|
1 (*<*) |
|
2 theory Slides2 |
|
3 imports "~~/src/HOL/Library/LaTeXsugar" |
|
4 begin |
|
5 |
|
6 notation (latex output) |
|
7 set ("_") and |
|
8 Cons ("_::/_" [66,65] 65) |
|
9 |
|
10 (*>*) |
|
11 |
|
12 |
|
13 text_raw {* |
|
14 %\renewcommand{\slidecaption}{Cambridge, 9 November 2010} |
|
15 %\renewcommand{\slidecaption}{Nijmegen, 25 August 2011} |
|
16 \renewcommand{\slidecaption}{St Andrews, 19 November 2011} |
|
17 \newcommand{\bl}[1]{#1} |
|
18 \newcommand{\sout}[1]{\tikz[baseline=(X.base), inner sep=-0.1pt, outer sep=0pt] |
|
19 \node [cross out,red, ultra thick, draw] (X) {\textcolor{black}{#1}};} |
|
20 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
21 \mode<presentation>{ |
|
22 \begin{frame} |
|
23 \frametitle{% |
|
24 \begin{tabular}{@ {}c@ {}} |
|
25 \LARGE Formalising\\[-3mm] |
|
26 \LARGE Regular Language Theory\\[-3mm] |
|
27 \LARGE with Regular Expressions,\\[-3mm] |
|
28 \LARGE \alert<2>{Only}\\[0mm] |
|
29 \end{tabular}} |
|
30 |
|
31 \begin{center} |
|
32 Christian Urban\\ |
|
33 \small King's College London |
|
34 \end{center}\bigskip |
|
35 |
|
36 \begin{center} |
|
37 \small joint work with Chunhan Wu and Xingyuan Zhang from the PLA |
|
38 University of Science and Technology in Nanjing |
|
39 \end{center} |
|
40 |
|
41 \end{frame}} |
|
42 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
43 *} |
|
44 |
|
45 text_raw {* |
|
46 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
47 \mode<presentation>{ |
|
48 \begin{frame}[c] |
|
49 \frametitle{} |
|
50 |
|
51 \includegraphics[scale=0.5]{roy.jpg}\medskip |
|
52 |
|
53 Roy intertwined with my scientific life on many occasions, most |
|
54 notably:\bigskip |
|
55 |
|
56 \begin{itemize} |
|
57 \item he admitted me for M.Phil.~in St Andrews and\\ |
|
58 made me like theory\smallskip |
|
59 \item sent me to Cambridge for Ph.D.\bigskip |
|
60 \item made me appreciate precision in proofs |
|
61 \end{itemize} |
|
62 |
|
63 \end{frame}} |
|
64 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
65 *} |
|
66 |
|
67 text_raw {* |
|
68 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
69 \mode<presentation>{ |
|
70 \begin{frame}[c] |
|
71 \frametitle{} |
|
72 |
|
73 \begin{tabular}{c@ {\hspace{2mm}}c} |
|
74 \\[6mm] |
|
75 \begin{tabular}{c} |
|
76 \includegraphics[scale=0.11]{harper.jpg}\\[-2mm] |
|
77 {\footnotesize Bob Harper}\\[-2.5mm] |
|
78 {\footnotesize (CMU)} |
|
79 \end{tabular} |
|
80 \begin{tabular}{c} |
|
81 \includegraphics[scale=0.37]{pfenning.jpg}\\[-2mm] |
|
82 {\footnotesize Frank Pfenning}\\[-2.5mm] |
|
83 {\footnotesize (CMU)} |
|
84 \end{tabular} & |
|
85 |
|
86 \begin{tabular}{p{6cm}} |
|
87 \raggedright |
|
88 \color{gray}{published a proof in\\ {\bf ACM Transactions on Computational Logic}, 2005, |
|
89 $\sim$31pp} |
|
90 \end{tabular}\\ |
|
91 |
|
92 \pause |
|
93 \\[0mm] |
|
94 |
|
95 \begin{tabular}{c} |
|
96 \includegraphics[scale=0.36]{appel.jpg}\\[-2mm] |
|
97 {\footnotesize Andrew Appel}\\[-2.5mm] |
|
98 {\footnotesize (Princeton)} |
|
99 \end{tabular} & |
|
100 |
|
101 \begin{tabular}{p{6cm}} |
|
102 \raggedright |
|
103 \color{gray}{relied on their proof in a\\ {\bf security} critical application} |
|
104 \end{tabular} |
|
105 \end{tabular}\medskip\pause |
|
106 |
|
107 \small |
|
