diff -r c64241fa4dff -r f5db9e08effc Myhill.thy --- a/Myhill.thy Fri Jan 07 14:25:23 2011 +0000 +++ b/Myhill.thy Mon Jan 24 11:29:55 2011 +0000 @@ -1,12 +1,15 @@ -theory MyhillNerode - imports "Main" "List_Prefix" +theory Myhill + imports Main List_Prefix begin -text {* sequential composition of languages *} +section {* Preliminary definitions *} + +text {* Sequential composition of two languages @{text "L1"} and @{text "L2"} *} definition Seq :: "string set \ string set \ string set" ("_ ;; _" [100,100] 100) where "L1 ;; L2 = {s1 @ s2 | s1 s2. s1 \ L1 \ s2 \ L2}" +text {* Transitive closure of language @{text "L"}. *} inductive_set Star :: "string set \ string set" ("_\" [101] 102) for L :: "string set" @@ -14,6 +17,8 @@ start[intro]: "[] \ L\" | step[intro]: "\s1 \ L; s2 \ L\\ \ s1@s2 \ L\" +text {* Some properties of operator @{text ";;"}.*} + lemma seq_union_distrib: "(A \ B) ;; C = (A ;; C) \ (B ;; C)" by (auto simp:Seq_def) @@ -28,23 +33,92 @@ apply blast by (metis append_assoc) +lemma star_intro1[rule_format]: "x \ lang\ \ \ y. y \ lang\ \ x @ y \ lang\" +by (erule Star.induct, auto) + +lemma star_intro2: "y \ lang \ y \ lang\" +by (drule step[of y lang "[]"], auto simp:start) + +lemma star_intro3[rule_format]: + "x \ lang\ \ \y . y \ lang \ x @ y \ lang\" +by (erule Star.induct, auto intro:star_intro2) + +lemma star_decom: + "\x \ lang\; x \ []\ \(\ a b. x = a @ b \ a \ [] \ a \ lang \ b \ lang\)" +by (induct x rule: Star.induct, simp, blast) + +lemma star_decom': + "\x \ lang\; x \ []\ \ \a b. x = a @ b \ a \ lang\ \ b \ lang" +apply (induct x rule:Star.induct, simp) +apply (case_tac "s2 = []") +apply (rule_tac x = "[]" in exI, rule_tac x = s1 in exI, simp add:start) +apply (simp, (erule exE| erule conjE)+) +by (rule_tac x = "s1 @ a" in exI, rule_tac x = b in exI, simp add:step) + +text {* Ardens lemma expressed at the level of language, rather than the level of regular expression. *} + theorem ardens_revised: assumes nemp: "[] \ A" shows "(X = X ;; A \ B) \ (X = B ;; A\)" proof assume eq: "X = B ;; A\" - have "A\ = {[]} \ A\ ;; A" sorry - then have "B ;; A\ = B ;; ({[]} \ A\ ;; A)" unfolding Seq_def by simp - also have "\ = B \ B ;; (A\ ;; A)" unfolding Seq_def by auto - also have "\ = B \ (B ;; A\) ;; A" unfolding Seq_def - by (auto) (metis append_assoc)+ - finally show "X = X ;; A \ B" using eq by auto + have "A\ = {[]} \ A\ ;; A" + by (auto simp:Seq_def star_intro3 star_decom') + then have "B ;; A\ = B ;; ({[]} \ A\ ;; A)" + unfolding Seq_def by simp + also have "\ = B \ B ;; (A\ ;; A)" + unfolding Seq_def by auto + also have "\ = B \ (B ;; A\) ;; A" + by (simp only:seq_assoc) + finally show "X = X ;; A \ B" + using eq by blast next - assume "X = X ;; A \ B" - then have "B \ X" "X ;; A \ X" by auto - thus "X = B ;; A\" sorry + assume eq': "X = X ;; A \ B" + hence c1': "\ x. x \ B \ x \ X" + and c2': "\ x y. \x \ X; y \ A\ \ x @ y \ X" + using Seq_def by auto + show "X = B ;; A\" + proof + show "B ;; A\ \ X" + proof- + { fix x y + have "\y \ A\; x \ X\ \ x @ y \ X " + apply (induct arbitrary:x rule:Star.induct, simp) + by (auto simp only:append_assoc[THEN sym] dest:c2') + } thus ?thesis using c1' by (auto simp:Seq_def) + qed + next + show "X \ B ;; A\" + proof- + { fix x + have "x \ X \ x \ B ;; A\" + proof (induct x taking:length rule:measure_induct) + fix z + assume hyps: + "\y. length y < length z \ y \ X \ y \ B ;; A\" + and z_in: "z \ X" + show "z \ B ;; A\" + proof (cases "z \ B") + case True thus ?thesis by (auto simp:Seq_def start) + next + case False hence "z \ X ;; A" using eq' z_in by auto + then obtain za zb where za_in: "za \ X" + and zab: "z = za @ zb \ zb \ A" and zbne: "zb \ []" + using nemp unfolding Seq_def by blast + from zbne zab have "length za < length z" by auto + with za_in hyps have "za \ B ;; A\" by blast + hence "za @ zb \ B ;; A\" using zab + by (clarsimp simp:Seq_def, blast dest:star_intro3) + thus ?thesis using zab by simp + qed + qed + } thus ?thesis by blast + qed + qed qed + +text {* The syntax of regular expressions is defined by the datatype @{text "rexp"}. *} datatype rexp = NULL | EMPTY @@ -53,11 +127,20 @@ | ALT rexp rexp | STAR rexp + +text {* + The following @{text "L"} is an overloaded operator, where @{text "L(x)"} evaluates to + the language represented by the syntactic object @{text "x"}. +*} consts L:: "'a \ string set" + +text {* + The @{text "L(rexp)"} for regular expression @{text "rexp"} is defined by the + following overloading function @{text "L_rexp"}. +*} overloading L_rexp \ "L:: rexp \ string set" begin - fun L_rexp :: "rexp \ string set" where @@ -69,157 +152,258 @@ | "L_rexp (STAR r) = (L_rexp r)\" end +text {* + To obtain equational system out of finite set of equivalent classes, a fold operation + on finite set @{text "folds"} is defined. The use of @{text "SOME"} makes @{text "fold"} + more robust than the @{text "fold"} in Isabelle library. The expression @{text "folds f"} + makes sense when @{text "f"} is not @{text "associative"} and @{text "commutitive"}, + while @{text "fold f"} does not. +*} + definition folds :: "('a \ 'b \ 'b) \ 'b \ 'a set \ 'b" where "folds f z S \ SOME x. fold_graph f z S x" +text {* + The following lemma assures that the arbitrary choice made by the @{text "SOME"} in @{text "folds"} + does not affect the @{text "L"}-value of the resultant regular expression. + *} lemma folds_alt_simp [simp]: "finite rs \ L (folds ALT NULL rs) = \ (L ` rs)" apply (rule set_ext, simp add:folds_def) apply (rule someI2_ex, erule finite_imp_fold_graph) by (erule fold_graph.induct, auto) +(* Just a technical lemma. *) lemma [simp]: shows "(x, y) \ {(x, y). P x y} \ P x y" by simp -definition - str_eq ("_ \_ _") -where - "x \Lang y \ (\z. x @ z \ Lang \ y @ z \ Lang)" +text {* + @{text "\L"} is an equivalent class defined by language @{text "Lang"}. +*} definition str_eq_rel ("\_") where - "\Lang \ {(x, y). x \Lang y}" + "\Lang \ {(x, y). (\z. x @ z \ Lang \ y @ z \ Lang)}" + +text {* + Among equivlant clases of @{text "\Lang"}, the set @{text "finals(Lang)"} singles out + those which contains strings from @{text "Lang"}. +*} -definition - final :: "string set \ string set \ bool" -where - "final X Lang \ (X \ UNIV // \Lang) \ (\s \ X. s \ Lang)" +definition + "finals Lang \ {\Lang `` {x} | x . x \ Lang}" +text {* + The following lemma show the relationshipt between @{text "finals(Lang)"} and @{text "Lang"}. +*} lemma lang_is_union_of_finals: - "Lang = \ {X. final X Lang}" + "Lang = \ finals(Lang)" proof - show "Lang \ \ {X. final X Lang}" + show "Lang \ \ (finals Lang)" proof fix x assume "x \ Lang" - thus "x \ \ {X. final X Lang}" - apply (simp, rule_tac x = "(\Lang) `` {x}" in exI) - apply (auto simp:final_def quotient_def Image_def str_eq_rel_def str_eq_def) - by (drule_tac x = "[]" in spec, simp) + thus "x \ \ (finals Lang)" + apply (simp add:finals_def, rule_tac x = "(\Lang) `` {x}" in exI) + by (auto simp:Image_def str_eq_rel_def) qed next - show "\{X. final X Lang} \ Lang" - by (auto simp:final_def) + show "\ (finals Lang) \ Lang" + apply (clarsimp simp:finals_def str_eq_rel_def) + by (drule_tac x = "[]" in spec, auto) qed -section {* finite \ regular *} +section {* Direction @{text "finite partition \ regular language"}*} + +text {* + The relationship between equivalent classes can be described by an + equational system. + For example, in equational system \eqref{example_eqns}, $X_0, X_1$ are equivalent + classes. The first equation says every string in $X_0$ is obtained either by + appending one $b$ to a string in $X_0$ or by appending one $a$ to a string in + $X_1$ or just be an empty string (represented by the regular expression $\lambda$). Similary, + the second equation tells how the strings inside $X_1$ are composed. + \begin{equation}\label{example_eqns} + \begin{aligned} + X_0 & = X_0 b + X_1 a + \lambda \\ + X_1 & = X_0 a + X_1 b + \end{aligned} + \end{equation} + The summands on the right hand side is represented by the following data type + @{text "rhs_item"}, mnemonic for 'right hand side item'. + Generally, there are two kinds of right hand side items, one kind corresponds to + pure regular expressions, like the $\lambda$ in \eqref{example_eqns}, the other kind corresponds to + transitions from one one equivalent class to another, like the $X_0 b, X_1 a$ etc. + *} datatype rhs_item = Lam "rexp" (* Lambda *) - | Trn "string set" "rexp" (* Transition *) + | Trn "(string set)" "rexp" (* Transition *) -fun the_Trn:: "rhs_item \ (string set \ rexp)" -where "the_Trn (Trn Y r) = (Y, r)" +text {* + In this formalization, pure regular expressions like $\lambda$ is + repsented by @{text "Lam(EMPTY)"}, while transitions like $X_0 a$ is represented by $Trn~X_0~(CHAR~a)$. + *} + +text {* + The functions @{text "the_r"} and @{text "the_Trn"} are used to extract + subcomponents from right hand side items. + *} fun the_r :: "rhs_item \ rexp" where "the_r (Lam r) = r" +fun the_Trn:: "rhs_item \ (string set \ rexp)" +where "the_Trn (Trn Y r) = (Y, r)" + +text {* + Every right hand side item @{text "itm"} defines a string set given + @{text "L(itm)"}, defined as: +*} overloading L_rhs_e \ "L:: rhs_item \ string set" begin -fun L_rhs_e:: "rhs_item \ string set" -where - "L_rhs_e (Lam r) = L r" | - "L_rhs_e (Trn X r) = X ;; L r" + fun L_rhs_e:: "rhs_item \ string set" + where + "L_rhs_e (Lam r) = L r" | + "L_rhs_e (Trn X r) = X ;; L r" end +text {* + The right hand side of every equation is represented by a set of + items. The string set defined by such a set @{text "itms"} is given + by @{text "L(itms)"}, defined as: +*} + overloading L_rhs \ "L:: rhs_item set \ string set" begin -fun L_rhs:: "rhs_item set \ string set" -where - "L_rhs rhs = \ (L ` rhs)" + fun L_rhs:: "rhs_item set \ string set" + where "L_rhs rhs = \ (L ` rhs)" end +text {* + Given a set of equivalent classses @{text "CS"} and one equivalent class @{text "X"} among + @{text "CS"}, the term @{text "init_rhs CS X"} is used to extract the right hand side of + the equation describing the formation of @{text "X"}. The definition of @{text "init_rhs"} + is: + *} + definition - "init_rhs CS X \ if ([] \ X) - then {Lam EMPTY} \ {Trn Y (CHAR c)| Y c. Y \ CS \ Y ;; {[c]} \ X} - else {Trn Y (CHAR c)| Y c. Y \ CS \ Y ;; {[c]} \ X}" + "init_rhs CS X \ + if ([] \ X) then + {Lam(EMPTY)} \ {Trn Y (CHAR c) | Y c. Y \ CS \ Y ;; {[c]} \ X} + else + {Trn Y (CHAR c)| Y c. Y \ CS \ Y ;; {[c]} \ X}" -definition - "eqs CS \ {(X, init_rhs CS X)|X. X \ CS}" +text {* + In the definition of @{text "init_rhs"}, the term + @{text "{Trn Y (CHAR c)| Y c. Y \ CS \ Y ;; {[c]} \ X}"} appearing on both branches + describes the formation of strings in @{text "X"} out of transitions, while + the term @{text "{Lam(EMPTY)}"} describes the empty string which is intrinsically contained in + @{text "X"} rather than by transition. This @{text "{Lam(EMPTY)}"} corresponds to + the $\lambda$ in \eqref{example_eqns}. + With the help of @{text "init_rhs"}, the equitional system descrbing the formation of every + equivalent class inside @{text "CS"} is given by the following @{text "eqs(CS)"}. + *} + +definition "eqs CS \ {(X, init_rhs CS X) | X. X \ CS}" (************ arden's lemma variation ********************) +text {* + The following @{text "items_of rhs X"} returns all @{text "X"}-items in @{text "rhs"}. + *} definition "items_of rhs X \ {Trn X r | r. (Trn X r) \ rhs}" +text {* + The following @{text "rexp_of rhs X"} combines all regular expressions in @{text "X"}-items + using @{text "ALT"} to form a single regular expression. + It will be used later to implement @{text "arden_variate"} and @{text "rhs_subst"}. + *} + +definition + "rexp_of rhs X \ folds ALT NULL ((snd o the_Trn) ` items_of rhs X)" + +text {* + The following @{text "lam_of rhs"} returns all pure regular expression items in @{text "rhs"}. + *} + definition "lam_of rhs \ {Lam r | r. Lam r \ rhs}" -definition - "rexp_of rhs X \ folds ALT NULL ((snd o the_Trn) ` items_of rhs X)" +text {* + The following @{text "rexp_of_lam rhs"} combines pure regular expression items in @{text "rhs"} + using @{text "ALT"} to form a single regular expression. + When all variables inside @{text "rhs"} are eliminated, @{text "rexp_of_lam rhs"} + is used to compute compute the regular expression corresponds to @{text "rhs"}. + *} definition "rexp_of_lam rhs \ folds ALT NULL (the_r ` lam_of rhs)" +text {* + The following @{text "attach_rexp rexp' itm"} attach + the regular expression @{text "rexp'"} to + the right of right hand side item @{text "itm"}. + *} + fun attach_rexp :: "rexp \ rhs_item \ rhs_item" where - "attach_rexp r' (Lam r) = Lam (SEQ r r')" -| "attach_rexp r' (Trn X r) = Trn X (SEQ r r')" + "attach_rexp rexp' (Lam rexp) = Lam (SEQ rexp rexp')" +| "attach_rexp rexp' (Trn X rexp) = Trn X (SEQ rexp rexp')" + +text {* + The following @{text "append_rhs_rexp rhs rexp"} attaches + @{text "rexp"} to every item in @{text "rhs"}. + *} definition - "append_rhs_rexp rhs r \ (attach_rexp r) ` rhs" + "append_rhs_rexp