Derivatives.thy
changeset 170 b1258b7d2789
child 174 2b414a8a7132
equal deleted inserted replaced
169:b794db0b79db 170:b1258b7d2789
       
     1 theory Derivatives
       
     2 imports Myhill_2
       
     3 begin
       
     4 
       
     5 section {* Left-Quotients and Derivatives *}
       
     6 
       
     7 subsection {* Left-Quotients *}
       
     8 
       
     9 definition
       
    10   Delta :: "'a lang \<Rightarrow> 'a lang"
       
    11 where
       
    12   "Delta A = (if [] \<in> A then {[]} else {})"
       
    13 
       
    14 definition
       
    15   Der :: "'a \<Rightarrow> 'a lang \<Rightarrow> 'a lang"
       
    16 where
       
    17   "Der c A \<equiv> {s. [c] @ s \<in> A}"
       
    18 
       
    19 definition
       
    20   Ders :: "'a list \<Rightarrow> 'a lang \<Rightarrow> 'a lang"
       
    21 where
       
    22   "Ders s A \<equiv> {s'. s @ s' \<in> A}"
       
    23 
       
    24 definition
       
    25   Ders_set :: "'a lang \<Rightarrow> 'a lang \<Rightarrow> 'a lang"
       
    26 where
       
    27   "Ders_set A B \<equiv> {s' | s s'. s @ s' \<in> B \<and> s \<in> A}"
       
    28 
       
    29 lemma Ders_set_Ders:
       
    30   shows "Ders_set A B = (\<Union>s \<in> A. Ders s B)"
       
    31 unfolding Ders_set_def Ders_def
       
    32 by auto
       
    33 
       
    34 lemma Der_zero [simp]:
       
    35   shows "Der c {} = {}"
       
    36 unfolding Der_def
       
    37 by auto
       
    38 
       
    39 lemma Der_one [simp]:
       
    40   shows "Der c {[]} = {}"
       
    41 unfolding Der_def
       
    42 by auto
       
    43 
       
    44 lemma Der_atom [simp]:
       
    45   shows "Der c {[d]} = (if c = d then {[]} else {})"
       
    46 unfolding Der_def
       
    47 by auto
       
    48 
       
    49 lemma Der_union [simp]:
       
    50   shows "Der c (A \<union> B) = Der c A \<union> Der c B"
       
    51 unfolding Der_def
       
    52 by auto
       
    53 
       
    54 lemma Der_conc [simp]:
       
    55   shows "Der c (A \<cdot> B) = (Der c A) \<cdot> B \<union> (Delta A \<cdot> Der c B)"
       
    56 unfolding Der_def Delta_def conc_def
       
    57 by (auto simp add: Cons_eq_append_conv)
       
    58 
       
    59 lemma Der_star [simp]:
       
    60   shows "Der c (A\<star>) = (Der c A) \<cdot> A\<star>"
       
    61 proof -
       
    62   have incl: "Delta A \<cdot> Der c (A\<star>) \<subseteq> (Der c A) \<cdot> A\<star>"
       
    63     unfolding Der_def Delta_def 
       
    64     apply(auto)
       
    65     apply(drule star_decom)
       
    66     apply(auto simp add: Cons_eq_append_conv)
       
    67     done
       
    68     
       
    69   have "Der c (A\<star>) = Der c ({[]} \<union> A \<cdot> A\<star>)"
       
    70     by (simp only: star_cases[symmetric])
       
    71   also have "... = Der c (A \<cdot> A\<star>)"
       
    72     by (simp only: Der_union Der_one) (simp)
       
    73   also have "... = (Der c A) \<cdot> A\<star> \<union> (Delta A \<cdot> Der c (A\<star>))"
       
    74     by simp
       
    75   also have "... =  (Der c A) \<cdot> A\<star>"
       
    76     using incl by auto
       
    77   finally show "Der c (A\<star>) = (Der c A) \<cdot> A\<star>" . 
       