108 \begin{minipage}{1.0\textwidth} |
|
109 (I also found an {\bf error} in my Ph.D.-thesis about cut-elimination |
|
110 examined by Henk Barendregt and Andy Pitts.) |
|
111 \end{minipage} |
|
112 |
|
113 \end{frame}} |
|
114 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
115 *} |
|
116 |
|
117 text_raw {* |
|
118 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
119 \mode<presentation>{ |
|
120 \begin{frame}[t] |
|
121 \frametitle{\normalsize Formal language theory\ldots\hfill\mbox{}} |
|
122 \mbox{}\\[-15mm]\mbox{} |
|
123 |
|
124 \begin{center} |
|
125 \huge\bf\textcolor{gray}{in Theorem Provers}\\ |
|
126 \footnotesize\textcolor{gray}{e.g.~Isabelle, Coq, HOL4, \ldots} |
|
127 \end{center} |
|
128 |
|
129 \begin{itemize} |
|
130 \item automata @{text "\<Rightarrow>"} graphs, matrices, functions |
|
131 \item<2-> combining automata/graphs |
|
132 |
|
133 \onslide<2->{ |
|
134 \begin{center} |
|
135 \begin{tabular}{ccc} |
|
136 \begin{tikzpicture}[scale=1] |
|
137 %\draw[step=2mm] (-1,-1) grid (1,1); |
|
138 |
|
139 \draw[rounded corners=1mm, very thick] (-1.0,-0.3) rectangle (-0.2,0.3); |
|
140 \draw[rounded corners=1mm, very thick] ( 0.2,-0.3) rectangle ( 1.0,0.3); |
|
141 |
|
142 \node (A) at (-1.0,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
143 \node (B) at ( 0.2,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
144 |
|
145 \node (C) at (-0.2, 0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
146 \node (D) at (-0.2,-0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
147 |
|
148 \node (E) at (1.0, 0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
149 \node (F) at (1.0,-0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
150 \node (G) at (1.0,-0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
151 |
|
152 \draw (-0.6,0.0) node {\small$A_1$}; |
|
153 \draw ( 0.6,0.0) node {\small$A_2$}; |
|
154 \end{tikzpicture}} |
|
155 |
|
156 & |
|
157 |
|
158 \onslide<3->{\raisebox{1.1mm}{\bf\Large$\;\Rightarrow\,$}} |
|
159 |
|
160 & |
|
161 |
|
162 \onslide<3->{\begin{tikzpicture}[scale=1] |
|
163 %\draw[step=2mm] (-1,-1) grid (1,1); |
|
164 |
|
165 \draw[rounded corners=1mm, very thick] (-1.0,-0.3) rectangle (-0.2,0.3); |
|
166 \draw[rounded corners=1mm, very thick] ( 0.2,-0.3) rectangle ( 1.0,0.3); |
|
167 |
|
168 \node (A) at (-1.0,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
169 \node (B) at ( 0.2,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
170 |
|
171 \node (C) at (-0.2, 0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
172 \node (D) at (-0.2,-0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
173 |
|
174 \node (E) at (1.0, 0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
175 \node (F) at (1.0,-0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
176 \node (G) at (1.0,-0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
177 |
|
178 \draw (C) to [red, very thick, bend left=45] (B); |
|
179 \draw (D) to [red, very thick, bend right=45] (B); |
|
180 |
|
181 \draw (-0.6,0.0) node {\small$A_1$}; |
|
182 \draw ( 0.6,0.0) node {\small$A_2$}; |
|
183 \end{tikzpicture}} |
|
184 |
|
185 \end{tabular} |
|
186 \end{center}\medskip |
|
187 |
|
188 \only<4-5>{ |
|
189 \begin{tabular}{@ {\hspace{-5mm}}l@ {}} |
|
190 disjoint union:\\[2mm] |