rhs rexp \ (attach_rexp rexp) ` rhs" +text {* + With the help of the two functions immediately above, Ardens' + transformation on right hand side @{text "rhs"} is implemented + by the following function @{text "arden_variate X rhs"}. + After this transformation, the recursive occurent of @{text "X"} + in @{text "rhs"} will be eliminated, while the + string set defined by @{text "rhs"} is kept unchanged. + *} definition - "arden_variate X rhs \ append_rhs_rexp (rhs - items_of rhs X) (STAR (rexp_of rhs X))" + "arden_variate X rhs \ + append_rhs_rexp (rhs - items_of rhs X) (STAR (rexp_of rhs X))" (*********** substitution of ES *************) -text {* rhs_subst rhs X xrhs: substitude all occurence of X in rhs with xrhs *} +text {* + Suppose the equation defining @{text "X"} is $X = xrhs$, + the purpose of @{text "rhs_subst"} is to substitute all occurences of @{text "X"} in + @{text "rhs"} by @{text "xrhs"}. + A litte thought may reveal that the final result + should be: first append $(a_1 | a_2 | \ldots | a_n)$ to every item of @{text "xrhs"} and then + union the result with all non-@{text "X"}-items of @{text "rhs"}. + *} definition - "rhs_subst rhs X xrhs \ (rhs - (items_of rhs X)) \ (append_rhs_rexp xrhs (rexp_of rhs X))" + "rhs_subst rhs X xrhs \ + (rhs - (items_of rhs X)) \ (append_rhs_rexp xrhs (rexp_of rhs X))" + +text {* + Suppose the equation defining @{text "X"} is $X = xrhs$, the follwing + @{text "eqs_subst ES X xrhs"} substitute @{text "xrhs"} into every equation + of the equational system @{text "ES"}. + *} definition "eqs_subst ES X xrhs \ {(Y, rhs_subst yrhs X xrhs) | Y yrhs. (Y, yrhs) \ ES}" text {* - Inv: Invairance of the equation-system, during the decrease of the equation-system, Inv holds. -*} - -definition - "distinct_equas ES \ \ X rhs rhs'. (X, rhs) \ ES \ (X, rhs') \ ES \ rhs = rhs'" - -definition - "valid_eqns ES \ \ X rhs. (X, rhs) \ ES \ (X = L rhs)" - -definition - "rhs_nonempty rhs \ (\ Y r. Trn Y r \ rhs \ [] \ L r)" - -definition - "ardenable ES \ \ X rhs. (X, rhs) \ ES \ rhs_nonempty rhs" - -definition - "non_empty ES \ \ X rhs. (X, rhs) \ ES \ X \ {}" - -definition - "finite_rhs ES \ \ X rhs. (X, rhs) \ ES \ finite rhs" - -definition - "classes_of rhs \ {X. \ r. Trn X r \ rhs}" - -definition - "lefts_of ES \ {Y | Y yrhs. (Y, yrhs) \ ES}" - -definition - "self_contained ES \ \ (X, xrhs) \ ES. classes_of xrhs \ lefts_of ES" - -definition - "Inv ES \ valid_eqns ES \ finite ES \ distinct_equas ES \ ardenable ES \ - non_empty ES \ finite_rhs ES \ self_contained ES" + The computation of regular expressions for equivalent classes is accomplished + using a iteration principle given by the following lemma. + *} lemma wf_iter [rule_format]: fixes f @@ -248,7 +432,88 @@ qed qed -text {* ************* basic properties of definitions above ************************ *} +text {* + The @{text "P"} in lemma @{text "wf_iter"} is an invaiant kept throughout the iteration procedure. + The particular invariant used to solve our problem is defined by function @{text "Inv(ES)"}, + an invariant over equal system @{text "ES"}. + Every definition starting next till @{text "Inv"} stipulates a property to be satisfied by @{text "ES"}. +*} + +text {* + Every variable is defined at most onece in @{text "ES"}. + *} +definition + "distinct_equas ES \ + \ X rhs rhs'. (X, rhs) \ ES \ (X, rhs') \ ES \ rhs = rhs'" +text {* + Every equation in @{text "ES"} (represented by @{text "(X, rhs)"}) is valid, i.e. @{text "(X = L rhs)"}. + *} +definition + "valid_eqns ES \ \ X rhs. (X, rhs) \ ES \ (X = L rhs)" + +text {* + @{text "rhs_nonempty rhs"} requires regular expressions occuring in transitional + items of @{text "rhs"} does not contain empty string. This is necessary for + the application of Arden's transformation to @{text "rhs"}. + *} +definition + "rhs_nonempty rhs \ (\ Y r. Trn Y r \ rhs \ [] \ L r)" + +text {* + @{text "ardenable ES"} requires that Arden's transformation is applicable + to every equation of equational system @{text "ES"}. + *} +definition + "ardenable ES \ \ X rhs. (X, rhs) \ ES \ rhs_nonempty rhs" + +(* The following non_empty seems useless. *) +definition + "non_empty ES \ \ X rhs. (X, rhs) \ ES \ X \ {}" + +text {* + The following @{text "finite_rhs ES"} requires every equation in @{text "rhs"} be finite. + *} +definition + "finite_rhs ES \ \ X rhs. (X, rhs) \ ES \ finite rhs" + +text {* + The following @{text "classes_of rhs"} returns all variables (or equivalent classes) + occuring in @{text "rhs"}. + *} +definition + "classes_of rhs \ {X. \ r. Trn X r \ rhs}" + +text {* + The following @{text "lefts_of ES"} returns all variables + defined by equational system @{text "ES"}. + *} +definition + "lefts_of ES \ {Y | Y yrhs. (Y, yrhs) \ ES}" + +text {* + The following @{text "self_contained ES"} requires that every + variable occuring on the right hand side of equations is already defined by some + equation in @{text "ES"}. + *} +definition + "self_contained ES \ \ (X, xrhs) \ ES. classes_of xrhs \ lefts_of ES" + + +text {* + The invariant @{text "Inv(ES)"} is obtained by conjunctioning all the previous + defined constaints on @{text "ES"}. + *} +definition + "Inv ES \ valid_eqns ES \ finite ES \ distinct_equas ES \ ardenable ES \ + non_empty ES \ finite_rhs ES \ self_contained ES" + +subsection {* Proof for this direction *} + + + +text {* + The following are some basic properties of the above definitions. +*} lemma L_rhs_union_distrib: " L (A::rhs_item set) \ L B = L (A \ B)" @@ -319,11 +584,14 @@ by (auto simp:lefts_of_def) -text {* ******BEGIN: proving the initial equation-system satisfies Inv ****** *} +text {* + The following several lemmas until @{text "init_ES_satisfy_Inv"} are + to prove that initial equational system satisfies invariant @{text "Inv"}. + *} lemma defined_by_str: "\s \ X; X \ UNIV // (\Lang)\ \ X = (\Lang) `` {s}" -by (auto simp:quotient_def Image_def str_eq_rel_def str_eq_def) +by (auto simp:quotient_def Image_def str_eq_rel_def) lemma every_eqclass_has_transition: assumes has_str: "s @ [c] \ X" @@ -339,10 +607,10 @@ then have "Y ;; {[c]} \ X" unfolding Y_def Image_def Seq_def unfolding str_eq_rel_def - by (auto) (simp add: str_eq_def) + by clarsimp moreover have "s \ Y" unfolding Y_def - unfolding Image_def str_eq_rel_def str_eq_def by simp + unfolding Image_def str_eq_rel_def by simp ultimately show thesis by (blast intro: that) qed @@ -369,7 +637,8 @@ and "Y ;; {[c]} \ X" and "clist \ Y" using decom "(1)" every_eqclass_has_transition