|
1 theory Myhill_2 |
|
2 imports Myhill_1 |
|
3 begin |
|
4 |
|
5 section {* Direction @{text "regular language \<Rightarrow>finite partition"} *} |
|
6 |
|
7 subsection {* The scheme*} |
|
8 |
|
9 text {* |
|
10 The following convenient notation @{text "x \<approx>Lang y"} means: |
|
11 string @{text "x"} and @{text "y"} are equivalent with respect to |
|
12 language @{text "Lang"}. |
|
13 *} |
|
14 |
|
15 definition |
|
16 str_eq :: "string \<Rightarrow> lang \<Rightarrow> string \<Rightarrow> bool" ("_ \<approx>_ _") |
|
17 where |
|
18 "x \<approx>Lang y \<equiv> (x, y) \<in> (\<approx>Lang)" |
|
19 |
|
20 text {* |
|
21 The main lemma (@{text "rexp_imp_finite"}) is proved by a structural induction over regular expressions. |
|
22 While base cases (cases for @{const "NULL"}, @{const "EMPTY"}, @{const "CHAR"}) are quite straight forward, |
|
23 the inductive cases are rather involved. What we have when starting to prove these inductive caes is that |
|
24 the partitions induced by the componet language are finite. The basic idea to show the finiteness of the |
|
25 partition induced by the composite language is to attach a tag @{text "tag(x)"} to every string |
|
26 @{text "x"}. The tags are made of equivalent classes from the component partitions. Let @{text "tag"} |
|
27 be the tagging function and @{text "Lang"} be the composite language, it can be proved that |
|
28 if strings with the same tag are equivalent with respect to @{text "Lang"}, expressed as: |
|
29 \[ |
|
30 @{text "tag(x) = tag(y) \<Longrightarrow> x \<approx>Lang y"} |
|
31 \] |
|
32 then the partition induced by @{text "Lang"} must be finite. There are two arguments for this. |
|
33 The first goes as the following: |
|
34 \begin{enumerate} |
|
35 \item First, the tagging function @{text "tag"} induces an equivalent relation @{text "(=tag=)"} |
|
36 (defiintion of @{text "f_eq_rel"} and lemma @{text "equiv_f_eq_rel"}). |
|
37 \item It is shown that: if the range of @{text "tag"} (denoted @{text "range(tag)"}) is finite, |
|
38 the partition given rise by @{text "(=tag=)"} is finite (lemma @{text "finite_eq_f_rel"}). |
|
39 Since tags are made from equivalent classes from component partitions, and the inductive |
|
40 hypothesis ensures the finiteness of these partitions, it is not difficult to prove |
|
41 the finiteness of @{text "range(tag)"}. |
|
42 \item It is proved that if equivalent relation @{text "R1"} is more refined than @{text "R2"} |
|
43 (expressed as @{text "R1 \<subseteq> R2"}), |
|
44 and the partition induced by @{text "R1"} is finite, then the partition induced by @{text "R2"} |
|
45 is finite as well (lemma @{text "refined_partition_finite"}). |
|
46 \item The injectivity assumption @{text "tag(x) = tag(y) \<Longrightarrow> x \<approx>Lang y"} implies that |
|
47 @{text "(=tag=)"} is more refined than @{text "(\<approx>Lang)"}. |
|
48 \item Combining the points above, we have: the partition induced by language @{text "Lang"} |
|
49 is finite (lemma @{text "tag_finite_imageD"}). |
|
50 \end{enumerate} |
|
51 *} |
|
52 |
|
53 definition |
|
54 f_eq_rel ("=_=") |
|
55 where |
|
56 "(=f=) = {(x, y) | x y. f x = f y}" |
|
57 |
|
58 lemma equiv_f_eq_rel:"equiv UNIV (=f=)" |
|
59 by (auto simp:equiv_def f_eq_rel_def refl_on_def sym_def trans_def) |
|
60 |
|
61 lemma finite_range_image: "finite (range f) \<Longrightarrow> finite (f ` A)" |
|
62 by (rule_tac B = "{y. \<exists>x. y = f x}" in finite_subset, auto simp:image_def) |
|
63 |
|
64 lemma finite_eq_f_rel: |
|
65 assumes rng_fnt: "finite (range tag)" |
|
66 shows "finite (UNIV // (=tag=))" |
|
67 proof - |
|
68 let "?f" = "op ` tag" and ?A = "(UNIV // (=tag=))" |
|
69 show ?thesis |
|
70 proof (rule_tac f = "?f" and A = ?A in finite_imageD) |
|
71 -- {* |
|
72 The finiteness of @{text "f"}-image is a simple consequence of assumption @{text "rng_fnt"}: |
|
73 *} |
|
74 show "finite (?f ` ?A)" |
|
75 proof - |
|
76 have "\<forall> X. ?f X \<in> (Pow (range tag))" by (auto simp:image_def Pow_def) |
|
77 moreover from rng_fnt have "finite (Pow (range tag))" by simp |
|
78 ultimately have "finite (range ?f)" |
|
79 by (auto simp only:image_def intro:finite_subset) |
|
80 from finite_range_image [OF this] show ?thesis . |
|
81 qed |
|
82 next |
|
83 -- {* |
|
84 The injectivity of @{text "f"}-image is a consequence of the definition of @{text "(=tag=)"}: |
|
85 *} |
|
86 show "inj_on ?f ?A" |
|
87 proof- |
|
88 { fix X Y |
|
89 assume X_in: "X \<in> ?A" |
|
90 and Y_in: "Y \<in> ?A" |
|
91 and tag_eq: "?f X = ?f Y" |
|
92 have "X = Y" |
|
93 proof - |
|
94 from X_in Y_in tag_eq |
|
95 obtain x y |
|
96 where x_in: "x \<in> X" and y_in: "y \<in> Y" and eq_tg: "tag x = tag y" |
|
97 unfolding quotient_def Image_def str_eq_rel_def |
|
98 str_eq_def image_def f_eq_rel_def |
|
99 apply simp by blast |
|
100 with X_in Y_in show ?thesis |
|
101 by (auto simp:quotient_def str_eq_rel_def str_eq_def f_eq_rel_def) |
|
102 qed |
|
103 } thus ?thesis unfolding inj_on_def by auto |
|
104 qed |
|
105 qed |
|
106 qed |
|
107 |
|
108 lemma finite_image_finite: "\<lbrakk>\<forall> x \<in> A. f x \<in> B; finite B\<rbrakk> \<Longrightarrow> finite (f ` A)" |