    78 qed
       
    79 
       
    80 
       
    81 lemma Ders_singleton:
       
    82   shows "Ders [c] A = Der c A"
       
    83 unfolding Der_def Ders_def
       
    84 by simp
       
    85 
       
    86 lemma Ders_append:
       
    87   shows "Ders (s1 @ s2) A = Ders s2 (Ders s1 A)"
       
    88 unfolding Ders_def by simp 
       
    89 
       
    90 
       
    91 text {* Relating the Myhill-Nerode relation with left-quotients. *}
       
    92 
       
    93 lemma MN_Rel_Ders:
       
    94   shows "x \<approx>A y \<longleftrightarrow> Ders x A = Ders y A"
       
    95 unfolding Ders_def str_eq_def str_eq_rel_def
       
    96 by auto
       
    97 
       
    98 
       
    99 subsection {* Brozowsky's derivatives of regular expressions *}
       
   100 
       
   101 fun
       
   102   nullable :: "'a rexp \<Rightarrow> bool"
       
   103 where
       
   104   "nullable (Zero) = False"
       
   105 | "nullable (One) = True"
       
   106 | "nullable (Atom c) = False"
       
   107 | "nullable (Plus r1 r2) = (nullable r1 \<or> nullable r2)"
       
   108 | "nullable (Times r1 r2) = (nullable r1 \<and> nullable r2)"
       
   109 | "nullable (Star r) = True"
       
   110 
       
   111 fun
       
   112   der :: "'a \<Rightarrow> 'a rexp \<Rightarrow> 'a rexp"
       
   113 where
       
   114   "der c (Zero) = Zero"
       
   115 | "der c (One) = Zero"
       
   116 | "der c (Atom c') = (if c = c' then One else Zero)"
       
   117 | "der c (Plus r1 r2) = Plus (der c r1) (der c r2)"
       
   118 | "der c (Times r1 r2) = Plus (Times (der c r1) r2) (if nullable r1 then der c r2 else Zero)"
       
   119 | "der c (Star r) = Times (der c r) (Star r)"
       
   120 
       
   121 function 
       
   122   ders :: "'a list \<Rightarrow> 'a rexp \<Rightarrow> 'a rexp"
       
   123 where
       
   124   "ders [] r = r"
       
   125 | "ders (s @ [c]) r = der c (ders s r)"
       
   126 by (auto) (metis rev_cases)
       
   127 
       
   128 termination
       
   129   by (relation "measure (length o fst)") (auto)
       
   130 
       
   131 lemma Delta_nullable:
       
   132   shows "Delta (lang r) = (if nullable r then {[]} else {})"
       
   133 unfolding Delta_def
       
   134 by (induct r) (auto simp add: conc_def split: if_splits)
       
   135 
       
   136 lemma Der_der:
       
   137   shows "Der c (lang r) = lang (der c r)"
       
   138 by (induct r) (simp_all add: Delta_nullable)
       
   139 
       
   140 lemma Ders_ders:
       
   141   shows "Ders s (lang r) = lang (ders s r)"
       
   142 apply(induct s rule: rev_induct)
       
   143 apply(simp add: Ders_def)
       
   144 apply(simp only: ders.simps)
       
   145 apply(simp only: Ders_append)
       
   146 apply(simp only: Ders_singleton)
       
   147 apply(simp only: Der_der)
       
   148 done
       
   149 
       
   150 
       
   151 subsection {* Antimirov's Partial Derivatives *}
       
   152 
       
   153 abbreviation
       
   154   "Times_set rs r \<equiv> {Times r' r | r'. r' \<in> rs}"
       
   155 
       
   156 fun
       
   157   pder :: "'a \<Rightarrow> 'a rexp \<Rightarrow> ('a rexp) set"
       
   158 where
       
   159   "pder c Zero = {Zero}"
       
   160 | "pder c One = {Zero}"
       
   161 | "pder c (Atom c') = (if c = c' then {One} else {Zero})"
       
   162 | "pder c (Plus r1 r2) = (pder c r1) \<union> (pder c r2)"
       
   163 | "pder c (Times r1 r2) = Times_set (pder c r1) r2 \<union> (if nullable r1 then pder c r2 else {})"
       
   164 | "pder c (Star r) = Times_set (pder c r) (Star r)"
       
   165 
       
   166 abbreviation
       
   167   "pder_set c rs \<equiv> \<Union>r \<in> rs. pder c r"
       
   168 
       
   169 function 
       
   170   pders :: "'a list \<Rightarrow> 'a rexp \<Rightarrow> ('a rexp) set"
       
   171 where
       
   172   "pders [] r = {r}"
       
