|
1 theory Derivatives |
|
2 imports Myhill_2 |
|
3 begin |
|
4 |
|
5 section {* Left-Quotients and Derivatives *} |
|
6 |
|
7 subsection {* Left-Quotients *} |
|
8 |
|
9 definition |
|
10 Delta :: "'a lang \<Rightarrow> 'a lang" |
|
11 where |
|
12 "Delta A = (if [] \<in> A then {[]} else {})" |
|
13 |
|
14 definition |
|
15 Der :: "'a \<Rightarrow> 'a lang \<Rightarrow> 'a lang" |
|
16 where |
|
17 "Der c A \<equiv> {s. [c] @ s \<in> A}" |
|
18 |
|
19 definition |
|
20 Ders :: "'a list \<Rightarrow> 'a lang \<Rightarrow> 'a lang" |
|
21 where |
|
22 "Ders s A \<equiv> {s'. s @ s' \<in> A}" |
|
23 |
|
24 definition |
|
25 Ders_set :: "'a lang \<Rightarrow> 'a lang \<Rightarrow> 'a lang" |
|
26 where |
|
27 "Ders_set A B \<equiv> {s' | s s'. s @ s' \<in> B \<and> s \<in> A}" |
|
28 |
|
29 lemma Ders_set_Ders: |
|
30 shows "Ders_set A B = (\<Union>s \<in> A. Ders s B)" |
|
31 unfolding Ders_set_def Ders_def |
|
32 by auto |
|
33 |
|
34 lemma Der_zero [simp]: |
|
35 shows "Der c {} = {}" |
|
36 unfolding Der_def |
|
37 by auto |
|
38 |
|
39 lemma Der_one [simp]: |
|
40 shows "Der c {[]} = {}" |
|
41 unfolding Der_def |
|
42 by auto |
|
43 |
|
44 lemma Der_atom [simp]: |
|
45 shows "Der c {[d]} = (if c = d then {[]} else {})" |
|
46 unfolding Der_def |
|
47 by auto |
|
48 |
|
49 lemma Der_union [simp]: |
|
50 shows "Der c (A \<union> B) = Der c A \<union> Der c B" |
|
51 unfolding Der_def |
|
52 by auto |
|
53 |
|
54 lemma Der_conc [simp]: |
|
55 shows "Der c (A \<cdot> B) = (Der c A) \<cdot> B \<union> (Delta A \<cdot> Der c B)" |
|
56 unfolding Der_def Delta_def conc_def |
|
57 by (auto simp add: Cons_eq_append_conv) |
|
58 |
|
59 lemma Der_star [simp]: |
|
60 shows "Der c (A\<star>) = (Der c A) \<cdot> A\<star>" |
|
61 proof - |
|
62 have incl: "Delta A \<cdot> Der c (A\<star>) \<subseteq> (Der c A) \<cdot> A\<star>" |
|
63 unfolding Der_def Delta_def |
|
64 apply(auto) |
|
65 apply(drule star_decom) |
|
66 apply(auto simp add: Cons_eq_append_conv) |
|
67 done |
|
68 |
|
69 have "Der c (A\<star>) = Der c ({[]} \<union> A \<cdot> A\<star>)" |
|
70 by (simp only: star_cases[symmetric]) |
|
71 also have "... = Der c (A \<cdot> A\<star>)" |
|
72 by (simp only: Der_union Der_one) (simp) |
|
73 also have "... = (Der c A) \<cdot> A\<star> \<union> (Delta A \<cdot> Der c (A\<star>))" |
|
74 by simp |
|
75 also have "... = (Der c A) \<cdot> A\<star>" |
|
76 using incl by auto |
|
77 finally show "Der c (A\<star>) = (Der c A) \<cdot> A\<star>" . |
|
78 qed |
|
79 |
|
80 |
|
81 lemma Ders_singleton: |
|
82 shows "Ders [c] A = Der c A" |
|
83 unfolding Der_def Ders_def |
|
84 by simp |
|
85 |
|
86 lemma Ders_append: |
|
87 shows "Ders (s1 @ s2) A = Ders s2 (Ders s1 A)" |
|
88 unfolding Ders_def by simp |
|
89 |
|
90 |
|
91 text {* Relating the Myhill-Nerode relation with left-quotients. *} |
|
92 |
|
93 lemma MN_Rel_Ders: |
|
94 shows "x \<approx>A y \<longleftrightarrow> Ders x A = Ders y A" |
|
95 unfolding Ders_def str_eq_def str_eq_rel_def |