|
109 by (rule finite_subset [of _ B], auto) |
|
110 |
|
111 lemma refined_partition_finite: |
|
112 fixes R1 R2 A |
|
113 assumes fnt: "finite (A // R1)" |
|
114 and refined: "R1 \<subseteq> R2" |
|
115 and eq1: "equiv A R1" and eq2: "equiv A R2" |
|
116 shows "finite (A // R2)" |
|
117 proof - |
|
118 let ?f = "\<lambda> X. {R1 `` {x} | x. x \<in> X}" |
|
119 and ?A = "(A // R2)" and ?B = "(A // R1)" |
|
120 show ?thesis |
|
121 proof(rule_tac f = ?f and A = ?A in finite_imageD) |
|
122 show "finite (?f ` ?A)" |
|
123 proof(rule finite_subset [of _ "Pow ?B"]) |
|
124 from fnt show "finite (Pow (A // R1))" by simp |
|
125 next |
|
126 from eq2 |
|
127 show " ?f ` A // R2 \<subseteq> Pow ?B" |
|
128 unfolding image_def Pow_def quotient_def |
|
129 apply auto |
|
130 by (rule_tac x = xb in bexI, simp, |
|
131 unfold equiv_def sym_def refl_on_def, blast) |
|
132 qed |
|
133 next |
|
134 show "inj_on ?f ?A" |
|
135 proof - |
|
136 { fix X Y |
|
137 assume X_in: "X \<in> ?A" and Y_in: "Y \<in> ?A" |
|
138 and eq_f: "?f X = ?f Y" (is "?L = ?R") |
|
139 have "X = Y" using X_in |
|
140 proof(rule quotientE) |
|
141 fix x |
|
142 assume "X = R2 `` {x}" and "x \<in> A" with eq2 |
|
143 have x_in: "x \<in> X" |
|
144 unfolding equiv_def quotient_def refl_on_def by auto |
|
145 with eq_f have "R1 `` {x} \<in> ?R" by auto |
|
146 then obtain y where |
|
147 y_in: "y \<in> Y" and eq_r: "R1 `` {x} = R1 ``{y}" by auto |
|
148 have "(x, y) \<in> R1" |
|
149 proof - |
|
150 from x_in X_in y_in Y_in eq2 |
|
151 have "x \<in> A" and "y \<in> A" |
|
152 unfolding equiv_def quotient_def refl_on_def by auto |
|
153 from eq_equiv_class_iff [OF eq1 this] and eq_r |
|
154 show ?thesis by simp |
|
155 qed |
|
156 with refined have xy_r2: "(x, y) \<in> R2" by auto |
|
157 from quotient_eqI [OF eq2 X_in Y_in x_in y_in this] |
|
158 show ?thesis . |
|
159 qed |
|
160 } thus ?thesis by (auto simp:inj_on_def) |
|
161 qed |
|
162 qed |
|
163 qed |
|
164 |
|
165 lemma equiv_lang_eq: "equiv UNIV (\<approx>Lang)" |
|
166 unfolding equiv_def str_eq_rel_def sym_def refl_on_def trans_def |
|
167 by blast |
|
168 |
|
169 lemma tag_finite_imageD: |
|
170 fixes tag |
|
171 assumes rng_fnt: "finite (range tag)" |
|
172 -- {* Suppose the rang of tagging fucntion @{text "tag"} is finite. *} |
|
173 and same_tag_eqvt: "\<And> m n. tag m = tag (n::string) \<Longrightarrow> m \<approx>Lang n" |
|
174 -- {* And strings with same tag are equivalent *} |
|
175 shows "finite (UNIV // (\<approx>Lang))" |
|
176 proof - |
|
177 let ?R1 = "(=tag=)" |
|
178 show ?thesis |
|
179 proof(rule_tac refined_partition_finite [of _ ?R1]) |
|
180 from finite_eq_f_rel [OF rng_fnt] |
|
181 show "finite (UNIV // =tag=)" . |
|
182 next |
|
183 from same_tag_eqvt |
|
184 show "(=tag=) \<subseteq> (\<approx>Lang)" |
|
185 by (auto simp:f_eq_rel_def str_eq_def) |
|
186 next |
|
187 from equiv_f_eq_rel |
|
188 show "equiv UNIV (=tag=)" by blast |
|
189 next |
|
190 from equiv_lang_eq |
|
191 show "equiv UNIV (\<approx>Lang)" by blast |
|
192 qed |
|
193 qed |
|
194 |
|
195 text {* |
|
196 A more concise, but less intelligible argument for @{text "tag_finite_imageD"} |
|
197 is given as the following. The basic idea is still using standard library |
|
198 lemma @{thm [source] "finite_imageD"}: |
|
199 \[ |
|
200 @{thm "finite_imageD" [no_vars]} |
|
201 \] |
|
202 which says: if the image of injective function @{text "f"} over set @{text "A"} is |
|
203 finite, then @{text "A"} must be finte, as we did in the lemmas above. |
|
204 *} |
|
205 |
|
206 lemma |
|
207 fixes tag |
|
208 assumes rng_fnt: "finite (range tag)" |
|
209 -- {* Suppose the rang of tagging fucntion @{text "tag"} is finite. *} |
|
210 and same_tag_eqvt: "\<And> m n. tag m = tag (n::string) \<Longrightarrow> m \<approx>Lang n" |
|
211 -- {* And strings with same tag are equivalent *} |
|
212 shows "finite (UNIV // (\<approx>Lang))" |
|
213 -- {* Then the partition generated by @{text "(\<approx>Lang)"} is finite. *} |
|
214 proof - |
|
215 -- {* The particular @{text "f"} and @{text "A"} used in @{thm [source] "finite_imageD"} are:*} |
|
216 let "?f" = "op ` tag" and ?A = "(UNIV // \<approx>Lang)" |
|
217 show ?thesis |
|
218 proof (rule_tac f = "?f" and A = ?A in finite_imageD) |
|
219 -- {* |
|
220 The finiteness of @{text "f"}-image is a simple consequence of assumption @{text "rng_fnt"}: |
|
221 *} |
|
222 show "finite (?f ` ?A)" |
|
223 proof - |
|
224 have "\<forall> X. ?f X \<in> (Pow (range tag))" by (auto simp:image_def Pow_def) |
|
225 moreover from rng_fnt have "finite (Pow (range tag))" by simp |
|
226 ultimately have "finite (range ?f)" |
|
227 by (auto simp only:image_def intro:finite_subset) |
|
228 from finite_range_image [OF this] show ?thesis . |
|
229 qed |
|
230 next |
|
231 -- {* |
|
232 The injectivity of @{text "f"} is the consequence of assumption @{text "same_tag_eqvt"}: |
|
233 *} |
|
234 show "inj_on ?f ?A" |
|
235 proof- |
|
236 { fix X Y |
|
237 assume X_in: "X \<in> ?A" |
|
238 and Y_in: "Y \<in> ?A" |
|
239 and tag_eq: "?f X = ?f Y" |
|
240 have "X = Y" |
|
241 proof - |
|
242 from X_in Y_in tag_eq |
|