   173 | "pders (s @ [c]) r = pder_set c (pders s r)"
       
   174 by (auto) (metis rev_cases)
       
   175 
       
   176 termination
       
   177   by (relation "measure (length o fst)") (auto)
       
   178 
       
   179 abbreviation
       
   180   "pders_set A r \<equiv> \<Union>s \<in> A. pders s r"
       
   181 
       
   182 lemma pders_append:
       
   183   "pders (s1 @ s2) r = \<Union> (pders s2) ` (pders s1 r)"
       
   184 apply(induct s2 arbitrary: s1 r rule: rev_induct)
       
   185 apply(simp)
       
   186 apply(subst append_assoc[symmetric])
       
   187 apply(simp only: pders.simps)
       
   188 apply(auto)
       
   189 done
       
   190 
       
   191 lemma pders_singleton:
       
   192   "pders [c] r = pder c r"
       
   193 apply(subst append_Nil[symmetric])
       
   194 apply(simp only: pders.simps)
       
   195 apply(simp)
       
   196 done
       
   197 
       
   198 lemma pders_set_lang:
       
   199   shows "(\<Union> (lang ` pder_set c rs)) = (\<Union>r \<in> rs. (\<Union>lang ` (pder c r)))"
       
   200 unfolding image_def 
       
   201 by auto
       
   202 
       
   203 lemma pders_Zero [simp]:
       
   204   shows "pders s Zero = {Zero}"
       
   205 by (induct s rule: rev_induct) (simp_all)
       
   206 
       
   207 lemma pders_One [simp]:
       
   208   shows "pders s One = (if s = [] then {One} else {Zero})"
       
   209 by (induct s rule: rev_induct) (auto)
       
   210 
       
   211 lemma pders_Atom [simp]:
       
   212   shows "pders s (Atom c) = (if s = [] then {Atom c} else (if s = [c] then {One} else {Zero}))"
       
   213 by (induct s rule: rev_induct) (auto)
       
   214 
       
   215 lemma pders_Plus [simp]:
       
   216   shows "pders s (Plus r1 r2) = (if s = [] then {Plus r1 r2} else (pders s r1) \<union> (pders s r2))"
       
   217 by (induct s rule: rev_induct) (auto)
       
   218 
       
   219 text {* Non-empty suffixes of a string *}
       
   220 
       
   221 definition
       
   222   "Suf s \<equiv> {v. v \<noteq> [] \<and> (\<exists>u. u @ v = s)}"
       
   223 
       
   224 lemma Suf:
       
   225   shows "Suf (s @ [c]) = (Suf s) \<cdot> {[c]} \<union> {[c]}"
       
   226 unfolding Suf_def conc_def
       
   227 by (auto simp add: append_eq_append_conv2 append_eq_Cons_conv)
       
   228 
       
   229 lemma Suf_Union:
       
   230   shows "(\<Union>v \<in> Suf s \<cdot> {[c]}. P v) = (\<Union>v \<in> Suf s. P (v @ [c]))"
       
   231 by (auto simp add: conc_def)
       
   232 
       
   233 lemma pders_Times:
       
   234   shows "pders s (Times r1 r2) \<subseteq> Times_set (pders s r1) r2 \<union> (\<Union>v \<in> Suf s. pders v r2)"
       
   235 proof (induct s rule: rev_induct)
       
   236   case (snoc c s)
       
   237   have ih: "pders s (Times r1 r2) \<subseteq> Times_set (pders s r1) r2 \<union> (\<Union>v \<in> Suf s. pders v r2)" 
       
   238     by fact
       
   239   have "pders (s @ [c]) (Times r1 r2) = pder_set c (pders s (Times r1 r2))" by simp
       
   240   also have "\<dots> \<subseteq> pder_set c (Times_set (pders s r1) r2 \<union> (\<Union>v \<in> Suf s. pders v r2))"
       
   241     using ih by (auto) (blast)
       
   242   also have "\<dots> = pder_set c (Times_set (pders s r1) r2) \<union> pder_set c (\<Union>v \<in> Suf s. pders v r2)"
       
   243     by (simp)
       
   244   also have "\<dots> = pder_set c (Times_set (pders s r1) r2) \<union> (\<Union>v \<in> Suf s. pder_set c (pders v r2))"
       