by blast - hence "x \ L {Trn Y (CHAR c)| Y c. Y \ UNIV // (\Lang) \ Y ;; {[c]} \ X}" + hence + "x \ L {Trn Y (CHAR c)| Y c. Y \ UNIV // (\Lang) \ Y ;; {[c]} \ X}" using "(1)" decom by (simp, rule_tac x = "Trn Y (CHAR c)" in exI, simp add:Seq_def) thus ?thesis using X_in_eqs "(1)" @@ -412,7 +681,7 @@ moreover have "valid_eqns (eqs (UNIV // (\Lang)))" using l_eq_r_in_eqs by (simp add:valid_eqns_def) moreover have "non_empty (eqs (UNIV // (\Lang)))" - by (auto simp:non_empty_def eqs_def quotient_def Image_def str_eq_rel_def str_eq_def) + by (auto simp:non_empty_def eqs_def quotient_def Image_def str_eq_rel_def) moreover have "finite_rhs (eqs (UNIV // (\Lang)))" using finite_init_rhs[OF finite_CS] by (auto simp:finite_rhs_def eqs_def) @@ -421,8 +690,11 @@ ultimately show ?thesis by (simp add:Inv_def) qed -text {* ****** BEGIN: proving every equation-system's iteration step satisfies Inv ***** *} - +text {* + From this point until @{text "iteration_step"}, we are trying to prove + that there exists iteration steps which keep @{text "Inv(ES)"} while + decreasing the size of @{text "ES"} with every iteration. + *} lemma arden_variate_keeps_eq: assumes l_eq_r: "X = L rhs" and not_empty: "[] \ L (rexp_of rhs X)" @@ -506,7 +778,8 @@ assumes finite:"finite (ES:: (string set \ rhs_item set) set)" shows "finite (eqs_subst ES Y yrhs)" proof - - have "finite {(Ya, rhs_subst yrhsa Y yrhs) |Ya yrhsa. (Ya, yrhsa) \ ES}" (is "finite ?A") + have "finite {(Ya, rhs_subst yrhsa Y yrhs) |Ya yrhsa. (Ya, yrhsa) \ ES}" + (is "finite ?A") proof- def eqns' \ "{((Ya::string set), yrhsa)| Ya yrhsa. (Ya, yrhsa) \ ES}" def h \ "\ ((Ya::string set), yrhsa). (Ya, rhs_subst yrhsa Y yrhs)" @@ -537,14 +810,17 @@ by (auto simp:lefts_of_def eqs_subst_def) lemma rhs_subst_updates_cls: - "X \ classes_of xrhs \ classes_of (rhs_subst rhs X xrhs) = classes_of rhs \ classes_of xrhs - {X}" -apply (simp only:rhs_subst_def append_rhs_keeps_cls classes_of_union_distrib[THEN sym]) + "X \ classes_of xrhs \ + classes_of (rhs_subst rhs X xrhs) = classes_of rhs \ classes_of xrhs - {X}" +apply (simp only:rhs_subst_def append_rhs_keeps_cls + classes_of_union_distrib[THEN sym]) by (auto simp:classes_of_def items_of_def) lemma eqs_subst_keeps_self_contained: fixes Y assumes sc: "self_contained (ES \ {(Y, yrhs)})" (is "self_contained ?A") - shows "self_contained (eqs_subst ES Y (arden_variate Y yrhs))" (is "self_contained ?B") + shows "self_contained (eqs_subst ES Y (arden_variate Y yrhs))" + (is "self_contained ?B") proof- { fix X xrhs' assume "(X, xrhs') \ ?B" @@ -556,15 +832,18 @@ have "lefts_of ?B = lefts_of ES" by (auto simp add:lefts_of_def eqs_subst_def) moreover have "classes_of xrhs' \ lefts_of ES" proof- - have "classes_of xrhs' \ classes_of xrhs \ classes_of (arden_variate Y yrhs) - {Y}" + have "classes_of xrhs' \ + classes_of xrhs \ classes_of (arden_variate Y yrhs) - {Y}" proof- - have "Y \ classes_of (arden_variate Y yrhs)" using arden_variate_removes_cl by simp + have "Y \ classes_of (arden_variate Y yrhs)" + using arden_variate_removes_cl by simp thus ?thesis using xrhs_xrhs' by (auto simp:rhs_subst_updates_cls) qed moreover have "classes_of xrhs \ lefts_of ES \ {Y}" using X_in sc apply (simp only:self_contained_def lefts_of_union_distrib[THEN sym]) by (drule_tac x = "(X, xrhs)" in bspec, auto simp:lefts_of_def) - moreover have "classes_of (arden_variate Y yrhs) \ lefts_of ES \ {Y}" using sc + moreover have "classes_of (arden_variate Y yrhs) \ lefts_of ES \ {Y}" + using sc by (auto simp add:arden_variate_removes_cl self_contained_def lefts_of_def) ultimately show ?thesis by auto qed @@ -577,44 +856,57 @@ assumes Inv_ES: "Inv (ES \ {(Y, yrhs)})" shows "Inv (eqs_subst ES Y (arden_variate Y yrhs))" proof - - have finite_yrhs: "finite yrhs" using Inv_ES by (auto simp:Inv_def finite_rhs_def) - have nonempty_yrhs: "rhs_nonempty yrhs" using Inv_ES by (auto simp:Inv_def ardenable_def) - have Y_eq_yrhs: "Y = L yrhs" using Inv_ES by (simp only:Inv_def valid_eqns_def, blast) - - have "distinct_equas (eqs_subst ES Y (arden_variate Y yrhs))" using Inv_ES + have finite_yrhs: "finite yrhs" + using Inv_ES by (auto simp:Inv_def finite_rhs_def) + have nonempty_yrhs: "rhs_nonempty yrhs" + using Inv_ES by (auto simp:Inv_def ardenable_def) + have Y_eq_yrhs: "Y = L yrhs" + using Inv_ES by (simp only:Inv_def valid_eqns_def, blast) + have "distinct_equas (eqs_subst ES Y (arden_variate Y yrhs))" + using Inv_ES by (auto simp:distinct_equas_def eqs_subst_def Inv_def) - moreover have "finite (eqs_subst ES Y (arden_variate Y yrhs))" using Inv_ES - by (simp add:Inv_def eqs_subst_keeps_finite) + moreover have "finite (eqs_subst ES Y (arden_variate Y yrhs))" + using Inv_ES by (simp add:Inv_def eqs_subst_keeps_finite) moreover have "finite_rhs (eqs_subst ES Y (arden_variate Y yrhs))" proof- - have "finite_rhs ES" using Inv_ES by (simp add:Inv_def finite_rhs_def) + have "finite_rhs ES" using Inv_ES + by (simp add:Inv_def finite_rhs_def) moreover have "finite (arden_variate Y yrhs)" proof - - have "finite yrhs" using Inv_ES by (auto simp:Inv_def finite_rhs_def) + have "finite yrhs" using Inv_ES + by (auto simp:Inv_def finite_rhs_def) thus ?thesis using arden_variate_keeps_finite by simp qed - ultimately show ?thesis by (simp add:eqs_subst_keeps_finite_rhs) + ultimately show ?thesis + by (simp add:eqs_subst_keeps_finite_rhs) qed moreover have "ardenable (eqs_subst ES Y (arden_variate Y yrhs))" proof - { fix X rhs assume "(X, rhs) \ ES" - hence "rhs_nonempty rhs" using prems Inv_ES by (simp add:Inv_def ardenable_def) - with nonempty_yrhs have "rhs_nonempty (rhs_subst rhs Y (arden_variate Y yrhs))" - by (simp add:nonempty_yrhs rhs_subst_keeps_nonempty arden_variate_keeps_nonempty) + hence "rhs_nonempty rhs" using prems Inv_ES + by (simp add:Inv_def ardenable_def) + with nonempty_yrhs + have "rhs_nonempty (rhs_subst rhs Y (arden_variate Y yrhs))" + by (simp add:nonempty_yrhs + rhs_subst_keeps_nonempty arden_variate_keeps_nonempty) } thus ?thesis by (auto simp add:ardenable_def eqs_subst_def) qed moreover have "valid_eqns (eqs_subst ES Y (arden_variate Y yrhs))" proof- - have "Y = L (arden_variate Y yrhs)" using Y_eq_yrhs Inv_ES finite_yrhs nonempty_yrhs - by (rule_tac arden_variate_keeps_eq, (simp add:rexp_of_empty)+) + have "Y = L (arden_variate Y yrhs)" + using Y_eq_yrhs Inv_ES finite_yrhs nonempty_yrhs + by (rule_tac arden_variate_keeps_eq, (simp add:rexp_of_empty)+) thus ?thesis using Inv_ES - by (clarsimp simp add:valid_eqns_def eqs_subst_def rhs_subst_keeps_eq