243 obtain x y where x_in: "x \<in> X" and y_in: "y \<in> Y" and eq_tg: "tag x = tag y" |
|
244 unfolding quotient_def Image_def str_eq_rel_def str_eq_def image_def |
|
245 apply simp by blast |
|
246 from same_tag_eqvt [OF eq_tg] have "x \<approx>Lang y" . |
|
247 with X_in Y_in x_in y_in |
|
248 show ?thesis by (auto simp:quotient_def str_eq_rel_def str_eq_def) |
|
249 qed |
|
250 } thus ?thesis unfolding inj_on_def by auto |
|
251 qed |
|
252 qed |
|
253 qed |
|
254 |
|
255 subsection {* The proof*} |
|
256 |
|
257 text {* |
|
258 Each case is given in a separate section, as well as the final main lemma. Detailed explainations accompanied by |
|
259 illustrations are given for non-trivial cases. |
|
260 |
|
261 For ever inductive case, there are two tasks, the easier one is to show the range finiteness of |
|
262 of the tagging function based on the finiteness of component partitions, the |
|
263 difficult one is to show that strings with the same tag are equivalent with respect to the |
|
264 composite language. Suppose the composite language be @{text "Lang"}, tagging function be |
|
265 @{text "tag"}, it amounts to show: |
|
266 \[ |
|
267 @{text "tag(x) = tag(y) \<Longrightarrow> x \<approx>Lang y"} |
|
268 \] |
|
269 expanding the definition of @{text "\<approx>Lang"}, it amounts to show: |
|
270 \[ |
|
271 @{text "tag(x) = tag(y) \<Longrightarrow> (\<forall> z. x@z \<in> Lang \<longleftrightarrow> y@z \<in> Lang)"} |
|
272 \] |
|
273 Because the assumed tag equlity @{text "tag(x) = tag(y)"} is symmetric, |
|
274 it is suffcient to show just one direction: |
|
275 \[ |
|
276 @{text "\<And> x y z. \<lbrakk>tag(x) = tag(y); x@z \<in> Lang\<rbrakk> \<Longrightarrow> y@z \<in> Lang"} |
|
277 \] |
|
278 This is the pattern followed by every inductive case. |
|
279 *} |
|
280 |
|
281 subsubsection {* The base case for @{const "NULL"} *} |
|
282 |
|
283 lemma quot_null_eq: |
|
284 shows "(UNIV // \<approx>{}) = ({UNIV}::lang set)" |
|
285 unfolding quotient_def Image_def str_eq_rel_def by auto |
|
286 |
|
287 lemma quot_null_finiteI [intro]: |
|
288 shows "finite ((UNIV // \<approx>{})::lang set)" |
|
289 unfolding quot_null_eq by simp |
|
290 |
|
291 |
|
292 subsubsection {* The base case for @{const "EMPTY"} *} |
|
293 |
|
294 |
|
295 lemma quot_empty_subset: |
|
296 "UNIV // (\<approx>{[]}) \<subseteq> {{[]}, UNIV - {[]}}" |
|
297 proof |
|
298 fix x |
|
299 assume "x \<in> UNIV // \<approx>{[]}" |
|
300 then obtain y where h: "x = {z. (y, z) \<in> \<approx>{[]}}" |
|
301 unfolding quotient_def Image_def by blast |
|
302 show "x \<in> {{[]}, UNIV - {[]}}" |
|
303 proof (cases "y = []") |
|
304 case True with h |
|
305 have "x = {[]}" by (auto simp: str_eq_rel_def) |
|
306 thus ?thesis by simp |
|
307 next |
|
308 case False with h |
|
309 have "x = UNIV - {[]}" by (auto simp: str_eq_rel_def) |
|
310 thus ?thesis by simp |
|
311 qed |
|
312 qed |
|
313 |
|
314 lemma quot_empty_finiteI [intro]: |
|
315 shows "finite (UNIV // (\<approx>{[]}))" |
|
316 by (rule finite_subset[OF quot_empty_subset]) (simp) |
|
317 |
|
318 |
|
319 subsubsection {* The base case for @{const "CHAR"} *} |
|
320 |
|
321 lemma quot_char_subset: |
|
322 "UNIV // (\<approx>{[c]}) \<subseteq> {{[]},{[c]}, UNIV - {[], [c]}}" |
|
323 proof |
|
324 fix x |
|
325 assume "x \<in> UNIV // \<approx>{[c]}" |
|
326 then obtain y where h: "x = {z. (y, z) \<in> \<approx>{[c]}}" |
|
327 unfolding quotient_def Image_def by blast |
|
328 show "x \<in> {{[]},{[c]}, UNIV - {[], [c]}}" |
|
329 proof - |
|
330 { assume "y = []" hence "x = {[]}" using h |
|
331 by (auto simp:str_eq_rel_def) |
|
332 } moreover { |
|
333 assume "y = [c]" hence "x = {[c]}" using h |
|
334 by (auto dest!:spec[where x = "[]"] simp:str_eq_rel_def) |
|
335 } moreover { |
|
336 assume "y \<noteq> []" and "y \<noteq> [c]" |
|
337 hence "\<forall> z. (y @ z) \<noteq> [c]" by (case_tac y, auto) |
|
338 moreover have "\<And> p. (p \<noteq> [] \<and> p \<noteq> [c]) = (\<forall> q. p @ q \<noteq> [c])" |
|
339 by (case_tac p, auto) |
|
340 ultimately have "x = UNIV - {[],[c]}" using h |
|
341 by (auto simp add:str_eq_rel_def) |
|
342 } ultimately show ?thesis by blast |
|
343 qed |
|
344 qed |
|
345 |
|
346 lemma quot_char_finiteI [intro]: |
|
347 shows "finite (UNIV // (\<approx>{[c]}))" |
|
348 by (rule finite_subset[OF quot_char_subset]) (simp) |
|
349 |
|
350 |
|
351 subsubsection {* The inductive case for @{const ALT} *} |
|
352 |
|
353 definition |
|
354 tag_str_ALT :: "lang \<Rightarrow> lang \<Rightarrow> string \<Rightarrow> (lang \<times> lang)" |
|
355 where |
|
356 "tag_str_ALT L1 L2 = (\<lambda>x. (\<approx>L1 `` {x}, \<approx>L2 `` {x}))" |
|
357 |
|
358 lemma quot_union_finiteI [intro]: |
|
359 fixes L1 L2::"lang" |
|
360 assumes finite1: "finite (UNIV // \<approx>L1)" |
|
361 and finite2: "finite (UNIV // \<approx>L2)" |
|
362 shows "finite (UNIV // \<approx>(L1 \<union> L2))" |
|
363 proof (rule_tac tag = "tag_str_ALT L1 L2" in tag_finite_imageD) |
|
364 show "\<And>x y. tag_str_ALT L1 L2 x = tag_str_ALT L1 L2 y \<Longrightarrow> x \<approx>(L1 \<union> L2) y" |
|
365 unfolding tag_str_ALT_def |
|
366 unfolding str_eq_def |
|
367 unfolding Image_def |