   245     by (simp)
       
   246   also have "\<dots> \<subseteq> pder_set c (Times_set (pders s r1) r2) \<union> (pder c r2) \<union> (\<Union>v \<in> Suf s. pders (v @ [c]) r2)"
       
   247     by (auto)
       
   248   also have "\<dots> \<subseteq> Times_set (pder_set c (pders s r1)) r2 \<union> (pder c r2) \<union> (\<Union>v \<in> Suf s. pders (v @ [c]) r2)"
       
   249     by (auto simp add: if_splits) (blast)
       
   250   also have "\<dots> = Times_set (pders (s @ [c]) r1) r2 \<union> (\<Union>v \<in> Suf (s @ [c]). pders v r2)"
       
   251     apply(subst (2) pders.simps)
       
   252     apply(simp only: Suf)
       
   253     apply(simp add: Suf_Union pders_singleton)
       
   254     apply(auto)
       
   255     done
       
   256   finally show ?case .
       
   257 qed (simp)
       
   258 
       
   259 lemma pders_Star:
       
   260   assumes a: "s \<noteq> []"
       
   261   shows "pders s (Star r) \<subseteq> (\<Union>v \<in> Suf s. Times_set (pders v r) (Star r))"
       
   262 using a
       
   263 proof (induct s rule: rev_induct)
       
   264   case (snoc c s)
       
   265   have ih: "s \<noteq> [] \<Longrightarrow> pders s (Star r) \<subseteq> (\<Union>v\<in>Suf s. Times_set (pders v r) (Star r))" by fact
       
   266   { assume asm: "s \<noteq> []"
       
   267     have "pders (s @ [c]) (Star r) = pder_set c (pders s (Star r))" by simp
       
   268     also have "\<dots> \<subseteq> (pder_set c (\<Union>v\<in>Suf s. Times_set (pders v r) (Star r)))"
       
   269       using ih[OF asm] by blast
       
   270     also have "\<dots> = (\<Union>v\<in>Suf s. pder_set c (Times_set (pders v r) (Star r)))"
       
   271       by simp
       
   272     also have "\<dots> \<subseteq> (\<Union>v\<in>Suf s. (Times_set (pder_set c (pders v r)) (Star r) \<union> pder c (Star r)))"
       
   273       by (auto split: if_splits) 
       
   274     also have "\<dots> = (\<Union>v\<in>Suf s. (Times_set (pder_set c (pders v r)) (Star r))) \<union> pder c (Star r)"
       
   275       using asm by (auto simp add: Suf_def)
       
   276     also have "\<dots> = (\<Union>v\<in>Suf s. (Times_set (pders (v @ [c]) r) (Star r))) \<union> (Times_set (pder c r) (Star r))"
       
   277       by simp
       
   278     also have "\<dots> = (\<Union>v\<in>Suf (s @ [c]). (Times_set (pders v r) (Star r)))"
       
   279       apply(simp only: Suf)
       
   280       apply(simp add: Suf_Union pders_singleton)
       
   281       apply(auto)
       
   282       done
       
   283     finally have ?case .
       
   284   }
       
   285   moreover
       
   286   { assume asm: "s = []"
       
   287     then have ?case
       
   288       apply(simp add: pders_singleton Suf_def)
       
   289       apply(auto)
       
   290       apply(rule_tac x="[c]" in exI)
       
   291       apply(simp add: pders_singleton)
       
   292       done
       
   293   }
       
   294   ultimately show ?case by blast
       
   295 qed (simp)
       
   296 
       
   297 abbreviation 
       
   298   "UNIV1 \<equiv> UNIV - {[]}"
       
   299 
       
   300 lemma pders_set_Zero:
       
   301   shows "pders_set UNIV1 Zero = {Zero}"
       
   302 by auto
       
   303 
       
   304 lemma pders_set_One:
       
   305   shows "pders_set UNIV1 One = {Zero}"
       
   306 by (auto split: if_splits)
       
   307 
       
   308 lemma pders_set_Atom:
       
   309   shows "pders_set UNIV1 (Atom c) \<subseteq> {One, Zero}"
       
   310 by (auto split: if_splits)
       
   311 
       
   312 lemma pders_set_Plus:
       