|
191 \smath{A_1\uplus A_2 \dn \{(1, x)\,|\, x \in A_1\} \,\cup\, \{(2, y)\,|\, y \in A_2\}} |
|
192 \end{tabular}} |
|
193 \end{itemize} |
|
194 |
|
195 \only<5>{ |
|
196 \begin{textblock}{13.9}(0.7,7.7) |
|
197 \begin{block}{} |
|
198 \medskip |
|
199 \begin{minipage}{14cm}\raggedright |
|
200 Problems with definition for regularity:\bigskip\\ |
|
201 \smath{\;\text{is\_regular}(A) \dn \exists M.\;\text{is\_dfa}(M) \wedge {\cal L} (M) = A}\bigskip |
|
202 \end{minipage} |
|
203 \end{block} |
|
204 \end{textblock}} |
|
205 \medskip |
|
206 |
|
207 \only<6->{\underline{A solution}:\;\;use \smath{\text{nat}}s \;@{text "\<Rightarrow>"}\; state nodes\medskip} |
|
208 |
|
209 \only<7->{You have to \alert{rename} states!} |
|
210 |
|
211 \end{frame}} |
|
212 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
213 *} |
|
214 |
|
215 text_raw {* |
|
216 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
217 \mode<presentation>{ |
|
218 \begin{frame}[t] |
|
219 \frametitle{\normalsize Formal language theory\ldots\hfill\mbox{}} |
|
220 \mbox{}\\[-15mm]\mbox{} |
|
221 |
|
222 \begin{center} |
|
223 \huge\bf\textcolor{gray}{in Theorem Provers}\\ |
|
224 \footnotesize\textcolor{gray}{e.g.~Isabelle, Coq, HOL4, \ldots} |
|
225 \end{center} |
|
226 |
|
227 \begin{itemize} |
|
228 \item Kozen's ``paper'' proof of Myhill-Nerode:\\ |
|
229 \hspace{2cm}requires absence of \alert{inaccessible states} |
|
230 \end{itemize}\bigskip\bigskip |
|
231 |
|
232 \begin{center} |
|
233 \smath{\;\text{is\_regular}(A) \dn \exists M.\;\text{is\_dfa}(M) \wedge {\cal L} (M) = A} |
|
234 \end{center} |
|
235 |
|
236 |
|
237 \end{frame}} |
|
238 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
239 *} |
|
240 |
|
241 text_raw {* |
|
242 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
243 \mode<presentation>{ |
|
244 \begin{frame}[t] |
|
245 \frametitle{} |
|
246 \mbox{}\\[25mm]\mbox{} |
|
247 |
|
248 \begin{textblock}{13.9}(0.7,1.2) |
|
249 \begin{block}{} |
|
250 \begin{minipage}{13.4cm}\raggedright |
|
251 {\bf Definition:}\smallskip\\ |
|
252 |
|
253 A language \smath{A} is \alert{regular}, provided there exists a\\ |
|
254 \alert{regular expression} that matches all strings of \smath{A}. |
|
255 \end{minipage} |
|
256 \end{block} |
|
257 \end{textblock}\pause |
|
258 |
|
259 {\noindent\large\bf\alert{\ldots{}and forget about automata}}\bigskip\bigskip\pause |
|
260 |
|
261 Infrastructure for free. But do we lose anything?\medskip\pause |
|
262 |
|
263 \begin{minipage}{1.1\textwidth} |
|
264 \begin{itemize} |
|
265 \item pumping lemma\pause |
|
266 \item closure under complementation\pause |
|
267 \item \only<6>{regular expression matching}% |
|
268 \only<7->{\sout{regular expression matching} |
|
269 {\footnotesize(@{text "\<Rightarrow>"}Brozowski'64, Owens et al '09)}} |
|
270 \item<8-> most textbooks are about automata |
|
271 \end{itemize} |
|
272 \end{minipage} |
|
273 |
|
274 |
|
275 \end{frame}} |
|
276 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
277 |
|
278 *} |
|
279 |
|
280 |
|
281 text_raw {* |
|
282 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
283 \mode<presentation>{ |
|
284 \begin{frame}[c] |
|
285 \frametitle{\LARGE The Myhill-Nerode Theorem} |
|
286 |
|
287 \begin{itemize} |
|