|
96 by auto |
|
97 |
|
98 |
|
99 subsection {* Brozowsky's derivatives of regular expressions *} |
|
100 |
|
101 fun |
|
102 nullable :: "'a rexp \<Rightarrow> bool" |
|
103 where |
|
104 "nullable (Zero) = False" |
|
105 | "nullable (One) = True" |
|
106 | "nullable (Atom c) = False" |
|
107 | "nullable (Plus r1 r2) = (nullable r1 \<or> nullable r2)" |
|
108 | "nullable (Times r1 r2) = (nullable r1 \<and> nullable r2)" |
|
109 | "nullable (Star r) = True" |
|
110 |
|
111 fun |
|
112 der :: "'a \<Rightarrow> 'a rexp \<Rightarrow> 'a rexp" |
|
113 where |
|
114 "der c (Zero) = Zero" |
|
115 | "der c (One) = Zero" |
|
116 | "der c (Atom c') = (if c = c' then One else Zero)" |
|
117 | "der c (Plus r1 r2) = Plus (der c r1) (der c r2)" |
|
118 | "der c (Times r1 r2) = Plus (Times (der c r1) r2) (if nullable r1 then der c r2 else Zero)" |
|
119 | "der c (Star r) = Times (der c r) (Star r)" |
|
120 |
|
121 function |
|
122 ders :: "'a list \<Rightarrow> 'a rexp \<Rightarrow> 'a rexp" |
|
123 where |
|
124 "ders [] r = r" |
|
125 | "ders (s @ [c]) r = der c (ders s r)" |
|
126 by (auto) (metis rev_cases) |
|
127 |
|
128 termination |
|
129 by (relation "measure (length o fst)") (auto) |
|
130 |
|
131 lemma Delta_nullable: |
|
132 shows "Delta (lang r) = (if nullable r then {[]} else {})" |
|
133 unfolding Delta_def |
|
134 by (induct r) (auto simp add: conc_def split: if_splits) |
|
135 |
|
136 lemma Der_der: |
|
137 shows "Der c (lang r) = lang (der c r)" |
|
138 by (induct r) (simp_all add: Delta_nullable) |
|
139 |
|
140 lemma Ders_ders: |
|
141 shows "Ders s (lang r) = lang (ders s r)" |
|
142 apply(induct s rule: rev_induct) |
|
143 apply(simp add: Ders_def) |
|
144 apply(simp only: ders.simps) |
|
145 apply(simp only: Ders_append) |
|
146 apply(simp only: Ders_singleton) |
|
147 apply(simp only: Der_der) |
|
148 done |
|
149 |
|
150 |
|
151 subsection {* Antimirov's Partial Derivatives *} |
|
152 |
|
153 abbreviation |
|
154 "Times_set rs r \<equiv> {Times r' r | r'. r' \<in> rs}" |
|
155 |
|
156 fun |
|
157 pder :: "'a \<Rightarrow> 'a rexp \<Rightarrow> ('a rexp) set" |
|
158 where |
|
159 "pder c Zero = {Zero}" |
|
160 | "pder c One = {Zero}" |
|
161 | "pder c (Atom c') = (if c = c' then {One} else {Zero})" |
|
162 | "pder c (Plus r1 r2) = (pder c r1) \<union> (pder c r2)" |
|
163 | "pder c (Times r1 r2) = Times_set (pder c r1) r2 \<union> (if nullable r1 then pder c r2 else {})" |
|
164 | "pder c (Star r) = Times_set (pder c r) (Star r)" |
|
165 |
|
166 abbreviation |
|
167 "pder_set c rs \<equiv> \<Union>r \<in> rs. pder c r" |
|
168 |
|
169 function |
|
170 pders :: "'a list \<Rightarrow> 'a rexp \<Rightarrow> ('a rexp) set" |
|
171 where |
|
172 "pders [] r = {r}" |
|
173 | "pders (s @ [c]) r = pder_set c (pders s r)" |
|
174 by (auto) (metis rev_cases) |
|
175 |
|
176 termination |
|
177 by (relation "measure (length o fst)") (auto) |
|
178 |
|
179 abbreviation |
|
