diff -r b794db0b79db -r b1258b7d2789 Derivatives.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Derivatives.thy Mon Jul 25 13:33:38 2011 +0000 @@ -0,0 +1,490 @@ +theory Derivatives +imports Myhill_2 +begin + +section {* Left-Quotients and Derivatives *} + +subsection {* Left-Quotients *} + +definition + Delta :: "'a lang \ 'a lang" +where + "Delta A = (if [] \ A then {[]} else {})" + +definition + Der :: "'a \ 'a lang \ 'a lang" +where + "Der c A \ {s. [c] @ s \ A}" + +definition + Ders :: "'a list \ 'a lang \ 'a lang" +where + "Ders s A \ {s'. s @ s' \ A}" + +definition + Ders_set :: "'a lang \ 'a lang \ 'a lang" +where + "Ders_set A B \ {s' | s s'. s @ s' \ B \ s \ A}" + +lemma Ders_set_Ders: + shows "Ders_set A B = (\s \ A. Ders s B)" +unfolding Ders_set_def Ders_def +by auto + +lemma Der_zero [simp]: + shows "Der c {} = {}" +unfolding Der_def +by auto + +lemma Der_one [simp]: + shows "Der c {[]} = {}" +unfolding Der_def +by auto + +lemma Der_atom [simp]: + shows "Der c {[d]} = (if c = d then {[]} else {})" +unfolding Der_def +by auto + +lemma Der_union [simp]: + shows "Der c (A \ B) = Der c A \ Der c B" +unfolding Der_def +by auto + +lemma Der_conc [simp]: + shows "Der c (A \ B) = (Der c A) \ B \ (Delta A \ Der c B)" +unfolding Der_def Delta_def conc_def +by (auto simp add: Cons_eq_append_conv) + +lemma Der_star [simp]: + shows "Der c (A\) = (Der c A) \ A\" +proof - + have incl: "Delta A \ Der c (A\) \ (Der c A) \ A\" + unfolding Der_def Delta_def + apply(auto) + apply(drule star_decom) + apply(auto simp add: Cons_eq_append_conv) + done + + have "Der c (A\) = Der c ({[]} \ A \ A\)" + by (simp only: star_cases[symmetric]) + also have "... = Der c (A \ A\)" + by (simp only: Der_union Der_one) (simp) + also have "... = (Der c A) \ A\ \ (Delta A \ Der c (A\))" + by simp + also have "... = (Der c A) \ A\" + using incl by auto + finally show "Der c (A\) = (Der c A) \ A\" . +qed + + +lemma Ders_singleton: + shows "Ders [c] A = Der c A" +unfolding Der_def Ders_def +by simp + +lemma Ders_append: + shows "Ders (s1 @ s2) A = Ders s2 (Ders s1 A)" +unfolding Ders_def by simp + + +text {* Relating the Myhill-Nerode relation with left-quotients. *} + +lemma MN_Rel_Ders: + shows "x \A y \ Ders x A = Ders y A" +unfolding Ders_def str_eq_def str_eq_rel_def +by auto + + +subsection {* Brozowsky's derivatives of regular expressions *} + +fun + nullable :: "'a rexp \ bool" +where + "nullable (Zero) = False" +| "nullable (One) = True" +| "nullable (Atom c) = False" +| "nullable (Plus r1 r2) = (nullable r1 \ nullable r2)" +| "nullable (Times r1 r2) = (nullable r1 \ nullable r2)" +| "nullable (Star r) = True" + +fun + der :: "'a \ 'a rexp \ 'a rexp" +where + "der c (Zero) = Zero" +| "der c (One) = Zero" +| "der c (Atom c') = (if c = c' then One else Zero)" +| "der c (Plus r1 r2) = Plus (der c r1) (der c r2)" +| "der c (Times r1 r2) = Plus (Times (der c r1) r2) (if nullable r1 then der c r2 else Zero)" +| "der c (Star r) = Times (der c r) (Star r)" + +function + ders :: "'a list \ 'a rexp \ 'a rexp" +where + "ders [] r = r" +| "ders (s @ [c]) r = der c (ders s r)" +by (auto) (metis rev_cases) + +termination + by (relation "measure (length o fst)") (auto) + +lemma Delta_nullable: + shows "Delta (lang r) = (if nullable r then {[]} else {})" +unfolding Delta_def +by (induct r) (auto simp add: conc_def split: if_splits) + +lemma Der_der: + shows "Der c (lang r) = lang (der c r)" +by (induct r) (simp_all add: Delta_nullable) + +lemma Ders_ders: + shows "Ders s (lang r) = lang (ders s r)" +apply(induct s rule: rev_induct) +apply(simp add: Ders_def) +apply(simp only: ders.simps) +apply(simp only: Ders_append) +apply(simp only: Ders_singleton) +apply(simp only: Der_der) +done + + +subsection {* Antimirov's Partial Derivatives *} + +abbreviation + "Times_set rs r \ {Times r' r | r'. r' \ rs}" + +fun + pder :: "'a \ 'a rexp \ ('a rexp) set" +where + "pder c Zero = {Zero}" +| "pder c One = {Zero}" +| "pder c (Atom c') = (if c = c' then {One} else {Zero})" +| "pder c (Plus r1 r2) = (pder c r1) \ (pder c r2)" +| "pder c (Times r1 r2) = Times_set (pder c r1) r2 \ (if nullable r1 then pder c r2 else {})" +| "pder c (Star r) = Times_set (pder c r) (Star r)" + +abbreviation + "pder_set c rs \ \r \ rs. pder c r" + +function + pders :: "'a list \ 'a rexp \ ('a rexp) set" +where + "pders [] r = {r}" +| "pders (s @ [c]) r = pder_set c (pders s r)" +by (auto) (metis rev_cases) + +termination + by (relation "measure (length o fst)") (auto) + +abbreviation + "pders_set A r \ \s \ A. pders s r" + +lemma pders_append: + "pders (s1 @ s2) r = \ (pders s2) ` (pders s1 r)" +apply(induct s2 arbitrary: s1 r rule: rev_induct) +apply(simp) +apply(subst append_assoc[symmetric]) +apply(simp only: pders.simps) +apply(auto) +done + +lemma pders_singleton: + "pders [c] r = pder c r" +apply(subst append_Nil[symmetric]) +apply(simp only: pders.simps) +apply(simp) +done + +lemma pders_set_lang: + shows "(\ (lang ` pder_set c rs)) = (\r \ rs. (\lang ` (pder c r)))" +unfolding image_def +by auto + +lemma pders_Zero [simp]: + shows "pders s Zero = {Zero}" +by (induct s rule: rev_induct) (simp_all) + +lemma pders_One [simp]: + shows "pders s One = (if s = [] then {One} else {Zero})" +by (induct s rule: rev_induct) (auto) + +lemma pders_Atom [simp]: + shows "pders s (Atom c) = (if s = [] then {Atom c} else (if s = [c] then {One} else {Zero}))" +by (induct s rule: rev_induct) (auto) + +lemma pders_Plus [simp]: + shows "pders s (Plus r1 r2) = (if s = [] then {Plus r1 r2} else (pders s r1) \ (pders s r2))" +by (induct s rule: rev_induct) (auto) + +text {* Non-empty suffixes of a string *} + +definition + "Suf s \ {v. v \ [] \ (\u. u @ v = s)}" + +lemma Suf: + shows "Suf (s @ [c]) = (Suf s) \ {[c]} \ {[c]}" +unfolding Suf_def conc_def +by (auto simp add: append_eq_append_conv2 append_eq_Cons_conv) + +lemma Suf_Union: + shows "(\v \ Suf s \ {[c]}. P v) = (\v \ Suf s. P (v @ [c]))" +by (auto simp add: conc_def) + +lemma pders_Times: + shows "pders s (Times r1 r2) \ Times_set (pders s r1) r2 \ (\v \ Suf s. pders v r2)" +proof (induct s rule: rev_induct) + case (snoc c s) + have ih: "pders s (Times r1 r2) \ Times_set (pders s r1) r2 \ (\v \ Suf s. pders v r2)" + by fact + have "pders (s @ [c]) (Times r1 r2) = pder_set c (pders s (Times r1 r2))" by simp + also have "\ \ pder_set c (Times_set (pders s r1) r2 \ (\v \ Suf s. pders v r2))" + using ih by (auto) (blast) + also have "\ = pder_set c (Times_set (pders s r1) r2) \ pder_set c (\v \ Suf s. pders v r2)" + by (simp) + also have "\ = pder_set c (Times_set (pders s r1) r2) \ (\v \ Suf s. pder_set c (pders v r2))" + by (simp) + also have "\ \ pder_set c (Times_set (pders s r1) r2) \ (pder c r2) \ (\v \ Suf s. pders (v @ [c]) r2)" + by (auto) + also have "\ \ Times_set (pder_set c (pders s r1)) r2 \ (pder c r2) \ (\v \ Suf s. pders (v @ [c]) r2)" + by (auto simp add: if_splits) (blast) + also have "\ = Times_set (pders (s @ [c]) r1) r2 \ (\v \ Suf (s @ [c]). pders v r2)" + apply(subst (2) pders.simps) + apply(simp only: Suf) + apply(simp add: Suf_Union pders_singleton) + apply(auto) + done + finally show ?case . +qed (simp) + +lemma pders_Star: + assumes a: "s \ []" + shows "pders s (Star r) \ (\v \ Suf s. Times_set (pders v r) (Star r))" +using a +proof (induct s rule: rev_induct) + case (snoc c s) + have ih: "s \ [] \ pders s (Star r) \ (\v\Suf s. Times_set (pders v r) (Star r))" by fact + { assume asm: "s \ []" + have "pders (s @ [c]) (Star r) = pder_set c (pders s (Star r))" by simp + also have "\ \ (pder_set c (\v\Suf s. Times_set (pders v r) (Star r)))" + using ih[OF asm] by blast + also have "\ = (\v\Suf s. pder_set c (Times_set (pders v r) (Star r)))" + by simp + also have "\ \ (\v\Suf s. (Times_set (pder_set c (pders v r)) (Star r) \ pder c (Star r)))" + by (auto split: if_splits) + also have "\ = (\v\Suf s. (Times_set (pder_set c (pders v r)) (Star r))) \ pder c (Star r)" + using asm by (auto simp add: Suf_def) + also have "\ = (\v\Suf s. (Times_set (pders (v @ [c]) r) (Star r))) \ (Times_set (pder c r) (Star r))" + by simp + also have "\ = (\v\Suf (s @ [c]). (Times_set (pders v r) (Star r)))" + apply(simp only: Suf) + apply(simp add: Suf_Union pders_singleton) + apply(auto) + done + finally have ?case . + } + moreover + { assume asm: "s = []" + then have ?case + apply(simp add: pders_singleton Suf_def) + apply(auto) + apply(rule_tac x="[c]" in exI) + apply(simp add: pders_singleton) + done + } + ultimately show ?case by blast +qed (simp) + +abbreviation + "UNIV1 \ UNIV - {[]}" + +lemma pders_set_Zero: + shows "pders_set UNIV1 Zero = {Zero}" +by auto + +lemma pders_set_One: + shows "pders_set UNIV1 One = {Zero}" +by (auto split: if_splits) + +lemma pders_set_Atom: + shows "pders_set UNIV1 (Atom c) \ {One, Zero}" +by (auto split: if_splits) + +lemma pders_set_Plus: + shows "pders_set UNIV1 (Plus r1 r2) = pders_set UNIV1 r1 \ pders_set UNIV1 r2" +by auto + +lemma pders_set_Times_aux: + assumes a: "s \ UNIV1" + shows "pders_set (Suf s) r2 \ pders_set UNIV1 r2" +using a by (auto simp add: Suf_def) + +lemma pders_set_Times: + shows "pders_set UNIV1 (Times r1 r2) \ Times_set (pders_set UNIV1 r1) r2 \ pders_set UNIV1 r2" +apply(rule UN_least) +apply(rule subset_trans) +apply(rule pders_Times) +apply(simp) +apply(rule conjI) +apply(auto)[1] +apply(rule subset_trans) +apply(rule pders_set_Times_aux) +apply(auto) +done + +lemma pders_set_Star: + shows "pders_set UNIV1 (Star r) \ Times_set (pders_set UNIV1 r) (Star r)" +apply(rule UN_least) +apply(rule subset_trans) +apply(rule pders_Star) +apply(simp) +apply(simp add: Suf_def) +apply(auto) +done + +lemma finite_Times_set: + assumes a: "finite A" + shows "finite (Times_set A r)" +using a by (auto) + +lemma finite_pders_set_UNIV1: + shows "finite (pders_set UNIV1 r)" +apply(induct r) +apply(simp) +apply(simp only: pders_set_One) +apply(simp) +apply(rule finite_subset) +apply(rule pders_set_Atom) +apply(simp) +apply(simp only: pders_set_Plus) +apply(simp) +apply(rule finite_subset) +apply(rule pders_set_Times) +apply(simp only: finite_Times_set finite_Un) +apply(simp) +apply(rule finite_subset) +apply(rule pders_set_Star) +apply(simp