prio/PrioG.thy
changeset 290 6a6d0bd16035
parent 289 a5dd2c966cbe
child 291 5ef9f6ebe827
equal deleted inserted replaced
289:a5dd2c966cbe 290:6a6d0bd16035
  2069   hence "th \<in> set (wq s cs)"
  2069   hence "th \<in> set (wq s cs)"
  2070     by (unfold s_depend_def, auto simp:cs_waiting_def)
  2070     by (unfold s_depend_def, auto simp:cs_waiting_def)
  2071   from wq_threads [OF vt this] show ?thesis .
  2071   from wq_threads [OF vt this] show ?thesis .
  2072 qed
  2072 qed
  2073 
  2073 
  2074 lemma cp_eq_cpreced: "cp s th = cpreced s (wq s) th"
  2074 lemma cp_eq_cpreced: "cp s th = cpreced (wq s) s th"
  2075 proof(unfold cp_def wq_def, induct s)
  2075 proof(unfold cp_def wq_def, induct s)
  2076   case (Cons e s')
  2076   case (Cons e s')
  2077   show ?case
  2077   show ?case
  2078     by (auto simp:Let_def)
  2078     by (auto simp:Let_def)
  2079 next
  2079 next