   313   shows "pders_set UNIV1 (Plus r1 r2) = pders_set UNIV1 r1 \<union> pders_set UNIV1 r2"
       
   314 by auto
       
   315 
       
   316 lemma pders_set_Times_aux:
       
   317   assumes a: "s \<in> UNIV1"
       
   318   shows "pders_set (Suf s) r2 \<subseteq> pders_set UNIV1 r2"
       
   319 using a by (auto simp add: Suf_def)
       
   320 
       
   321 lemma pders_set_Times:
       
   322   shows "pders_set UNIV1 (Times r1 r2) \<subseteq> Times_set (pders_set UNIV1 r1) r2 \<union> pders_set UNIV1 r2"
       
   323 apply(rule UN_least)
       
   324 apply(rule subset_trans)
       
   325 apply(rule pders_Times)
       
   326 apply(simp)
       
   327 apply(rule conjI) 
       
   328 apply(auto)[1]
       
   329 apply(rule subset_trans)
       
   330 apply(rule pders_set_Times_aux)
       
   331 apply(auto)
       
   332 done
       
   333 
       
   334 lemma pders_set_Star:
       
   335   shows "pders_set UNIV1 (Star r) \<subseteq> Times_set (pders_set UNIV1 r) (Star r)"
       
   336 apply(rule UN_least)
       
   337 apply(rule subset_trans)
       
   338 apply(rule pders_Star)
       
   339 apply(simp)
       
   340 apply(simp add: Suf_def)
       
   341 apply(auto)
       
   342 done
       
   343 
       
   344 lemma finite_Times_set:
       
   345   assumes a: "finite A"
       
   346   shows "finite (Times_set A r)"
       
   347 using a by (auto)
       
   348 
       
   349 lemma finite_pders_set_UNIV1:
       
   350   shows "finite (pders_set UNIV1 r)"
       
   351 apply(induct r)
       
   352 apply(simp)
       
   353 apply(simp only: pders_set_One)
       
   354 apply(simp)
       
   355 apply(rule finite_subset)
       
   356 apply(rule pders_set_Atom)
       
   357 apply(simp)
       
   358 apply(simp only: pders_set_Plus)
       
   359 apply(simp)
       
   360 apply(rule finite_subset)
       
   361 apply(rule pders_set_Times)
       
   362 apply(simp only: finite_Times_set finite_Un)
       
   363 apply(simp)
       
   364 apply(rule finite_subset)
       
   365 apply(rule pders_set_Star)
       
   366 apply(simp only: finite_Times_set)
       
   367 done
       
   368     
       
   369 lemma pders_set_UNIV_UNIV1:
       
   370   shows "pders_set UNIV r = pders [] r \<union> pders_set UNIV1 r"
       
   371 apply(auto)
       
   372 apply(rule_tac x="[]" in exI)
       
   373 apply(simp)
       
   374 done
       
   375 
       
   376 lemma finite_pders_set_UNIV:
       
   377   shows "finite (pders_set UNIV r)"
       
   378 unfolding pders_set_UNIV_UNIV1
       
   379 by (simp add: finite_pders_set_UNIV1)
       
   380 
       
   381 lemma finite_pders_set:
       
   382   shows "finite (pders_set A r)"
       
   383 apply(rule rev_finite_subset)
       
   384 apply(rule_tac r="r" in finite_pders_set_UNIV)
       
   385 apply(auto)
       
   386 done
       
   387 
       
   388 lemma finite_pders:
       
   389   shows "finite (pders s r)"
       
   390 using finite_pders_set[where A="{s}" and r="r"]
       
   391 by simp
       
   392 
       
   393 lemma finite_pders2:
       
   394   shows "finite {pders s r | s. s \<in> A}"
       
   395 proof -
       
   396   have "{pders s r | s. s \<in> A} \<subseteq> Pow (pders_set A r)" by auto
       
   397   moreover
       
   398   have "finite (Pow (pders_set A r))"
       
   399     using finite_pders_set by simp
       
   400   ultimately 
       
   401   show "finite {pders s r | s. s \<in> A}"
       
   402     by(rule finite_subset)
       
   403 qed
       
   404 
       
   405 
       
   406 subsection {* Relating left-quotients and partial derivatives *}
       
   407 
       
   408 lemma Der_pder:
       
   409   shows "Der c (lang r) = \<Union> lang ` (pder c r)"
       