180 "pders_set A r \<equiv> \<Union>s \<in> A. pders s r" |
|
181 |
|
182 lemma pders_append: |
|
183 "pders (s1 @ s2) r = \<Union> (pders s2) ` (pders s1 r)" |
|
184 apply(induct s2 arbitrary: s1 r rule: rev_induct) |
|
185 apply(simp) |
|
186 apply(subst append_assoc[symmetric]) |
|
187 apply(simp only: pders.simps) |
|
188 apply(auto) |
|
189 done |
|
190 |
|
191 lemma pders_singleton: |
|
192 "pders [c] r = pder c r" |
|
193 apply(subst append_Nil[symmetric]) |
|
194 apply(simp only: pders.simps) |
|
195 apply(simp) |
|
196 done |
|
197 |
|
198 lemma pders_set_lang: |
|
199 shows "(\<Union> (lang ` pder_set c rs)) = (\<Union>r \<in> rs. (\<Union>lang ` (pder c r)))" |
|
200 unfolding image_def |
|
201 by auto |
|
202 |
|
203 lemma pders_Zero [simp]: |
|
204 shows "pders s Zero = {Zero}" |
|
205 by (induct s rule: rev_induct) (simp_all) |
|
206 |
|
207 lemma pders_One [simp]: |
|
208 shows "pders s One = (if s = [] then {One} else {Zero})" |
|
209 by (induct s rule: rev_induct) (auto) |
|
210 |
|
211 lemma pders_Atom [simp]: |
|
212 shows "pders s (Atom c) = (if s = [] then {Atom c} else (if s = [c] then {One} else {Zero}))" |
|
213 by (induct s rule: rev_induct) (auto) |
|
214 |
|
215 lemma pders_Plus [simp]: |
|
216 shows "pders s (Plus r1 r2) = (if s = [] then {Plus r1 r2} else (pders s r1) \<union> (pders s r2))" |
|
217 by (induct s rule: rev_induct) (auto) |
|
218 |
|
219 text {* Non-empty suffixes of a string *} |
|
220 |
|
221 definition |
|
222 "Suf s \<equiv> {v. v \<noteq> [] \<and> (\<exists>u. u @ v = s)}" |
|
223 |
|
224 lemma Suf: |
|
225 shows "Suf (s @ [c]) = (Suf s) \<cdot> {[c]} \<union> {[c]}" |
|
226 unfolding Suf_def conc_def |
|
227 by (auto simp add: append_eq_append_conv2 append_eq_Cons_conv) |
|
228 |
|
229 lemma Suf_Union: |
|
230 shows "(\<Union>v \<in> Suf s \<cdot> {[c]}. P v) = (\<Union>v \<in> Suf s. P (v @ [c]))" |
|
231 by (auto simp add: conc_def) |
|
232 |
|
233 lemma pders_Times: |
|
234 shows "pders s (Times r1 r2) \<subseteq> Times_set (pders s r1) r2 \<union> (\<Union>v \<in> Suf s. pders v r2)" |
|
235 proof (induct s rule: rev_induct) |
|
236 case (snoc c s) |
|
237 have ih: "pders s (Times r1 r2) \<subseteq> Times_set (pders s r1) r2 \<union> (\<Union>v \<in> Suf s. pders v r2)" |
|
238 by fact |
|
239 have "pders (s @ [c]) (Times r1 r2) = pder_set c (pders s (Times r1 r2))" by simp |
|
240 also have "\<dots> \<subseteq> pder_set c (Times_set (pders s r1) r2 \<union> (\<Union>v \<in> Suf s. pders v r2))" |
|
241 using ih by (auto) (blast) |
|
242 also have "\<dots> = pder_set c (Times_set (pders s r1) r2) \<union> pder_set c (\<Union>v \<in> Suf s. pders v r2)" |
|
243 by (simp) |
|
244 also have "\<dots> = pder_set c (Times_set (pders s r1) r2) \<union> (\<Union>v \<in> Suf s. pder_set c (pders v r2))" |
|
245 by (simp) |
|
246 also have "\<dots> \<subseteq> pder_set c (Times_set (pders s r1) r2) \<union> (pder c r2) \<union> (\<Union>v \<in> Suf s. pders (v @ [c]) r2)" |
|
247 by (auto) |
|