only: finite_Times_set) +done + +lemma pders_set_UNIV_UNIV1: + shows "pders_set UNIV r = pders [] r \ pders_set UNIV1 r" +apply(auto) +apply(rule_tac x="[]" in exI) +apply(simp) +done + +lemma finite_pders_set_UNIV: + shows "finite (pders_set UNIV r)" +unfolding pders_set_UNIV_UNIV1 +by (simp add: finite_pders_set_UNIV1) + +lemma finite_pders_set: + shows "finite (pders_set A r)" +apply(rule rev_finite_subset) +apply(rule_tac r="r" in finite_pders_set_UNIV) +apply(auto) +done + +lemma finite_pders: + shows "finite (pders s r)" +using finite_pders_set[where A="{s}" and r="r"] +by simp + +lemma finite_pders2: + shows "finite {pders s r | s. s \ A}" +proof - + have "{pders s r | s. s \ A} \ Pow (pders_set A r)" by auto + moreover + have "finite (Pow (pders_set A r))" + using finite_pders_set by simp + ultimately + show "finite {pders s r | s. s \ A}" + by(rule finite_subset) +qed + + +subsection {* Relating left-quotients and partial derivatives *} + +lemma Der_pder: + shows "Der c (lang r) = \ lang ` (pder c r)" +by (induct r) (auto simp add: Delta_nullable conc_UNION_distrib) + +lemma Ders_pders: + shows "Ders s (lang r) = \ lang ` (pders s r)" +proof (induct s rule: rev_induct) + case (snoc c s) + have ih: "Ders s (lang r) = \ lang ` (pders s r)" by fact + have "Ders (s @ [c]) (lang r) = Ders [c] (Ders s (lang r))" + by (simp add: Ders_append) + also have "\ = Der c (\ lang ` (pders s r))" using ih + by (simp add: Ders_singleton) + also have "\ = (\r\pders s r. Der c (lang r))" + unfolding Der_def image_def by auto + also have "\ = (\r\pders s r. (\ lang ` (pder c r)))" + by (simp add: Der_pder) + also have "\ = (\lang ` (pder_set c (pders s r)))" + by (simp add: pders_set_lang) + also have "\ = (\lang ` (pders (s @ [c]) r))" + by simp + finally show "Ders (s @ [c]) (lang r) = \ lang ` pders (s @ [c]) r" . +qed (simp add: Ders_def) + +lemma Ders_set_pders_set: + shows "Ders_set A (lang r) = (\ lang ` (pders_set A r))" +by (simp add: Ders_set_Ders Ders_pders) + + +subsection {* Relating derivatives and partial derivatives *} + +lemma + shows "(\ lang ` (pder c r)) = lang (der c r)" +unfolding Der_der[symmetric] Der_pder by simp + +lemma + shows "(\ lang ` (pders s r)) = lang (ders s r)" +unfolding Ders_ders[symmetric] Ders_pders by simp + + + +subsection {* + The second direction of the Myhill-Nerode theorem using + partial derivatives. +*} + +lemma Myhill_Nerode3: + fixes r::"'a rexp" + shows "finite (UNIV // \(lang r))" +proof - + have "finite (UNIV // =(\x. pders x r)=)" + proof - + have "range (\x. pders x r) = {pders s r | s. s \ UNIV}" by auto + moreover + have "finite {pders s r | s. s \ UNIV}" by (rule finite_pders2) + ultimately + have "finite (range (\x. pders x r))" + by simp + then show "finite (UNIV // =(\x. pders x r)=)" + by (rule finite_eq_tag_rel) + qed + moreover + have "=(\x. pders x r)= \ \(lang r)" + unfolding tag_eq_rel_def + unfolding str_eq_def2 + unfolding MN_Rel_Ders + unfolding Ders_pders + by auto + moreover + have "equiv UNIV =(\x. pders x r)=" + unfolding equiv_def refl_on_def sym_def trans_def + unfolding tag_eq_rel_def + by auto + moreover + have "equiv UNIV (\(lang r))" + unfolding equiv_def refl_on_def sym_def trans_def + unfolding str_eq_rel_def + by auto + ultimately show "finite (UNIV // \(lang r))" + by (rule refined_partition_finite) +qed + +end \ No newline at end of file