Myhill_2.thy
changeset 75 d63baacbdb16
parent 63 649ff0b8766d
child 99 54aa3b6dd71c
equal deleted inserted replaced
74:2335fcb96052 75:d63baacbdb16
     1 theory Myhill_2
     1 theory Myhill_2
     2   imports Myhill_1
     2   imports Myhill_1 List_Prefix Prefix_subtract
     3 begin
     3 begin
     4 
     4 
     5 section {* Direction @{text "regular language \<Rightarrow>finite partition"} *}
     5 section {* Direction @{text "regular language \<Rightarrow>finite partition"} *}
     6 
     6 
     7 subsection {* The scheme*}
     7 subsection {* The scheme*}
     8 
     8 
     9 text {* 
     9 text {* 
    10   The following convenient notation @{text "x \<approx>Lang y"} means:
    10   The following convenient notation @{text "x \<approx>A y"} means:
    11   string @{text "x"} and @{text "y"} are equivalent with respect to 
    11   string @{text "x"} and @{text "y"} are equivalent with respect to 
    12   language @{text "Lang"}.
    12   language @{text "A"}.
    13   *}
    13   *}
    14 
    14 
    15 definition
    15 definition
    16   str_eq :: "string \<Rightarrow> lang \<Rightarrow> string \<Rightarrow> bool" ("_ \<approx>_ _")
    16   str_eq :: "string \<Rightarrow> lang \<Rightarrow> string \<Rightarrow> bool" ("_ \<approx>_ _")
    17 where
    17 where
    18   "x \<approx>Lang y \<equiv> (x, y) \<in> (\<approx>Lang)"
    18   "x \<approx>A y \<equiv> (x, y) \<in> (\<approx>A)"
    19 
    19 
    20 text {*
    20 text {*
    21   The main lemma (@{text "rexp_imp_finite"}) is proved by a structural induction over regular expressions.
    21   The main lemma (@{text "rexp_imp_finite"}) is proved by a structural induction over regular expressions.
    22   While base cases (cases for @{const "NULL"}, @{const "EMPTY"}, @{const "CHAR"}) are quite straight forward,
    22   While base cases (cases for @{const "NULL"}, @{const "EMPTY"}, @{const "CHAR"}) are quite straight forward,
    23   the inductive cases are rather involved. What we have when starting to prove these inductive caes is that
    23   the inductive cases are rather involved. What we have when starting to prove these inductive caes is that