248 also have "\<dots> \<subseteq> Times_set (pder_set c (pders s r1)) r2 \<union> (pder c r2) \<union> (\<Union>v \<in> Suf s. pders (v @ [c]) r2)" |
|
249 by (auto simp add: if_splits) (blast) |
|
250 also have "\<dots> = Times_set (pders (s @ [c]) r1) r2 \<union> (\<Union>v \<in> Suf (s @ [c]). pders v r2)" |
|
251 apply(subst (2) pders.simps) |
|
252 apply(simp only: Suf) |
|
253 apply(simp add: Suf_Union pders_singleton) |
|
254 apply(auto) |
|
255 done |
|
256 finally show ?case . |
|
257 qed (simp) |
|
258 |
|
259 lemma pders_Star: |
|
260 assumes a: "s \<noteq> []" |
|
261 shows "pders s (Star r) \<subseteq> (\<Union>v \<in> Suf s. Times_set (pders v r) (Star r))" |
|
262 using a |
|
263 proof (induct s rule: rev_induct) |
|
264 case (snoc c s) |
|
265 have ih: "s \<noteq> [] \<Longrightarrow> pders s (Star r) \<subseteq> (\<Union>v\<in>Suf s. Times_set (pders v r) (Star r))" by fact |
|
266 { assume asm: "s \<noteq> []" |
|
267 have "pders (s @ [c]) (Star r) = pder_set c (pders s (Star r))" by simp |
|
268 also have "\<dots> \<subseteq> (pder_set c (\<Union>v\<in>Suf s. Times_set (pders v r) (Star r)))" |
|
269 using ih[OF asm] by blast |
|
270 also have "\<dots> = (\<Union>v\<in>Suf s. pder_set c (Times_set (pders v r) (Star r)))" |
|
271 by simp |
|
272 also have "\<dots> \<subseteq> (\<Union>v\<in>Suf s. (Times_set (pder_set c (pders v r)) (Star r) \<union> pder c (Star r)))" |
|
273 by (auto split: if_splits) |
|
274 also have "\<dots> = (\<Union>v\<in>Suf s. (Times_set (pder_set c (pders v r)) (Star r))) \<union> pder c (Star r)" |
|
275 using asm by (auto simp add: Suf_def) |
|
276 also have "\<dots> = (\<Union>v\<in>Suf s. (Times_set (pders (v @ [c]) r) (Star r))) \<union> (Times_set (pder c r) (Star r))" |
|
277 by simp |
|
278 also have "\<dots> = (\<Union>v\<in>Suf (s @ [c]). (Times_set (pders v r) (Star r)))" |
|
279 apply(simp only: Suf) |
|
280 apply(simp add: Suf_Union pders_singleton) |
|
281 apply(auto) |
|
282 done |
|
283 finally have ?case . |
|
284 } |
|
285 moreover |
|
286 { assume asm: "s = []" |
|
287 then have ?case |
|
288 apply(simp add: pders_singleton Suf_def) |
|
289 apply(auto) |
|
290 apply(rule_tac x="[c]" in exI) |
|
291 apply(simp add: pders_singleton) |
|
292 done |
|
293 } |
|
294 ultimately show ?case by blast |
|
295 qed (simp) |
|
296 |
|
297 abbreviation |
|
298 "UNIV1 \<equiv> UNIV - {[]}" |
|
299 |
|
300 lemma pders_set_Zero: |
|
301 shows "pders_set UNIV1 Zero = {Zero}" |
|
302 by auto |
|
303 |
|
304 lemma pders_set_One: |
|
305 shows "pders_set UNIV1 One = {Zero}" |
|
306 by (auto split: if_splits) |
|
307 |
|
308 lemma pders_set_Atom: |
|
309 shows "pders_set UNIV1 (Atom c) \<subseteq> {One, Zero}" |
|
310 by (auto split: if_splits) |
|
311 |
|
312 lemma pders_set_Plus: |
|
313 shows "pders_set UNIV1 (Plus r1 r2) = pders_set UNIV1 r1 \<union> pders_set UNIV1 r2" |
|
314 by auto |
|
315 |
|
316 lemma pders_set_Times_aux: |
|
317 assumes a: "s \<in> UNIV1" |
|