|
368 unfolding str_eq_rel_def |
|
369 by auto |
|
370 next |
|
371 have *: "finite ((UNIV // \<approx>L1) \<times> (UNIV // \<approx>L2))" |
|
372 using finite1 finite2 by auto |
|
373 show "finite (range (tag_str_ALT L1 L2))" |
|
374 unfolding tag_str_ALT_def |
|
375 apply(rule finite_subset[OF _ *]) |
|
376 unfolding quotient_def |
|
377 by auto |
|
378 qed |
|
379 |
|
380 subsubsection {* The inductive case for @{text "SEQ"}*} |
|
381 |
|
382 text {* |
|
383 For case @{const "SEQ"}, the language @{text "L"} is @{text "L\<^isub>1 ;; L\<^isub>2"}. |
|
384 Given @{text "x @ z \<in> L\<^isub>1 ;; L\<^isub>2"}, according to the defintion of @{text " L\<^isub>1 ;; L\<^isub>2"}, |
|
385 string @{text "x @ z"} can be splitted with the prefix in @{text "L\<^isub>1"} and suffix in @{text "L\<^isub>2"}. |
|
386 The split point can either be in @{text "x"} (as shown in Fig. \ref{seq_first_split}), |
|
387 or in @{text "z"} (as shown in Fig. \ref{seq_snd_split}). Whichever way it goes, the structure |
|
388 on @{text "x @ z"} cn be transfered faithfully onto @{text "y @ z"} |
|
389 (as shown in Fig. \ref{seq_trans_first_split} and \ref{seq_trans_snd_split}) with the the help of the assumed |
|
390 tag equality. The following tag function @{text "tag_str_SEQ"} is such designed to facilitate |
|
391 such transfers and lemma @{text "tag_str_SEQ_injI"} formalizes the informal argument above. The details |
|
392 of structure transfer will be given their. |
|
393 \input{fig_seq} |
|
394 |
|
395 *} |
|
396 |
|
397 definition |
|
398 tag_str_SEQ :: "lang \<Rightarrow> lang \<Rightarrow> string \<Rightarrow> (lang \<times> lang set)" |
|
399 where |
|
400 "tag_str_SEQ L1 L2 = |
|
401 (\<lambda>x. (\<approx>L1 `` {x}, {(\<approx>L2 `` {x - xa}) | xa. xa \<le> x \<and> xa \<in> L1}))" |
|
402 |
|
403 text {* The following is a techical lemma which helps to split the @{text "x @ z \<in> L\<^isub>1 ;; L\<^isub>2"} mentioned above.*} |
|
404 |
|
405 lemma append_seq_elim: |
|
406 assumes "x @ y \<in> L\<^isub>1 ;; L\<^isub>2" |
|
407 shows "(\<exists> xa \<le> x. xa \<in> L\<^isub>1 \<and> (x - xa) @ y \<in> L\<^isub>2) \<or> |
|
408 (\<exists> ya \<le> y. (x @ ya) \<in> L\<^isub>1 \<and> (y - ya) \<in> L\<^isub>2)" |
|
409 proof- |
|
410 from assms obtain s\<^isub>1 s\<^isub>2 |
|
411 where eq_xys: "x @ y = s\<^isub>1 @ s\<^isub>2" |
|
412 and in_seq: "s\<^isub>1 \<in> L\<^isub>1 \<and> s\<^isub>2 \<in> L\<^isub>2" |
|
413 by (auto simp:Seq_def) |
|
414 from app_eq_dest [OF eq_xys] |
|
415 have |
|
416 "(x \<le> s\<^isub>1 \<and> (s\<^isub>1 - x) @ s\<^isub>2 = y) \<or> (s\<^isub>1 \<le> x \<and> (x - s\<^isub>1) @ y = s\<^isub>2)" |
|
417 (is "?Split1 \<or> ?Split2") . |
|
418 moreover have "?Split1 \<Longrightarrow> \<exists> ya \<le> y. (x @ ya) \<in> L\<^isub>1 \<and> (y - ya) \<in> L\<^isub>2" |
|
419 using in_seq by (rule_tac x = "s\<^isub>1 - x" in exI, auto elim:prefixE) |
|
420 moreover have "?Split2 \<Longrightarrow> \<exists> xa \<le> x. xa \<in> L\<^isub>1 \<and> (x - xa) @ y \<in> L\<^isub>2" |
|
421 using in_seq by (rule_tac x = s\<^isub>1 in exI, auto) |
|
422 ultimately show ?thesis by blast |
|
423 qed |
|
424 |
|
425 |
|
426 lemma tag_str_SEQ_injI: |
|
427 fixes v w |
|
428 assumes eq_tag: "tag_str_SEQ L\<^isub>1 L\<^isub>2 v = tag_str_SEQ L\<^isub>1 L\<^isub>2 w" |
|
429 shows "v \<approx>(L\<^isub>1 ;; L\<^isub>2) w" |
|
430 proof- |
|
431 -- {* As explained before, a pattern for just one direction needs to be dealt with:*} |
|
432 { fix x y z |
|
433 assume xz_in_seq: "x @ z \<in> L\<^isub>1 ;; L\<^isub>2" |
|
434 and tag_xy: "tag_str_SEQ L\<^isub>1 L\<^isub>2 x = tag_str_SEQ L\<^isub>1 L\<^isub>2 y" |
|
435 have"y @ z \<in> L\<^isub>1 ;; L\<^isub>2" |
|
436 proof- |
|
437 -- {* There are two ways to split @{text "x@z"}: *} |
|
438 from append_seq_elim [OF xz_in_seq] |
|
439 have "(\<exists> xa \<le> x. xa \<in> L\<^isub>1 \<and> (x - xa) @ z \<in> L\<^isub>2) \<or> |
|
440 (\<exists> za \<le> z. (x @ za) \<in> L\<^isub>1 \<and> (z - za) \<in> L\<^isub>2)" . |
|
441 -- {* It can be shown that @{text "?thesis"} holds in either case: *} |
|
442 moreover { |
|
443 -- {* The case for the first split:*} |
|
444 fix xa |
|
445 assume h1: "xa \<le> x" and h2: "xa \<in> L\<^isub>1" and h3: "(x - xa) @ z \<in> L\<^isub>2" |
|
446 -- {* The following subgoal implements the structure transfer:*} |
|
447 obtain ya |
|
448 where "ya \<le> y" |
|
449 and "ya \<in> L\<^isub>1" |
|
450 and "(y - ya) @ z \<in> L\<^isub>2" |
|
451 proof - |
|
452 -- {* |
|
453 \begin{minipage}{0.8\textwidth} |
|
454 By expanding the definition of |
|
455 @{thm [display] "tag_xy"} |
|
456 and extracting the second compoent, we get: |
|
457 \end{minipage} |
|
458 *} |
|
459 have "{\<approx>L\<^isub>2 `` {x - xa} |xa. xa \<le> x \<and> xa \<in> L\<^isub>1} = |
|
460 {\<approx>L\<^isub>2 `` {y - ya} |ya. ya \<le> y \<and> ya \<in> L\<^isub>1}" (is "?Left = ?Right") |
|
461 using tag_xy unfolding tag_str_SEQ_def by simp |
|
462 -- {* Since @{thm "h1"} and @{thm "h2"} hold, it is not difficult to show: *} |
|
463 moreover have "\<approx>L\<^isub>2 `` {x - xa} \<in> ?Left" using h1 h2 by auto |
|
464 -- {* |