Inv_def finite_rhs_def + by (clarsimp simp add:valid_eqns_def + eqs_subst_def rhs_subst_keeps_eq Inv_def finite_rhs_def simp del:L_rhs.simps) qed - moreover have non_empty_subst: "non_empty (eqs_subst ES Y (arden_variate Y yrhs))" + moreover have + non_empty_subst: "non_empty (eqs_subst ES Y (arden_variate Y yrhs))" using Inv_ES by (auto simp:Inv_def non_empty_def eqs_subst_def) - moreover have self_subst: "self_contained (eqs_subst ES Y (arden_variate Y yrhs))" + moreover + have self_subst: "self_contained (eqs_subst ES Y (arden_variate Y yrhs))" using Inv_ES eqs_subst_keeps_self_contained by (simp add:Inv_def) ultimately show ?thesis using Inv_ES by (simp add:Inv_def) qed @@ -642,7 +934,8 @@ proof- have "card (S - {e}) > 0" proof - - have "card S > 1" using card e_in finite by (case_tac "card S", auto) + have "card S > 1" using card e_in finite + by (case_tac "card S", auto) thus ?thesis using finite e_in by auto qed hence "S - {e} \ {}" using finite by (rule_tac notI, simp) @@ -653,10 +946,12 @@ assumes Inv_ES: "Inv ES" and X_in_ES: "(X, xrhs) \ ES" and not_T: "card ES \ 1" - shows "\ ES'. (Inv ES' \ (\ xrhs'.(X, xrhs') \ ES')) \ (card ES', card ES) \ less_than" (is "\ ES'. ?P ES'") + shows "\ ES'. (Inv ES' \ (\ xrhs'.(X, xrhs') \ ES')) \ + (card ES', card ES) \ less_than" (is "\ ES'. ?P ES'") proof - have finite_ES: "finite ES" using Inv_ES by (simp add:Inv_def) - then obtain Y yrhs where Y_in_ES: "(Y, yrhs) \ ES" and not_eq: "(X, xrhs) \ (Y, yrhs)" + then obtain Y yrhs + where Y_in_ES: "(Y, yrhs) \ ES" and not_eq: "(X, xrhs) \ (Y, yrhs)" using not_T X_in_ES by (drule_tac card_noteq_1_has_more, auto) def ES' == "ES - {(Y, yrhs)}" let ?ES'' = "eqs_subst ES' Y (arden_variate Y yrhs)" @@ -679,12 +974,17 @@ thus ?thesis by blast qed -text {* ***** END: proving every equation-system's iteration step satisfies Inv ************** *} +text {* + From this point until @{text "hard_direction"}, the hard direction is proved + through a simple application of the iteration principle. +*} lemma iteration_conc: assumes history: "Inv ES" and X_in_ES: "\ xrhs. (X, xrhs) \ ES" - shows "\ ES'. (Inv ES' \ (\ xrhs'. (X, xrhs') \ ES')) \ card ES' = 1" (is "\ ES'. ?P ES'") + shows + "\ ES'. (Inv ES' \ (\ xrhs'. (X, xrhs') \ ES')) \ card ES' = 1" + (is "\ ES'. ?P ES'") proof (cases "card ES = 1") case True thus ?thesis using history X_in_ES @@ -706,26 +1006,31 @@ have "L (rexp_of_lam ?A) = L (lam_of ?A)" proof(rule rexp_of_lam_eq_lam_set) show "finite (arden_variate X xrhs)" using Inv_ES ES_single - by (rule_tac arden_variate_keeps_finite, auto simp add:Inv_def finite_rhs_def) + by (rule_tac arden_variate_keeps_finite, + auto simp add:Inv_def finite_rhs_def) qed also have "\ = L ?A" proof- have "lam_of ?A = ?A" proof- have "classes_of ?A = {}" using Inv_ES ES_single - by (simp add:arden_variate_removes_cl self_contained_def Inv_def lefts_of_def) - thus ?thesis by (auto simp only:lam_of_def classes_of_def, case_tac x, auto) + by (simp add:arden_variate_removes_cl + self_contained_def Inv_def lefts_of_def) + thus ?thesis + by (auto simp only:lam_of_def classes_of_def, case_tac x, auto) qed thus ?thesis by simp qed also have "\ = X" proof(rule arden_variate_keeps_eq [THEN sym]) - show "X = L xrhs" using Inv_ES ES_single by (auto simp only:Inv_def valid_eqns_def) + show "X = L xrhs" using Inv_ES ES_single + by (auto simp only:Inv_def valid_eqns_def) next from Inv_ES ES_single show "[] \ L (rexp_of xrhs X)" by(simp add:Inv_def ardenable_def rexp_of_empty finite_rhs_def) next - from Inv_ES ES_single show "finite xrhs" by (simp add:Inv_def finite_rhs_def) + from Inv_ES ES_single show "finite xrhs" + by (simp add:Inv_def finite_rhs_def) qed finally show ?thesis by simp qed @@ -750,79 +1055,73 @@ by (rule last_cl_exists_rexp) qed +lemma finals_in_partitions: + "finals Lang \ (UNIV // (\Lang))" + by (auto simp:finals_def quotient_def) + theorem hard_direction: assumes finite_CS: "finite (UNIV // (\Lang))" shows "\ (reg::rexp). Lang = L reg" proof - have "\ X \ (UNIV // (\Lang)). \ (reg::rexp). X = L reg" using finite_CS every_eqcl_has_reg by blast - then obtain f where f_prop: "\ X \ (UNIV // (\Lang)). X = L ((f X)::rexp)" + then obtain f + where f_prop: "\ X \ (UNIV // (\Lang)). X = L ((f X)::rexp)" by (auto dest:bchoice) - def rs \ "f ` {X. final X Lang}" - have "Lang = \ {X. final X Lang}" using lang_is_union_of_finals by simp + def rs \ "f ` (finals Lang)" + have "Lang = \ (finals Lang)" using lang_is_union_of_finals by auto also have "\ = L (folds ALT NULL rs)" proof - - have "finite {X. final X Lang}" using finite_CS by (auto simp:final_def) - thus ?thesis using f_prop by (auto simp:rs_def final_def) + have "finite rs" + proof - + have "finite (finals Lang)" + using finite_CS finals_in_partitions[of "Lang"] + by (erule_tac finite_subset, simp) + thus ?thesis using rs_def by auto + qed + thus ?thesis + using f_prop rs_def finals_in_partitions[of "Lang"] by auto qed finally show ?thesis by blast qed -section {* regular \ finite*} +section {* Direction: @{text "regular language \finite partition"} *} + +subsection {* The scheme for this direction *} -lemma quot_empty_subset: - "UNIV // (\{[]}) \ {{[]}, UNIV - {[]}}" -proof - fix x - assume "x \ UNIV // \{[]}" - then obtain y where h: "x = {z. (y, z) \ \{[]}}" unfolding quotient_def Image_def by blast - show "x \ {{[]}, UNIV - {[]}}" - proof (cases "y = []") - case True with h - have "x = {[]}" by (auto simp:str_eq_rel_def str_eq_def) - thus ?thesis by simp - next - case False with h - have "x = UNIV - {[]}" by (auto simp:str_eq_rel_def str_eq_def) - thus ?thesis by simp - qed -qed +text {* + The following convenient notation @{text "x \Lang y"} means: + string @{text "x"} and @{text "y"} are equivalent with respect to + language @{text "Lang"}. + *} + +definition + str_eq ("_ \_ _") +where + "x \Lang y \ (x, y) \ (\Lang)" -lemma quot_char_subset: - "UNIV // (\{[c]}) \ {{[]},{[c]}, UNIV - {[], [c]}}" -proof - fix x - assume "x \ UNIV // \{[c]}" - then obtain y where h: "x = {z. (y, z) \ \{[c]}}" unfolding quotient_def Image_def by blast - show "x \ {{[]},{[c]}, UNIV - {[], [c]}}" - proof - - { assume "y = []" hence "x = {[]}" using h by (auto simp:str_eq_rel_def str_eq_def) - } moreover { - assume "y = [c]" hence "x = {[c]}" using h - by (auto dest!:spec[where x = "[]"] simp:str_eq_rel_def str_eq_def) - } moreover { - assume "y \ []" and "y \ [c]" - hence "\ z. (y @ z) \ [c]" by (case_tac y, auto) - moreover have "\ p. (p \ [] \ p \ [c]) = (\ q. p @ q \ [c])" by (case_tac p, auto) - ultimately have "x = UNIV - {[],[c]}" using h - by (auto simp add:str_eq_rel_def str_eq_def) - } ultimately show ?thesis by blast - qed -qed +text {* + The very basic scheme to show the finiteness of the partion generated by a language @{text "Lang"} + is by attaching tags to every string. The set of tags are carfully choosen to make it finite. + If it can be proved that strings with the same tag are equivlent with respect @{text "Lang"}, + then the partition given rise by @{text "Lang"} must be finite. The reason for this is a lemma + in standard library (@{text "finite_imageD"}), which says: if the image of an injective + function on a set @{text "A"} is finite, then @{text "A"} is finite. It can be shown that + the function obtained by llifting @{text "tag"} + to the level of equalent classes (i.e. @{text "((op `) tag)"}) is injective + (by lemma @{text "tag_image_injI"}) and the image of this function is finite + (with the help of lemma @{text "finite_tag_imageI"}). -text {* *************** Some common lemmas for following ALT, SEQ & STAR cases ******************* *} - -lemma finite_tag_imageI: - "finite (range tag) \ finite (((op `) tag) ` S)" -apply (rule_tac B = "Pow (tag ` UNIV)" in finite_subset) -by (auto simp add:image_def Pow_def) + BUT, I think this argument can be encapsulated by one lemma instead of the current presentation. + *} lemma eq_class_equalI: - "\X \ UNIV // \lang; Y \ UNIV // \lang; x \ X; y \ Y; x \lang y\ \ X = Y" + "\X \ UNIV // \lang; Y \ UNIV // \lang; x \ X; y \ Y; x \lang y\ + \ X = Y" by (auto simp:quotient_def str_eq_rel_def str_eq_def) lemma tag_image_injI: - assumes str_inj: "\ m n. tag m = tag (n::string) \ m \lang n" + assumes str_inj: "\ x y. tag x = tag (y::string) \ x \lang y" shows "inj_on ((op `) tag) (UNIV // \lang)" proof- { fix X Y @@ -838,7 +1137,17 @@ thus ?thesis unfolding inj_on_def by auto qed -text {* **************** the SEQ case ************************ *} +lemma finite_tag_imageI: + "finite (range tag) \ finite (((op `) tag) ` S)" +apply (rule_tac B = "Pow (tag ` UNIV)" in finite_subset) +by (auto simp add:image_def Pow_def) + + +subsection {* A small theory for list difference *} + +text {* + The notion of list diffrence is need to make proofs more readable. + *} (* list_diff:: list substract, once different return tailer *) fun list_diff :: "'a list \ 'a list \ 'a list" (infix "-" 51) @@ -884,29 +1193,99 @@ by (clarsimp, auto simp:prefix_def) lemma app_eq_dest: - "x @ y = m @ n \ (x \ m \ (m - x) @ n = y) \ (m \ x \ (x - m) @ y = n)" + "x @ y = m @ n \ + (x \ m \ (m - x) @ n = y) \ (m \ x \ (x - m) @ y = n)" by (frule_tac app_eq_cases, auto elim:prefixE) +subsection {* Lemmas for basic cases *} + +text {* + The the final result of this direction is in @{text "easier_direction"}, which + is an induction on the structure of regular expressions. There is one case + for each regular expression operator. For basic operators such as @{text "NULL, EMPTY, CHAR c"}, + the finiteness of their language partition can be established directly with no need + of taggiing. This section contains several technical lemma for these base cases. + + The inductive cases involve operators @{text "ALT, SEQ"} and @{text "STAR"}. + Tagging functions need to be defined individually for each of them. There will be one + dedicated section for each of these cases, and each section goes virtually the same way: + gives definition of the tagging function and prove that strings + with the same tag are equivalent. + *} + +lemma quot_empty_subset: + "UNIV // (\{[]}) \ {{[]}, UNIV - {[]}}" +proof + fix x + assume "x \ UNIV // \{[]}" + then obtain y where h: "x = {z. (y, z) \ \{[]}}" + unfolding quotient_def Image_def by blast + show "x \ {{[]}, UNIV - {[]}}" + proof (cases "y = []") + case True with h + have "x = {[]}" by (auto simp:str_eq_rel_def) + thus ?thesis by simp + next + case False with h + have "x = UNIV - {[]}" by (auto simp:str_eq_rel_def) + thus ?thesis by simp + qed +qed + +lemma quot_char_subset: + "UNIV // (\{[c]}) \ {{[]},{[c]}, UNIV - {[], [c]}}" +proof + fix x + assume "x \ UNIV // \{[c]}" + then obtain y where h: "x = {z. (y, z) \ \{[c]}}" + unfolding quotient_def Image_def by blast + show "x \ {{[]},{[c]}, UNIV - {[], [c]}}" + proof - + { assume "y = []" hence "x = {[]}" using h + by (auto simp:str_eq_rel_def) + } moreover { + assume "y = [c]" hence "x = {[c]}" using h + by (auto dest!:spec[where x = "[]"] simp:str_eq_rel_def) + } moreover { + assume "y \ []" and "y \ [c]" + hence "\ z. (y @ z) \ [c]" by (case_tac y, auto) + moreover have "\ p. (p \ [] \ p \ [c]) = (\ q. p @ q \ [c])" + by (case_tac p, auto) + ultimately have "x = UNIV - {[],[c]}" using h + by (auto simp add:str_eq_rel_def) + } ultimately show ?thesis by blast + qed +qed + +subsection {* The case for @{text "SEQ"}*} + definition - "tag_str_SEQ L\<^isub>1 L\<^isub>2 x \ ((\L\<^isub>1) `` {x}, {(\L\<^isub>2) `` {x - xa}| xa. xa \ x \ xa \ L\<^isub>1})" + "tag_str_SEQ L\<^isub>1 L\<^isub>2 x \ + ((\L\<^isub>1) `` {x}, {(\L\<^isub>2) `` {x - xa}| xa. xa \ x \ xa \ L\<^isub>1})" lemma tag_str_seq_range_finite: - "\finite (UNIV // \L\<^isub>1); finite (UNIV // \L\<^isub>2)\ \ finite (range (tag_str_SEQ L\<^isub>1 L\<^isub>2))" + "\finite (UNIV // \L\<^isub>1); finite (UNIV // \L\<^isub>2)\ + \ finite (range (tag_str_SEQ L\<^isub>1 L\<^isub>2))" apply (rule_tac B = "(UNIV // \L\<^isub>1) \ (Pow (UNIV // \L\<^isub>2))" in finite_subset) by (auto simp:tag_str_SEQ_def Image_def quotient_def split:if_splits) lemma append_seq_elim: assumes "x @ y \ L\<^isub>1 ;; L\<^isub>2" - shows "(\ xa \ x. xa \ L\<^isub>1 \ (x - xa) @ y \ L\<^isub>2) \ (\ ya \ y. (x @ ya) \ L\<^isub>1 \ (y - ya) \ L\<^isub>2)" + shows "(\ xa \ x. xa \ L\<^isub>1 \ (x - xa) @ y \ L\<^isub>2) \ + (\ ya \ y. (x @ ya) \ L\<^isub>1 \ (y - ya) \ L\<^isub>2)" proof- - from assms obtain s\<^isub>1 s\<^isub>2 where "x @ y = s\<^isub>1 @ s\<^isub>2" and in_seq: "s\<^isub>1 \ L\<^isub>1 \ s\<^isub>2 \ L\<^isub>2" + from assms obtain s\<^isub>1 s\<^isub>2 + where "x @ y = s\<^isub>1 @ s\<^isub>2" + and in_seq: "s\<^isub>1 \ L\<^isub>1 \ s\<^isub>2 \ L\<^isub>2" by (auto simp:Seq_def) hence "(x \ s\<^isub>1 \ (s\<^isub>1 - x) @ s\<^isub>2 = y) \ (s\<^isub>1 \ x \ (x - s\<^isub>1) @ y = s\<^isub>2)" using app_eq_dest by auto - moreover have "\x \ s\<^isub>1; (s\<^isub>1 - x) @ s\<^isub>2 = y\ \ \ ya \ y. (x @ ya) \ L\<^isub>1 \ (y - ya) \ L\<^isub>2" using in_seq - by (rule_tac x = "s\<^isub>1 - x" in