   410 by (induct r) (auto simp add: Delta_nullable conc_UNION_distrib)
       
   411 
       
   412 lemma Ders_pders:
       
   413   shows "Ders s (lang r) = \<Union> lang ` (pders s r)"
       
   414 proof (induct s rule: rev_induct)
       
   415   case (snoc c s)
       
   416   have ih: "Ders s (lang r) = \<Union> lang ` (pders s r)" by fact
       
   417   have "Ders (s @ [c]) (lang r) = Ders [c] (Ders s (lang r))"
       
   418     by (simp add: Ders_append)
       
   419   also have "\<dots> = Der c (\<Union> lang ` (pders s r))" using ih
       
   420     by (simp add: Ders_singleton)
       
   421   also have "\<dots> = (\<Union>r\<in>pders s r. Der c (lang r))" 
       
   422     unfolding Der_def image_def by auto
       
   423   also have "\<dots> = (\<Union>r\<in>pders s r. (\<Union> lang `  (pder c r)))"
       
   424     by (simp add: Der_pder)
       
   425   also have "\<dots> = (\<Union>lang ` (pder_set c (pders s r)))"
       
   426     by (simp add: pders_set_lang)
       
   427   also have "\<dots> = (\<Union>lang ` (pders (s @ [c]) r))"
       
   428     by simp
       
   429   finally show "Ders (s @ [c]) (lang r) = \<Union> lang ` pders (s @ [c]) r" .
       
   430 qed (simp add: Ders_def)
       
   431 
       
   432 lemma Ders_set_pders_set:
       
   433   shows "Ders_set A (lang r) = (\<Union> lang ` (pders_set A r))"
       
   434 by (simp add: Ders_set_Ders Ders_pders)
       
   435 
       
   436 
       
   437 subsection {* Relating derivatives and partial derivatives *}
       
   438 
       
   439 lemma
       
   440   shows "(\<Union> lang ` (pder c r)) = lang (der c r)"
       
   441 unfolding Der_der[symmetric] Der_pder by simp
       
   442 
       
   443 lemma
       
   444   shows "(\<Union> lang ` (pders s r)) = lang (ders s r)"
       
   445 unfolding Ders_ders[symmetric] Ders_pders by simp
       
   446 
       
   447 
       
   448 
       
   449 subsection {*
       
   450   The second direction of the Myhill-Nerode theorem using
       
   451   partial derivatives.
       
   452 *}
       
   453 
       
   454 lemma Myhill_Nerode3:
       
   455   fixes r::"'a rexp"
       
   456   shows "finite (UNIV // \<approx>(lang r))"
       
   457 proof -
       
   458   have "finite (UNIV // =(\<lambda>x. pders x r)=)"
       
   459   proof - 
       
   460     have "range (\<lambda>x. pders x r) = {pders s r | s. s \<in> UNIV}" by auto
       
   461     moreover 
       
   462     have "finite {pders s r | s. s \<in> UNIV}" by (rule finite_pders2)
       
   463     ultimately
       
   464     have "finite (range (\<lambda>x. pders x r))"
       
   465       by simp
       
   466     then show "finite (UNIV // =(\<lambda>x. pders x r)=)" 
       
   467       by (rule finite_eq_tag_rel)
       
   468   qed
       
   469   moreover 
       
   470   have "=(\<lambda>x. pders x r)= \<subseteq> \<approx>(lang r)"
       
   471     unfolding tag_eq_rel_def
       
   472     unfolding str_eq_def2
       
   473     unfolding MN_Rel_Ders
       
   474     unfolding Ders_pders
       
   475     by auto
       
   476   moreover 
       
   477   have "equiv UNIV =(\<lambda>x. pders x r)="
       
   478     unfolding equiv_def refl_on_def sym_def trans_def
       
   479     unfolding tag_eq_rel_def
       
   480     by auto
       
   481   moreover
       
   482   have "equiv UNIV (\<approx>(lang r))"
       
   483     unfolding equiv_def refl_on_def sym_def trans_def
       
   484     unfolding str_eq_rel_def
       
   485     by auto
       
   486   ultimately show "finite (UNIV // \<approx>(lang r))" 
       
   487     by (rule refined_partition_finite)
       
   488 qed
       
   489 
       
   490 end