|
465 \begin{minipage}{0.7\textwidth} |
|
466 Through tag equality, equivalent class @{term "\<approx>L\<^isub>2 `` {x - xa}"} also |
|
467 belongs to the @{text "?Right"}: |
|
468 \end{minipage} |
|
469 *} |
|
470 ultimately have "\<approx>L\<^isub>2 `` {x - xa} \<in> ?Right" by simp |
|
471 -- {* From this, the counterpart of @{text "xa"} in @{text "y"} is obtained:*} |
|
472 then obtain ya |
|
473 where eq_xya: "\<approx>L\<^isub>2 `` {x - xa} = \<approx>L\<^isub>2 `` {y - ya}" |
|
474 and pref_ya: "ya \<le> y" and ya_in: "ya \<in> L\<^isub>1" |
|
475 by simp blast |
|
476 -- {* It can be proved that @{text "ya"} has the desired property:*} |
|
477 have "(y - ya)@z \<in> L\<^isub>2" |
|
478 proof - |
|
479 from eq_xya have "(x - xa) \<approx>L\<^isub>2 (y - ya)" |
|
480 unfolding Image_def str_eq_rel_def str_eq_def by auto |
|
481 with h3 show ?thesis unfolding str_eq_rel_def str_eq_def by simp |
|
482 qed |
|
483 -- {* Now, @{text "ya"} has all properties to be a qualified candidate:*} |
|
484 with pref_ya ya_in |
|
485 show ?thesis using that by blast |
|
486 qed |
|
487 -- {* From the properties of @{text "ya"}, @{text "y @ z \<in> L\<^isub>1 ;; L\<^isub>2"} is derived easily.*} |
|
488 hence "y @ z \<in> L\<^isub>1 ;; L\<^isub>2" by (erule_tac prefixE, auto simp:Seq_def) |
|
489 } moreover { |
|
490 -- {* The other case is even more simpler: *} |
|
491 fix za |
|
492 assume h1: "za \<le> z" and h2: "(x @ za) \<in> L\<^isub>1" and h3: "z - za \<in> L\<^isub>2" |
|
493 have "y @ za \<in> L\<^isub>1" |
|
494 proof- |
|
495 have "\<approx>L\<^isub>1 `` {x} = \<approx>L\<^isub>1 `` {y}" |
|
496 using tag_xy unfolding tag_str_SEQ_def by simp |
|
497 with h2 show ?thesis |
|
498 unfolding Image_def str_eq_rel_def str_eq_def by auto |
|
499 qed |
|
500 with h1 h3 have "y @ z \<in> L\<^isub>1 ;; L\<^isub>2" |
|
501 by (drule_tac A = L\<^isub>1 in seq_intro, auto elim:prefixE) |
|
502 } |
|
503 ultimately show ?thesis by blast |
|
504 qed |
|
505 } |
|
506 -- {* |
|
507 \begin{minipage}{0.8\textwidth} |
|
508 @{text "?thesis"} is proved by exploiting the symmetry of |
|
509 @{thm [source] "eq_tag"}: |
|
510 \end{minipage} |
|
511 *} |
|
512 from this [OF _ eq_tag] and this [OF _ eq_tag [THEN sym]] |
|
513 show ?thesis unfolding str_eq_def str_eq_rel_def by blast |
|
514 qed |
|
515 |
|
516 lemma quot_seq_finiteI [intro]: |
|
517 fixes L1 L2::"lang" |
|
518 assumes fin1: "finite (UNIV // \<approx>L1)" |
|
519 and fin2: "finite (UNIV // \<approx>L2)" |
|
520 shows "finite (UNIV // \<approx>(L1 ;; L2))" |
|
521 proof (rule_tac tag = "tag_str_SEQ L1 L2" in tag_finite_imageD) |
|
522 show "\<And>x y. tag_str_SEQ L1 L2 x = tag_str_SEQ L1 L2 y \<Longrightarrow> x \<approx>(L1 ;; L2) y" |
|
523 by (rule tag_str_SEQ_injI) |
|
524 next |
|
525 have *: "finite ((UNIV // \<approx>L1) \<times> (Pow (UNIV // \<approx>L2)))" |
|
526 using fin1 fin2 by auto |
|
527 show "finite (range (tag_str_SEQ L1 L2))" |
|
528 unfolding tag_str_SEQ_def |
|
529 apply(rule finite_subset[OF _ *]) |
|
530 unfolding quotient_def |
|
531 by auto |
|
532 qed |
|
533 |
|
534 subsubsection {* The inductive case for @{const "STAR"} *} |
|
535 |
|
536 text {* |
|
537 This turned out to be the trickiest case. The essential goal is |
|
538 to proved @{text "y @ z \<in> L\<^isub>1*"} under the assumptions that @{text "x @ z \<in> L\<^isub>1*"} |
|
539 and that @{text "x"} and @{text "y"} have the same tag. The reasoning goes as the following: |
|
540 \begin{enumerate} |
|
541 \item Since @{text "x @ z \<in> L\<^isub>1*"} holds, a prefix @{text "xa"} of @{text "x"} can be found |
|
542 such that @{text "xa \<in> L\<^isub>1*"} and @{text "(x - xa)@z \<in> L\<^isub>1*"}, as shown in Fig. \ref{first_split}. |
|
543 Such a prefix always exists, @{text "xa = []"}, for example, is one. |
|
544 \item There could be many but fintie many of such @{text "xa"}, from which we can find the longest |
|
545 and name it @{text "xa_max"}, as shown in Fig. \ref{max_split}. |
|
546 \item The next step is to split @{text "z"} into @{text "za"} and @{text "zb"} such that |
|
547 @{text "(x - xa_max) @ za \<in> L\<^isub>1"} and @{text "zb \<in> L\<^isub>1*"} as shown in Fig. \ref{last_split}. |
|
548 Such a split always exists because: |
|
549 \begin{enumerate} |
|
550 \item Because @{text "(x - x_max) @ z \<in> L\<^isub>1*"}, it can always be splitted into prefix @{text "a"} |
|
551 and suffix @{text "b"}, such that @{text "a \<in> L\<^isub>1"} and @{text "b \<in> L\<^isub>1*"}, |
|
552 as shown in Fig. \ref{ab_split}. |
|
553 \item But the prefix @{text "a"} CANNOT be shorter than @{text "x - xa_max"} |
|
554 (as shown in Fig. \ref{ab_split_wrong}), becasue otherwise, |
|
555 @{text "ma_max@a"} would be in the same kind as @{text "xa_max"} but with |
|
556 a larger size, conflicting with the fact that @{text "xa_max"} is the longest. |
|
557 \end{enumerate} |
|
558 \item \label{tansfer_step} |
|
559 By the assumption that @{text "x"} and @{text "y"} have the same tag, the structure on @{text "x @ z"} |
|
560 can be transferred to @{text "y @ z"} as shown in Fig. \ref{trans_split}. The detailed steps are: |
|
561 \begin{enumerate} |