exI, auto elim:prefixE) - moreover have "\s\<^isub>1 \ x; (x - s\<^isub>1) @ y = s\<^isub>2\ \ \ xa \ x. xa \ L\<^isub>1 \ (x - xa) @ y \ L\<^isub>2" using in_seq - by (rule_tac x = s\<^isub>1 in exI, auto) + moreover have "\x \ s\<^isub>1; (s\<^isub>1 - x) @ s\<^isub>2 = y\ \ + \ ya \ y. (x @ ya) \ L\<^isub>1 \ (y - ya) \ L\<^isub>2" + using in_seq by (rule_tac x = "s\<^isub>1 - x" in exI, auto elim:prefixE) + moreover have "\s\<^isub>1 \ x; (x - s\<^isub>1) @ y = s\<^isub>2\ \ + \ xa \ x. xa \ L\<^isub>1 \ (x - xa) @ y \ L\<^isub>2" + using in_seq by (rule_tac x = s\<^isub>1 in exI, auto) ultimately show ?thesis by blast qed @@ -918,7 +1297,8 @@ and tag_xy: "tag_str_SEQ L\<^isub>1 L\<^isub>2 x = tag_str_SEQ L\<^isub>1 L\<^isub>2 y" have"y @ z \ L\<^isub>1 ;; L\<^isub>2" proof- - have "(\ xa \ x. xa \ L\<^isub>1 \ (x - xa) @ z \ L\<^isub>2) \ (\ za \ z. (x @ za) \ L\<^isub>1 \ (z - za) \ L\<^isub>2)" + have "(\ xa \ x. xa \ L\<^isub>1 \ (x - xa) @ z \ L\<^isub>2) \ + (\ za \ z. (x @ za) \ L\<^isub>1 \ (z - za) \ L\<^isub>2)" using xz_in_seq append_seq_elim by simp moreover { fix xa @@ -928,7 +1308,8 @@ have "\ ya. ya \ y \ ya \ L\<^isub>1 \ (x - xa) \L\<^isub>2 (y - ya)" proof - have "{\L\<^isub>2 `` {x - xa} |xa. xa \ x \ xa \ L\<^isub>1} = - {\L\<^isub>2 `` {y - xa} |xa. xa \ y \ xa \ L\<^isub>1}" (is "?Left = ?Right") + {\L\<^isub>2 `` {y - xa} |xa. xa \ y \ xa \ L\<^isub>1}" + (is "?Left = ?Right") using h1 tag_xy by (auto simp:tag_str_SEQ_def) moreover have "\L\<^isub>2 `` {x - xa} \ ?Left" using h1 h2 by auto ultimately have "\L\<^isub>2 `` {x - xa} \ ?Right" by simp @@ -942,10 +1323,13 @@ assume h1: "za \ z" and h2: "(x @ za) \ L\<^isub>1" and h3: "z - za \ L\<^isub>2" hence "y @ za \ L\<^isub>1" proof- - have "\L\<^isub>1 `` {x} = \L\<^isub>1 `` {y}" using h1 tag_xy by (auto simp:tag_str_SEQ_def) - with h2 show ?thesis by (auto simp:Image_def str_eq_rel_def str_eq_def) + have "\L\<^isub>1 `` {x} = \L\<^isub>1 `` {y}" + using h1 tag_xy by (auto simp:tag_str_SEQ_def) + with h2 show ?thesis + by (auto simp:Image_def str_eq_rel_def str_eq_def) qed - with h1 h3 have "y @ z \ L\<^isub>1 ;; L\<^isub>2" by (drule_tac A = L\<^isub>1 in seq_intro, auto elim:prefixE) + with h1 h3 have "y @ z \ L\<^isub>1 ;; L\<^isub>2" + by (drule_tac A = L\<^isub>1 in seq_intro, auto elim:prefixE) } ultimately show ?thesis by blast qed @@ -958,7 +1342,8 @@ and finite2: "finite (UNIV // \L\<^isub>2)" shows "finite (UNIV // \(L\<^isub>1 ;; L\<^isub>2))" proof(rule_tac f = "(op `) (tag_str_SEQ L\<^isub>1 L\<^isub>2)" in finite_imageD) - show "finite (op ` (tag_str_SEQ L\<^isub>1 L\<^isub>2) ` UNIV // \L\<^isub>1 ;; L\<^isub>2)" using finite1 finite2 + show "finite (op ` (tag_str_SEQ L\<^isub>1 L\<^isub>2) ` UNIV // \L\<^isub>1 ;; L\<^isub>2)" + using finite1 finite2 by (auto intro:finite_tag_imageI tag_str_seq_range_finite) next show "inj_on (op ` (tag_str_SEQ L\<^isub>1 L\<^isub>2)) (UNIV // \L\<^isub>1 ;; L\<^isub>2)" @@ -967,13 +1352,14 @@ by (auto intro:tag_image_injI tag_str_SEQ_injI simp:) qed -text {* **************** the ALT case ************************ *} +subsection {* The case for @{text "ALT"} *} definition "tag_str_ALT L\<^isub>1 L\<^isub>2 (x::string) \ ((\L\<^isub>1) `` {x}, (\L\<^isub>2) `` {x})" lemma tag_str_alt_range_finite: - "\finite (UNIV // \L\<^isub>1); finite (UNIV // \L\<^isub>2)\ \ finite (range (tag_str_ALT L\<^isub>1 L\<^isub>2))" + "\finite (UNIV // \L\<^isub>1); finite (UNIV // \L\<^isub>2)\ + \ finite (range (tag_str_ALT L\<^isub>1 L\<^isub>2))" apply (rule_tac B = "(UNIV // \L\<^isub>1) \ (UNIV // \L\<^isub>2)" in finite_subset) by (auto simp:tag_str_ALT_def Image_def quotient_def) @@ -982,20 +1368,33 @@ and finite2: "finite (UNIV // \L\<^isub>2)" shows "finite (UNIV // \(L\<^isub>1 \ L\<^isub>2))" proof(rule_tac f = "(op `) (tag_str_ALT L\<^isub>1 L\<^isub>2)" in finite_imageD) - show "finite (op ` (tag_str_ALT L\<^isub>1 L\<^isub>2) ` UNIV // \L\<^isub>1 \ L\<^isub>2)" using finite1 finite2 + show "finite (op ` (tag_str_ALT L\<^isub>1 L\<^isub>2) ` UNIV // \L\<^isub>1 \ L\<^isub>2)" + using finite1 finite2 by (auto intro:finite_tag_imageI tag_str_alt_range_finite) next show "inj_on (op ` (tag_str_ALT L\<^isub>1 L\<^isub>2)) (UNIV // \L\<^isub>1 \ L\<^isub>2)" proof- - have "\m n. tag_str_ALT L\<^isub>1 L\<^isub>2 m = tag_str_ALT L\<^isub>1 L\<^isub>2 n \ m \(L\<^isub>1 \ L\<^isub>2) n" + have "\m n. tag_str_ALT L\<^isub>1 L\<^isub>2 m = tag_str_ALT L\<^isub>1 L\<^isub>2 n + \ m \(L\<^isub>1 \ L\<^isub>2) n" unfolding tag_str_ALT_def str_eq_def Image_def str_eq_rel_def by auto thus ?thesis by (auto intro:tag_image_injI) qed qed -text {* **************** the Star case ****************** *} + +subsection {* + The case for @{text "STAR"} + *} -lemma finite_set_has_max: "\finite A; A \ {}\ \ (\ max \ A. \ a \ A. f a <= (f max :: nat))" +text {* + This turned out to be the most tricky case. + *} (* I will make some illustrations for it. *) + +definition + "tag_str_STAR L\<^isub>1 x \ {(\L\<^isub>1) `` {x - xa} | xa. xa < x \ xa \ L\<^isub>1\}" + +lemma finite_set_has_max: "\finite A; A \ {}\ \ + (\ max \ A. \ a \ A. f a <= (f max :: nat))" proof (induct rule:finite.induct) case emptyI thus ?case by simp next @@ -1005,7 +1404,9 @@ case True thus ?thesis by (rule_tac x = a in bexI, auto) next case False - with prems obtain max where h1: "max \ A" and h2: "\a\A. f a \ f max" by blast + with prems obtain max + where h1: "max \ A" + and h2: "\a\A. f a \ f max" by blast show ?thesis proof (cases "f a \ f max") assume "f a \ f max" @@ -1017,30 +1418,17 @@ qed qed -lemma star_intro1[rule_format]: "x \ lang\ \ \ y. y \ lang\ \ x @ y \ lang\" -by (erule Star.induct, auto) - -lemma star_intro2: "y \ lang \ y \ lang\" -by (drule step[of y lang "[]"], auto simp:start) - -lemma star_intro3[rule_format]: "x \ lang\ \ \y . y \ lang \ x @ y \ lang\" -by (erule Star.induct, auto intro:star_intro2) - -lemma star_decom: "\x \ lang\; x \ []\ \(\ a b. x = a @ b \ a \ [] \ a \ lang \ b \ lang\)" -by (induct x rule: Star.induct, simp, blast) - lemma finite_strict_prefix_set: "finite {xa. xa < (x::string)}" apply (induct x rule:rev_induct, simp) apply (subgoal_tac "{xa. xa < xs @ [x]} = {xa. xa < xs} \ {xs}") by (auto simp:strict_prefix_def) -definition - "tag_str_STAR L\<^isub>1 x \ {(\L\<^isub>1) `` {x - xa} | xa. xa < x \ xa \ L\<^isub>1\}" lemma tag_str_star_range_finite: "finite (UNIV // \L\<^isub>1) \ finite (range (tag_str_STAR L\<^isub>1))" apply (rule_tac B = "Pow (UNIV // \L\<^isub>1)" in