318 shows "pders_set (Suf s) r2 \<subseteq> pders_set UNIV1 r2" |
|
319 using a by (auto simp add: Suf_def) |
|
320 |
|
321 lemma pders_set_Times: |
|
322 shows "pders_set UNIV1 (Times r1 r2) \<subseteq> Times_set (pders_set UNIV1 r1) r2 \<union> pders_set UNIV1 r2" |
|
323 apply(rule UN_least) |
|
324 apply(rule subset_trans) |
|
325 apply(rule pders_Times) |
|
326 apply(simp) |
|
327 apply(rule conjI) |
|
328 apply(auto)[1] |
|
329 apply(rule subset_trans) |
|
330 apply(rule pders_set_Times_aux) |
|
331 apply(auto) |
|
332 done |
|
333 |
|
334 lemma pders_set_Star: |
|
335 shows "pders_set UNIV1 (Star r) \<subseteq> Times_set (pders_set UNIV1 r) (Star r)" |
|
336 apply(rule UN_least) |
|
337 apply(rule subset_trans) |
|
338 apply(rule pders_Star) |
|
339 apply(simp) |
|
340 apply(simp add: Suf_def) |
|
341 apply(auto) |
|
342 done |
|
343 |
|
344 lemma finite_Times_set: |
|
345 assumes a: "finite A" |
|
346 shows "finite (Times_set A r)" |
|
347 using a by (auto) |
|
348 |
|
349 lemma finite_pders_set_UNIV1: |
|
350 shows "finite (pders_set UNIV1 r)" |
|
351 apply(induct r) |
|
352 apply(simp) |
|
353 apply(simp only: pders_set_One) |
|
354 apply(simp) |
|
355 apply(rule finite_subset) |
|
356 apply(rule pders_set_Atom) |
|
357 apply(simp) |
|
358 apply(simp only: pders_set_Plus) |
|
359 apply(simp) |
|
360 apply(rule finite_subset) |
|
361 apply(rule pders_set_Times) |
|
362 apply(simp only: finite_Times_set finite_Un) |
|
363 apply(simp) |
|
364 apply(rule finite_subset) |
|
365 apply(rule pders_set_Star) |
|
366 apply(simp only: finite_Times_set) |
|
367 done |
|
368 |
|
369 lemma pders_set_UNIV_UNIV1: |
|
370 shows "pders_set UNIV r = pders [] r \<union> pders_set UNIV1 r" |
|
371 apply(auto) |
|
372 apply(rule_tac x="[]" in exI) |
|
373 apply(simp) |
|
374 done |
|
375 |
|
376 lemma finite_pders_set_UNIV: |
|
377 shows "finite (pders_set UNIV r)" |
|
378 unfolding pders_set_UNIV_UNIV1 |
|
379 by (simp add: finite_pders_set_UNIV1) |
|
380 |
|
381 lemma finite_pders_set: |
|
382 shows "finite (pders_set A r)" |
|
383 apply(rule rev_finite_subset) |
|
384 apply(rule_tac r="r" in finite_pders_set_UNIV) |
|
385 apply(auto) |
|
386 done |
|
387 |
|
388 lemma finite_pders: |
|
389 shows "finite (pders s r)" |
|
390 using finite_pders_set[where A="{s}" and r="r"] |
|
391 by simp |
|
392 |
|
393 lemma finite_pders2: |
|
394 shows "finite {pders s r | s. s \<in> A}" |
|
395 proof - |
|
396 have "{pders s r | s. s \<in> A} \<subseteq> Pow (pders_set A r)" by auto |
|
397 moreover |
|
398 have "finite (Pow (pders_set A r))" |
|
399 using finite_pders_set by simp |
|
400 ultimately |
|
401 show "finite {pders s r | s. s \<in> A}" |
|
402 by(rule finite_subset) |
|
403 qed |
|
404 |
|
405 |
|
406 subsection {* Relating left-quotients and partial derivatives *} |
|
407 |
|
408 lemma Der_pder: |
|
409 shows "Der c (lang r) = \<Union> lang ` (pder c r)" |
|
410 by (induct r) (auto simp add: Delta_nullable conc_UNION_distrib) |