|
562 \item A @{text "y"}-prefix @{text "ya"} corresponding to @{text "xa"} can be found, |
|
563 which satisfies conditions: @{text "ya \<in> L\<^isub>1*"} and @{text "(y - ya)@za \<in> L\<^isub>1"}. |
|
564 \item Since we already know @{text "zb \<in> L\<^isub>1*"}, we get @{text "(y - ya)@za@zb \<in> L\<^isub>1*"}, |
|
565 and this is just @{text "(y - ya)@z \<in> L\<^isub>1*"}. |
|
566 \item With fact @{text "ya \<in> L\<^isub>1*"}, we finally get @{text "y@z \<in> L\<^isub>1*"}. |
|
567 \end{enumerate} |
|
568 \end{enumerate} |
|
569 |
|
570 The formal proof of lemma @{text "tag_str_STAR_injI"} faithfully follows this informal argument |
|
571 while the tagging function @{text "tag_str_STAR"} is defined to make the transfer in step |
|
572 \ref{ansfer_step} feasible. |
|
573 |
|
574 \input{fig_star} |
|
575 *} |
|
576 |
|
577 definition |
|
578 tag_str_STAR :: "lang \<Rightarrow> string \<Rightarrow> lang set" |
|
579 where |
|
580 "tag_str_STAR L1 = (\<lambda>x. {\<approx>L1 `` {x - xa} | xa. xa < x \<and> xa \<in> L1\<star>})" |
|
581 |
|
582 text {* A technical lemma. *} |
|
583 lemma finite_set_has_max: "\<lbrakk>finite A; A \<noteq> {}\<rbrakk> \<Longrightarrow> |
|
584 (\<exists> max \<in> A. \<forall> a \<in> A. f a <= (f max :: nat))" |
|
585 proof (induct rule:finite.induct) |
|
586 case emptyI thus ?case by simp |
|
587 next |
|
588 case (insertI A a) |
|
589 show ?case |
|
590 proof (cases "A = {}") |
|
591 case True thus ?thesis by (rule_tac x = a in bexI, auto) |
|
592 next |
|
593 case False |
|
594 with insertI.hyps and False |
|
595 obtain max |
|
596 where h1: "max \<in> A" |
|
597 and h2: "\<forall>a\<in>A. f a \<le> f max" by blast |
|
598 show ?thesis |
|
599 proof (cases "f a \<le> f max") |
|
600 assume "f a \<le> f max" |
|
601 with h1 h2 show ?thesis by (rule_tac x = max in bexI, auto) |
|
602 next |
|
603 assume "\<not> (f a \<le> f max)" |
|
604 thus ?thesis using h2 by (rule_tac x = a in bexI, auto) |
|
605 qed |
|
606 qed |
|
607 qed |
|
608 |
|
609 |
|
610 text {* The following is a technical lemma.which helps to show the range finiteness of tag function. *} |
|
611 lemma finite_strict_prefix_set: "finite {xa. xa < (x::string)}" |
|
612 apply (induct x rule:rev_induct, simp) |
|
613 apply (subgoal_tac "{xa. xa < xs @ [x]} = {xa. xa < xs} \<union> {xs}") |
|
614 by (auto simp:strict_prefix_def) |
|
615 |
|
616 |
|
617 lemma tag_str_STAR_injI: |
|
618 fixes v w |
|
619 assumes eq_tag: "tag_str_STAR L\<^isub>1 v = tag_str_STAR L\<^isub>1 w" |
|
620 shows "(v::string) \<approx>(L\<^isub>1\<star>) w" |
|
621 proof- |
|
622 -- {* As explained before, a pattern for just one direction needs to be dealt with:*} |
|
623 { fix x y z |
|
624 assume xz_in_star: "x @ z \<in> L\<^isub>1\<star>" |
|
625 and tag_xy: "tag_str_STAR L\<^isub>1 x = tag_str_STAR L\<^isub>1 y" |
|
626 have "y @ z \<in> L\<^isub>1\<star>" |
|
627 proof(cases "x = []") |
|
628 -- {* |
|
629 The degenerated case when @{text "x"} is a null string is easy to prove: |
|
630 *} |
|
631 case True |
|
632 with tag_xy have "y = []" |
|
633 by (auto simp add: tag_str_STAR_def strict_prefix_def) |
|
634 thus ?thesis using xz_in_star True by simp |
|
635 next |
|
636 -- {* The nontrival case: |
|
637 *} |
|
638 case False |
|
639 -- {* |
|
640 \begin{minipage}{0.8\textwidth} |
|
641 Since @{text "x @ z \<in> L\<^isub>1\<star>"}, @{text "x"} can always be splitted |
|
642 by a prefix @{text "xa"} together with its suffix @{text "x - xa"}, such |
|
643 that both @{text "xa"} and @{text "(x - xa) @ z"} are in @{text "L\<^isub>1\<star>"}, |
|
644 and there could be many such splittings.Therefore, the following set @{text "?S"} |
|
645 is nonempty, and finite as well: |
|
646 \end{minipage} |
|
647 *} |
|
648 let ?S = "{xa. xa < x \<and> xa \<in> L\<^isub>1\<star> \<and> (x - xa) @ z \<in> L\<^isub>1\<star>}" |
|
649 have "finite ?S" |
|
650 by (rule_tac B = "{xa. xa < x}" in finite_subset, |
|
651 auto simp:finite_strict_prefix_set) |
|
652 moreover have "?S \<noteq> {}" using False xz_in_star |
|
653 by (simp, rule_tac x = "[]" in exI, auto simp:strict_prefix_def) |
|
654 -- {* \begin{minipage}{0.7\textwidth} |
|
655 Since @{text "?S"} is finite, we can always single out the longest and name it @{text "xa_max"}: |
|
656 \end{minipage} |
|
657 *} |
|
658 ultimately have "\<exists> xa_max \<in> ?S. \<forall> xa \<in> ?S. length xa \<le> length xa_max" |
|
659 using finite_set_has_max by blast |
|
660 then obtain xa_max |
|
661 where h1: "xa_max < x" |
|
662 and h2: "xa_max \<in> L\<^isub>1\<star>" |
|
663 and h3: "(x - xa_max) @ z \<in> L\<^isub>1\<star>" |
|
664 and h4:"\<forall> xa < x. xa \<in> L\<^isub>1\<star> \<and> (x - xa) @ z \<in> L\<^isub>1\<star> |
|
665 \<longrightarrow> length xa \<le> length xa_max" |
|
666 by blast |
|
667 -- {* |
|
668 \begin{minipage}{0.8\textwidth} |
|
669 By the equality of tags, the counterpart of @{text "xa_max"} among |
|
670 @{text "y"}-prefixes, named @{text "ya"}, can be found: |
|
671 \end{minipage} |
|
672 *} |
|
673 obtain ya |
|
674 where h5: "ya < y" and h6: "ya \<in> L\<^isub>1\<star>" |
|
675 and eq_xya: "(x - xa_max) \<approx>L\<^isub>1 (y - ya)" |