finite_subset) -by (auto simp:tag_str_STAR_def Image_def quotient_def split:if_splits) +by (auto simp:tag_str_STAR_def Image_def + quotient_def split:if_splits) lemma tag_str_STAR_injI: "tag_str_STAR L\<^isub>1 m = tag_str_STAR L\<^isub>1 n \ m \(L\<^isub>1\) n" @@ -1051,58 +1439,76 @@ have "y @ z \ L\<^isub>1\" proof(cases "x = []") case True - with tag_xy have "y = []" by (auto simp:tag_str_STAR_def strict_prefix_def) + with tag_xy have "y = []" + by (auto simp:tag_str_STAR_def strict_prefix_def) thus ?thesis using xz_in_star True by simp next case False - obtain x_max where h1: "x_max < x" and h2: "x_max \ L\<^isub>1\" and h3: "(x - x_max) @ z \ L\<^isub>1\" - and h4:"\ xa < x. xa \ L\<^isub>1\ \ (x - xa) @ z \ L\<^isub>1\ \ length xa \ length x_max" + obtain x_max + where h1: "x_max < x" + and h2: "x_max \ L\<^isub>1\" + and h3: "(x - x_max) @ z \ L\<^isub>1\" + and h4:"\ xa < x. xa \ L\<^isub>1\ \ (x - xa) @ z \ L\<^isub>1\ + \ length xa \ length x_max" proof- let ?S = "{xa. xa < x \ xa \ L\<^isub>1\ \ (x - xa) @ z \ L\<^isub>1\}" have "finite ?S" - by (rule_tac B = "{xa. xa < x}" in finite_subset, auto simp:finite_strict_prefix_set) + by (rule_tac B = "{xa. xa < x}" in finite_subset, + auto simp:finite_strict_prefix_set) moreover have "?S \ {}" using False xz_in_star by (simp, rule_tac x = "[]" in exI, auto simp:strict_prefix_def) - ultimately have "\ max \ ?S. \ a \ ?S. length a \ length max" using finite_set_has_max by blast + ultimately have "\ max \ ?S. \ a \ ?S. length a \ length max" + using finite_set_has_max by blast with prems show ?thesis by blast qed - obtain ya where h5: "ya < y" and h6: "ya \ L\<^isub>1\" and h7: "(x - x_max) \L\<^isub>1 (y - ya)" + obtain ya + where h5: "ya < y" and h6: "ya \ L\<^isub>1\" and h7: "(x - x_max) \L\<^isub>1 (y - ya)" proof- from tag_xy have "{\L\<^isub>1 `` {x - xa} |xa. xa < x \ xa \ L\<^isub>1\} = {\L\<^isub>1 `` {y - xa} |xa. xa < y \ xa \ L\<^isub>1\}" (is "?left = ?right") by (auto simp:tag_str_STAR_def) moreover have "\L\<^isub>1 `` {x - x_max} \ ?left" using h1 h2 by auto ultimately have "\L\<^isub>1 `` {x - x_max} \ ?right" by simp - with prems show ?thesis apply (simp add:Image_def str_eq_rel_def str_eq_def) by blast + with prems show ?thesis apply + (simp add:Image_def str_eq_rel_def str_eq_def) by blast qed have "(y - ya) @ z \ L\<^isub>1\" proof- - from h3 h1 obtain a b where a_in: "a \ L\<^isub>1" and a_neq: "a \ []" and b_in: "b \ L\<^isub>1\" + from h3 h1 obtain a b where a_in: "a \ L\<^isub>1" + and a_neq: "a \ []" and b_in: "b \ L\<^isub>1\" and ab_max: "(x - x_max) @ z = a @ b" by (drule_tac star_decom, auto simp:strict_prefix_def elim:prefixE) have "(x - x_max) \ a \ (a - (x - x_max)) @ b = z" proof - - have "((x - x_max) \ a \ (a - (x - x_max)) @ b = z) \ (a < (x - x_max) \ ((x - x_max) - a) @ z = b)" + have "((x - x_max) \ a \ (a - (x - x_max)) @ b = z) \ + (a < (x - x_max) \ ((x - x_max) - a) @ z = b)" using app_eq_dest[OF ab_max] by (auto simp:strict_prefix_def) moreover { assume np: "a < (x - x_max)" and b_eqs: " ((x - x_max) - a) @ z = b" have "False" proof - let ?x_max' = "x_max @ a" - have "?x_max' < x" using np h1 by (clarsimp simp:strict_prefix_def diff_prefix) - moreover have "?x_max' \ L\<^isub>1\" using a_in h2 by (simp add:star_intro3) - moreover have "(x - ?x_max') @ z \ L\<^isub>1\" using b_eqs b_in np h1 by (simp add:diff_diff_appd) - moreover have "\ (length ?x_max' \ length x_max)" using a_neq by simp + have "?x_max' < x" + using np h1 by (clarsimp simp:strict_prefix_def diff_prefix) + moreover have "?x_max' \ L\<^isub>1\" + using a_in h2 by (simp add:star_intro3) + moreover have "(x - ?x_max') @ z \ L\<^isub>1\" + using b_eqs b_in np h1 by (simp add:diff_diff_appd) + moreover have "\ (length ?x_max' \ length x_max)" + using a_neq by simp ultimately show ?thesis using h4 by blast qed } ultimately show ?thesis by blast qed - then obtain za where z_decom: "z = za @ b" and x_za: "(x - x_max) @ za \ L\<^isub>1" + then obtain za where z_decom: "z = za @ b" + and x_za: "(x - x_max) @ za \ L\<^isub>1" using a_in by (auto elim:prefixE) - from x_za h7 have "(y - ya) @ za \ L\<^isub>1" by (auto simp:str_eq_def) + from x_za h7 have "(y - ya) @ za \ L\<^isub>1" + by (auto simp:str_eq_def str_eq_rel_def) with z_decom b_in show ?thesis by (auto dest!:step[of "(y - ya) @ za"]) qed - with h5 h6 show ?thesis by (drule_tac star_intro1, auto simp:strict_prefix_def elim:prefixE) + with h5 h6 show ?thesis + by (drule_tac star_intro1, auto simp:strict_prefix_def elim:prefixE) qed } thus "tag_str_STAR L\<^isub>1 m = tag_str_STAR L\<^isub>1 n \ m \(L\<^isub>1\) n" by (auto simp add:str_eq_def str_eq_rel_def) @@ -1119,9 +1525,11 @@ by (auto intro:tag_image_injI tag_str_STAR_injI) qed -text {* **************** the Other Direction ************ *} +subsection {* + The main lemma + *} -lemma other_direction: +lemma easier_directio\: "Lang = L (r::rexp) \ finite (UNIV // (\Lang))" proof (induct arbitrary:Lang rule:rexp.induct) case NULL @@ -1130,27 +1538,33 @@ with prems show "?case" by (auto intro:finite_subset) next case EMPTY - have "UNIV // (\{[]}) \ {{[]}, UNIV - {[]}}" by (rule quot_empty_subset) + have "UNIV // (\{[]}) \ {{[]}, UNIV - {[]}}" + by (rule quot_empty_subset) with prems show ?case by (auto intro:finite_subset) next case (CHAR c) - have "UNIV // (\{[c]}) \ {{[]},{[c]}, UNIV - {[], [c]}}" by (rule quot_char_subset) + have "UNIV // (\{[c]}) \ {{[]},{[c]}, UNIV - {[], [c]}}" + by (rule quot_char_subset) with prems show ?case by (auto intro:finite_subset) next case (SEQ r\<^isub>1 r\<^isub>2) - have "\finite (UNIV // \(L r\<^isub>1)); finite (UNIV // \(L r\<^isub>2))\ \ finite (UNIV // \(L r\<^isub>1 ;; L r\<^isub>2))" + have "\finite (UNIV // \(L r\<^isub>1)); finite (UNIV // \(L r\<^isub>2))\ + \ finite (UNIV // \(L r\<^isub>1 ;; L r\<^isub>2))" by (erule quot_seq_finiteI, simp) with prems show ?case by simp next case (ALT r\<^isub>1 r\<^isub>2) - have "\finite (UNIV // \(L r\<^isub>1)); finite (UNIV // \(L r\<^isub>2))\ \ finite (UNIV // \(L r\<^isub>1 \ L r\<^isub>2))" + have "\finite (UNIV // \(L r\<^isub>1)); finite (UNIV // \(L r\<^isub>2))\ + \ finite (UNIV // \(L r\<^isub>1 \ L r\<^isub>2))" by (erule quot_union_finiteI, simp) with prems show ?case by simp next case (STAR r) - have "finite (UNIV // \(L r)) \ finite (UNIV // \((L r)\))" + have "finite (UNIV // \(L r)) + \ finite (UNIV // \((L r)\))" by (erule quot_star_finiteI) with prems show ?case by simp qed -end \ No newline at end of file +end +