (CHAR c) |
1545 case (CHAR c) |
1137 have "UNIV // (\<approx>{[c]}) \<subseteq> {{[]},{[c]}, UNIV - {[], [c]}}" by (rule quot_char_subset) |
1546 have "UNIV // (\<approx>{[c]}) \<subseteq> {{[]},{[c]}, UNIV - {[], [c]}}" |
|
1547 by (rule quot_char_subset) |
1138 with prems show ?case by (auto intro:finite_subset) |
1548 with prems show ?case by (auto intro:finite_subset) |
1139 next |
1549 next |
1140 case (SEQ r\<^isub>1 r\<^isub>2) |
1550 case (SEQ r\<^isub>1 r\<^isub>2) |
1141 have "\<lbrakk>finite (UNIV // \<approx>(L r\<^isub>1)); finite (UNIV // \<approx>(L r\<^isub>2))\<rbrakk> \<Longrightarrow> finite (UNIV // \<approx>(L r\<^isub>1 ;; L r\<^isub>2))" |
1551 have "\<lbrakk>finite (UNIV // \<approx>(L r\<^isub>1)); finite (UNIV // \<approx>(L r\<^isub>2))\<rbrakk> |
|
1552 \<Longrightarrow> finite (UNIV // \<approx>(L r\<^isub>1 ;; L r\<^isub>2))" |
1142 by (erule quot_seq_finiteI, simp) |
1553 by (erule quot_seq_finiteI, simp) |
1143 with prems show ?case by simp |
1554 with prems show ?case by simp |
1144 next |
1555 next |
1145 case (ALT r\<^isub>1 r\<^isub>2) |
1556 case (ALT r\<^isub>1 r\<^isub>2) |
1146 have "\<lbrakk>finite (UNIV // \<approx>(L r\<^isub>1)); finite (UNIV // \<approx>(L r\<^isub>2))\<rbrakk> \<Longrightarrow> finite (UNIV // \<approx>(L r\<^isub>1 \<union> L r\<^isub>2))" |
1557 have "\<lbrakk>finite (UNIV // \<approx>(L r\<^isub>1)); finite (UNIV // \<approx>(L r\<^isub>2))\<rbrakk> |
|
1558 \<Longrightarrow> finite (UNIV // \<approx>(L r\<^isub>1 \<union> L r\<^isub>2))" |
1147 by (erule quot_union_finiteI, simp) |
1559 by (erule quot_union_finiteI, simp) |
1148 with prems show ?case by simp |
1560 with prems show ?case by simp |
1149 next |
1561 next |
1150 case (STAR r) |
1562 case (STAR r) |
1151 have "finite (UNIV // \<approx>(L r)) \<Longrightarrow> finite (UNIV // \<approx>((L r)\<star>))" |
1563 have "finite (UNIV // \<approx>(L r)) |
|
1564 \<Longrightarrow> finite (UNIV // \<approx>((L r)\<star>))" |
1152 by (erule quot_star_finiteI) |
1565 by (erule quot_star_finiteI) |
1153 with prems show ?case by simp |
1566 with prems show ?case by simp |
1154 qed |
1567 qed |
1155 |
1568 |
1156 end |
1569 end |
|
1570 |