|
676 proof- |
|
677 from tag_xy have "{\<approx>L\<^isub>1 `` {x - xa} |xa. xa < x \<and> xa \<in> L\<^isub>1\<star>} = |
|
678 {\<approx>L\<^isub>1 `` {y - xa} |xa. xa < y \<and> xa \<in> L\<^isub>1\<star>}" (is "?left = ?right") |
|
679 by (auto simp:tag_str_STAR_def) |
|
680 moreover have "\<approx>L\<^isub>1 `` {x - xa_max} \<in> ?left" using h1 h2 by auto |
|
681 ultimately have "\<approx>L\<^isub>1 `` {x - xa_max} \<in> ?right" by simp |
|
682 thus ?thesis using that |
|
683 apply (simp add:Image_def str_eq_rel_def str_eq_def) by blast |
|
684 qed |
|
685 -- {* |
|
686 \begin{minipage}{0.8\textwidth} |
|
687 The @{text "?thesis"}, @{prop "y @ z \<in> L\<^isub>1\<star>"}, is a simple consequence |
|
688 of the following proposition: |
|
689 \end{minipage} |
|
690 *} |
|
691 have "(y - ya) @ z \<in> L\<^isub>1\<star>" |
|
692 proof- |
|
693 -- {* The idea is to split the suffix @{text "z"} into @{text "za"} and @{text "zb"}, |
|
694 such that: *} |
|
695 obtain za zb where eq_zab: "z = za @ zb" |
|
696 and l_za: "(y - ya)@za \<in> L\<^isub>1" and ls_zb: "zb \<in> L\<^isub>1\<star>" |
|
697 proof - |
|
698 -- {* |
|
699 \begin{minipage}{0.8\textwidth} |
|
700 Since @{thm "h1"}, @{text "x"} can be splitted into |
|
701 @{text "a"} and @{text "b"} such that: |
|
702 \end{minipage} |
|
703 *} |
|
704 from h1 have "(x - xa_max) @ z \<noteq> []" |
|
705 by (auto simp:strict_prefix_def elim:prefixE) |
|
706 from star_decom [OF h3 this] |
|
707 obtain a b where a_in: "a \<in> L\<^isub>1" |
|
708 and a_neq: "a \<noteq> []" and b_in: "b \<in> L\<^isub>1\<star>" |
|
709 and ab_max: "(x - xa_max) @ z = a @ b" by blast |
|
710 -- {* Now the candiates for @{text "za"} and @{text "zb"} are found:*} |
|
711 let ?za = "a - (x - xa_max)" and ?zb = "b" |
|
712 have pfx: "(x - xa_max) \<le> a" (is "?P1") |
|
713 and eq_z: "z = ?za @ ?zb" (is "?P2") |
|
714 proof - |
|
715 -- {* |
|
716 \begin{minipage}{0.8\textwidth} |
|
717 Since @{text "(x - xa_max) @ z = a @ b"}, string @{text "(x - xa_max) @ z"} |
|
718 can be splitted in two ways: |
|
719 \end{minipage} |
|
720 *} |
|
721 have "((x - xa_max) \<le> a \<and> (a - (x - xa_max)) @ b = z) \<or> |
|
722 (a < (x - xa_max) \<and> ((x - xa_max) - a) @ z = b)" |
|
723 using app_eq_dest[OF ab_max] by (auto simp:strict_prefix_def) |
|
724 moreover { |
|
725 -- {* However, the undsired way can be refuted by absurdity: *} |
|
726 assume np: "a < (x - xa_max)" |
|
727 and b_eqs: "((x - xa_max) - a) @ z = b" |
|
728 have "False" |
|
729 proof - |
|
730 let ?xa_max' = "xa_max @ a" |
|
731 have "?xa_max' < x" |
|
732 using np h1 by (clarsimp simp:strict_prefix_def diff_prefix) |
|
733 moreover have "?xa_max' \<in> L\<^isub>1\<star>" |
|
734 using a_in h2 by (simp add:star_intro3) |
|
735 moreover have "(x - ?xa_max') @ z \<in> L\<^isub>1\<star>" |
|
736 using b_eqs b_in np h1 by (simp add:diff_diff_appd) |
|
737 moreover have "\<not> (length ?xa_max' \<le> length xa_max)" |
|
738 using a_neq by simp |
|
739 ultimately show ?thesis using h4 by blast |
|
740 qed } |
|
741 -- {* Now it can be shown that the splitting goes the way we desired. *} |
|
742 ultimately show ?P1 and ?P2 by auto |
|
743 qed |
|
744 hence "(x - xa_max)@?za \<in> L\<^isub>1" using a_in by (auto elim:prefixE) |
|
745 -- {* Now candidates @{text "?za"} and @{text "?zb"} have all the requred properteis. *} |
|
746 with eq_xya have "(y - ya) @ ?za \<in> L\<^isub>1" |
|
747 by (auto simp:str_eq_def str_eq_rel_def) |
|
748 with eq_z and b_in |
|
749 show ?thesis using that by blast |
|
750 qed |
|
751 -- {* |
|
752 @{text "?thesis"} can easily be shown using properties of @{text "za"} and @{text "zb"}: |
|
753 *} |
|
754 have "((y - ya) @ za) @ zb \<in> L\<^isub>1\<star>" using l_za ls_zb by blast |
|
755 with eq_zab show ?thesis by simp |
|
756 qed |
|
757 with h5 h6 show ?thesis |
|
758 by (drule_tac star_intro1, auto simp:strict_prefix_def elim:prefixE) |
|
759 qed |
|
760 } |
|
761 -- {* By instantiating the reasoning pattern just derived for both directions:*} |
|
762 from this [OF _ eq_tag] and this [OF _ eq_tag [THEN sym]] |
|
763 -- {* The thesis is proved as a trival consequence: *} |
|
764 show ?thesis unfolding str_eq_def str_eq_rel_def by blast |
|
765 qed |
|
766 |
|
767 lemma -- {* The oringal version with less explicit details. *} |
|
768 fixes v w |
|
769 assumes eq_tag: "tag_str_STAR L\<^isub>1 v = tag_str_STAR L\<^isub>1 w" |
|
770 shows "(v::string) \<approx>(L\<^isub>1\<star>) w" |
|
771 proof- |
|
772 -- {* |
|
773 \begin{minipage}{0.8\textwidth} |
|
774 According to the definition of @{text "\<approx>Lang"}, |
|
775 proving @{text "v \<approx>(L\<^isub>1\<star>) w"} amounts to |
|
776 showing: for any string @{text "u"}, |
|
777 if @{text "v @ u \<in> (L\<^isub>1\<star>)"} then @{text "w @ u \<in> (L\<^isub>1\<star>)"} and vice versa. |
|
778 The reasoning pattern for both directions are the same, as derived |
|
779 in the following: |
|
780 \end{minipage} |
|
781 *} |
|
782 { fix x y z |
|
783 assume xz_in_star: "x @ z \<in> L\<^isub>1\<star>" |
|
784 and tag_xy: "tag_str_STAR L\<^isub>1 x = tag_str_STAR L\<^isub>1 y" |
|