|
411 |
|
412 lemma Ders_pders: |
|
413 shows "Ders s (lang r) = \<Union> lang ` (pders s r)" |
|
414 proof (induct s rule: rev_induct) |
|
415 case (snoc c s) |
|
416 have ih: "Ders s (lang r) = \<Union> lang ` (pders s r)" by fact |
|
417 have "Ders (s @ [c]) (lang r) = Ders [c] (Ders s (lang r))" |
|
418 by (simp add: Ders_append) |
|
419 also have "\<dots> = Der c (\<Union> lang ` (pders s r))" using ih |
|
420 by (simp add: Ders_singleton) |
|
421 also have "\<dots> = (\<Union>r\<in>pders s r. Der c (lang r))" |
|
422 unfolding Der_def image_def by auto |
|
423 also have "\<dots> = (\<Union>r\<in>pders s r. (\<Union> lang ` (pder c r)))" |
|
424 by (simp add: Der_pder) |
|
425 also have "\<dots> = (\<Union>lang ` (pder_set c (pders s r)))" |
|
426 by (simp add: pders_set_lang) |
|
427 also have "\<dots> = (\<Union>lang ` (pders (s @ [c]) r))" |
|
428 by simp |
|
429 finally show "Ders (s @ [c]) (lang r) = \<Union> lang ` pders (s @ [c]) r" . |
|
430 qed (simp add: Ders_def) |
|
431 |
|
432 lemma Ders_set_pders_set: |
|
433 shows "Ders_set A (lang r) = (\<Union> lang ` (pders_set A r))" |
|
434 by (simp add: Ders_set_Ders Ders_pders) |
|
435 |
|
436 |
|
437 subsection {* Relating derivatives and partial derivatives *} |
|
438 |
|
439 lemma |
|
440 shows "(\<Union> lang ` (pder c r)) = lang (der c r)" |
|
441 unfolding Der_der[symmetric] Der_pder by simp |
|
442 |
|
443 lemma |
|
444 shows "(\<Union> lang ` (pders s r)) = lang (ders s r)" |
|
445 unfolding Ders_ders[symmetric] Ders_pders by simp |
|
446 |
|
447 |
|
448 |
|
449 subsection {* |
|
450 The second direction of the Myhill-Nerode theorem using |
|
451 partial derivatives. |
|
452 *} |
|
453 |
|
454 lemma Myhill_Nerode3: |
|
455 fixes r::"'a rexp" |
|
456 shows "finite (UNIV // \<approx>(lang r))" |
|
457 proof - |
|
458 have "finite (UNIV // =(\<lambda>x. pders x r)=)" |
|
459 proof - |
|
460 have "range (\<lambda>x. pders x r) = {pders s r | s. s \<in> UNIV}" by auto |
|
461 moreover |
|
462 have "finite {pders s r | s. s \<in> UNIV}" by (rule finite_pders2) |
|
463 ultimately |
|
464 have "finite (range (\<lambda>x. pders x r))" |
|
465 by simp |
|
466 then show "finite (UNIV // =(\<lambda>x. pders x r)=)" |
|
467 by (rule finite_eq_tag_rel) |
|
468 qed |
|
469 moreover |
|
470 have "=(\<lambda>x. pders x r)= \<subseteq> \<approx>(lang r)" |
|
471 unfolding tag_eq_rel_def |
|
472 unfolding str_eq_def2 |
|
473 unfolding MN_Rel_Ders |
|
474 unfolding Ders_pders |
|
475 by auto |
|
476 moreover |
|
477 have "equiv UNIV =(\<lambda>x. pders x r)=" |
|
478 unfolding equiv_def refl_on_def sym_def trans_def |
|
479 unfolding tag_eq_rel_def |
|
480 by auto |
|
481 moreover |
|
482 have "equiv UNIV (\<approx>(lang r))" |
|
483 unfolding equiv_def refl_on_def sym_def trans_def |
|
484 unfolding str_eq_rel_def |
|
485 by auto |
|
486 ultimately show "finite (UNIV // \<approx>(lang r))" |
|
487 by (rule refined_partition_finite) |
|
488 qed |
|
489 |
|
490 end |