785 have "y @ z \<in> L\<^isub>1\<star>" |
|
786 proof(cases "x = []") |
|
787 -- {* |
|
788 The degenerated case when @{text "x"} is a null string is easy to prove: |
|
789 *} |
|
790 case True |
|
791 with tag_xy have "y = []" |
|
792 by (auto simp:tag_str_STAR_def strict_prefix_def) |
|
793 thus ?thesis using xz_in_star True by simp |
|
794 next |
|
795 -- {* |
|
796 \begin{minipage}{0.8\textwidth} |
|
797 The case when @{text "x"} is not null, and |
|
798 @{text "x @ z"} is in @{text "L\<^isub>1\<star>"}, |
|
799 \end{minipage} |
|
800 *} |
|
801 case False |
|
802 obtain x_max |
|
803 where h1: "x_max < x" |
|
804 and h2: "x_max \<in> L\<^isub>1\<star>" |
|
805 and h3: "(x - x_max) @ z \<in> L\<^isub>1\<star>" |
|
806 and h4:"\<forall> xa < x. xa \<in> L\<^isub>1\<star> \<and> (x - xa) @ z \<in> L\<^isub>1\<star> |
|
807 \<longrightarrow> length xa \<le> length x_max" |
|
808 proof- |
|
809 let ?S = "{xa. xa < x \<and> xa \<in> L\<^isub>1\<star> \<and> (x - xa) @ z \<in> L\<^isub>1\<star>}" |
|
810 have "finite ?S" |
|
811 by (rule_tac B = "{xa. xa < x}" in finite_subset, |
|
812 auto simp:finite_strict_prefix_set) |
|
813 moreover have "?S \<noteq> {}" using False xz_in_star |
|
814 by (simp, rule_tac x = "[]" in exI, auto simp:strict_prefix_def) |
|
815 ultimately have "\<exists> max \<in> ?S. \<forall> a \<in> ?S. length a \<le> length max" |
|
816 using finite_set_has_max by blast |
|
817 thus ?thesis using that by blast |
|
818 qed |
|
819 obtain ya |
|
820 where h5: "ya < y" and h6: "ya \<in> L\<^isub>1\<star>" and h7: "(x - x_max) \<approx>L\<^isub>1 (y - ya)" |
|
821 proof- |
|
822 from tag_xy have "{\<approx>L\<^isub>1 `` {x - xa} |xa. xa < x \<and> xa \<in> L\<^isub>1\<star>} = |
|
823 {\<approx>L\<^isub>1 `` {y - xa} |xa. xa < y \<and> xa \<in> L\<^isub>1\<star>}" (is "?left = ?right") |
|
824 by (auto simp:tag_str_STAR_def) |
|
825 moreover have "\<approx>L\<^isub>1 `` {x - x_max} \<in> ?left" using h1 h2 by auto |
|
826 ultimately have "\<approx>L\<^isub>1 `` {x - x_max} \<in> ?right" by simp |
|
827 with that show ?thesis apply |
|
828 (simp add:Image_def str_eq_rel_def str_eq_def) by blast |
|
829 qed |
|
830 have "(y - ya) @ z \<in> L\<^isub>1\<star>" |
|
831 proof- |
|
832 from h3 h1 obtain a b where a_in: "a \<in> L\<^isub>1" |
|
833 and a_neq: "a \<noteq> []" and b_in: "b \<in> L\<^isub>1\<star>" |
|
834 and ab_max: "(x - x_max) @ z = a @ b" |
|
835 by (drule_tac star_decom, auto simp:strict_prefix_def elim:prefixE) |
|
836 have "(x - x_max) \<le> a \<and> (a - (x - x_max)) @ b = z" |
|
837 proof - |
|
838 have "((x - x_max) \<le> a \<and> (a - (x - x_max)) @ b = z) \<or> |
|
839 (a < (x - x_max) \<and> ((x - x_max) - a) @ z = b)" |
|
840 using app_eq_dest[OF ab_max] by (auto simp:strict_prefix_def) |
|
841 moreover { |
|
842 assume np: "a < (x - x_max)" and b_eqs: " ((x - x_max) - a) @ z = b" |
|
843 have "False" |
|
844 proof - |
|
845 let ?x_max' = "x_max @ a" |
|
846 have "?x_max' < x" |
|
847 using np h1 by (clarsimp simp:strict_prefix_def diff_prefix) |
|
848 moreover have "?x_max' \<in> L\<^isub>1\<star>" |
|
849 using a_in h2 by (simp add:star_intro3) |
|
850 moreover have "(x - ?x_max') @ z \<in> L\<^isub>1\<star>" |
|
851 using b_eqs b_in np h1 by (simp add:diff_diff_appd) |
|
852 moreover have "\<not> (length ?x_max' \<le> length x_max)" |
|
853 using a_neq by simp |
|
854 ultimately show ?thesis using h4 by blast |
|
855 qed |
|
856 } ultimately show ?thesis by blast |
|
857 qed |
|
858 then obtain za where z_decom: "z = za @ b" |
|
859 and x_za: "(x - x_max) @ za \<in> L\<^isub>1" |
|
860 using a_in by (auto elim:prefixE) |
|
861 from x_za h7 have "(y - ya) @ za \<in> L\<^isub>1" |
|
862 by (auto simp:str_eq_def str_eq_rel_def) |
|
863 with b_in have "((y - ya) @ za) @ b \<in> L\<^isub>1\<star>" by blast |
|
864 with z_decom show ?thesis by auto |
|
865 qed |
|
866 with h5 h6 show ?thesis |
|
867 by (drule_tac star_intro1, auto simp:strict_prefix_def elim:prefixE) |
|
868 qed |
|
869 } |
|
870 -- {* By instantiating the reasoning pattern just derived for both directions:*} |
|
871 from this [OF _ eq_tag] and this [OF _ eq_tag [THEN sym]] |
|
872 -- {* The thesis is proved as a trival consequence: *} |
|
873 show ?thesis unfolding str_eq_def str_eq_rel_def by blast |
|
874 qed |
|
875 |
|
876 lemma quot_star_finiteI [intro]: |
|
877 fixes L1::"lang" |
|
878 assumes finite1: "finite (UNIV // \<approx>L1)" |
|
879 shows "finite (UNIV // \<approx>(L1\<star>))" |
|
880 proof (rule_tac tag = "tag_str_STAR L1" in tag_finite_imageD) |
|
881 show "\<And>x y. tag_str_STAR L1 x = tag_str_STAR L1 y \<Longrightarrow> x \<approx>(L1\<star>) y" |
|
882 by (rule tag_str_STAR_injI) |
|
883 next |
|
884 have *: "finite (Pow (UNIV // \<approx>L1))" |
|
885 using finite1 by auto |
|
886 show "finite (range (tag_str_STAR L1))" |
|
887 unfolding tag_str_STAR_def |
|
888 apply(rule finite_subset[OF _ *]) |
|
889 unfolding quotient_def |
|
890 by auto |
|
891 qed |
|
892 |
|
893 subsubsection{* The conclusion *} |
|
894 |
|
895 lemma rexp_imp_finite: |
|
896 fixes r::"rexp" |
|
897 shows "finite (UNIV // \<approx>(L r))" |
|
898 by (induct r) (auto) |
|
899 |
|
900 end |