288 \item provides necessary and suf\!ficient conditions\\ for a language |
|
289 being regular\\ \textcolor{gray}{(pumping lemma only necessary)}\bigskip |
|
290 |
|
291 \item key is the equivalence relation:\medskip |
|
292 \begin{center} |
|
293 \smath{x \approx_{A} y \,\dn\, \forall z.\; x @ z \in A \Leftrightarrow y @ z \in A} |
|
294 \end{center} |
|
295 \end{itemize} |
|
296 |
|
297 |
|
298 \end{frame}} |
|
299 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
300 |
|
301 *} |
|
302 |
|
303 text_raw {* |
|
304 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
305 \mode<presentation>{ |
|
306 \begin{frame}[c] |
|
307 \frametitle{\LARGE The Myhill-Nerode Theorem} |
|
308 |
|
309 \begin{center} |
|
310 \only<1>{% |
|
311 \begin{tikzpicture}[scale=3] |
|
312 \draw[very thick] (0.5,0.5) circle (.6cm); |
|
313 \end{tikzpicture}}% |
|
314 \only<2->{% |
|
315 \begin{tikzpicture}[scale=3] |
|
316 \draw[very thick] (0.5,0.5) circle (.6cm); |
|
317 \clip[draw] (0.5,0.5) circle (.6cm); |
|
318 \draw[step=2mm, very thick] (-1.4,-1.4) grid (1.4,1.4); |
|
319 \end{tikzpicture}} |
|
320 \end{center} |
|
321 |
|
322 \begin{itemize} |
|
323 \item \smath{\text{finite}\, (U\!N\!IV /\!/ \approx_A) \;\Leftrightarrow\; A\; \text{is regular}} |
|
324 \end{itemize} |
|
325 |
|
326 \begin{textblock}{5}(2.1,5.3) |
|
327 \begin{tikzpicture} |
|
328 \node at (0,0) [single arrow, fill=red,text=white, minimum height=2cm] |
|
329 {$U\!N\!IV$}; |
|
330 \draw (-0.3,-1.1) node {\begin{tabular}{l}set of all\\[-1mm] strings\end{tabular}}; |
|
331 \end{tikzpicture} |
|
332 \end{textblock} |
|
333 |
|
334 \only<2->{% |
|
335 \begin{textblock}{5}(9.1,7.2) |
|
336 \begin{tikzpicture} |
|
337 \node at (0,0) [shape border rotate=180,single arrow, fill=red,text=white, minimum height=2cm] |
|
338 {@{text "\<lbrakk>x\<rbrakk>"}$_{\approx_{A}}$}; |
|
339 \draw (0.9,-1.1) node {\begin{tabular}{l}an equivalence class\end{tabular}}; |
|
340 \end{tikzpicture} |
|
341 \end{textblock}} |
|
342 |
|
343 \only<3->{ |
|
344 \begin{textblock}{11.9}(1.7,3) |
|
345 \begin{block}{} |
|
346 \begin{minipage}{11.4cm}\raggedright |
|
347 Two directions:\medskip\\ |
|
348 \begin{tabular}{@ {}ll} |
|
349 1.)\;finite $\Rightarrow$ regular\\ |
|
350 \;\;\;\smath{\text{finite}\,(U\!N\!IV /\!/ \approx_A) \Rightarrow \exists r.\;A = {\cal L}(r)}\\[3mm] |
|
351 2.)\;regular $\Rightarrow$ finite\\ |
|
352 \;\;\;\smath{\text{finite}\, (U\!N\!IV /\!/ \approx_{{\cal L}(r)})} |
|
353 \end{tabular} |
|
354 |
|
355 \end{minipage} |
|
356 \end{block} |
|
357 \end{textblock}} |
|
358 |
|
359 \end{frame}} |
|
360 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
361 |
|
362 *} |
|
363 |
|
364 |
|
365 text_raw {* |
|
366 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
367 \mode<presentation>{ |
|
368 \begin{frame}[c] |
|
369 \frametitle{\LARGE Initial and Final {\sout{\textcolor{gray}{States}}}} |
|
370 |
|
371 \begin{textblock}{8}(10, 2) |
|
372 \textcolor{black}{Equivalence Classes} |
|
373 \end{textblock} |
|
374 |
|
375 |
|
376 \begin{center} |
|
377 \begin{tikzpicture}[scale=3] |
|
378 \draw[very thick] (0.5,0.5) circle (.6cm); |
|
379 \clip[draw] (0.5,0.5) circle (.6cm); |
|
380 \draw[step=2mm, very thick] (-1.4,-1.4) grid (1.4,1.4); |
|
381 \only<2->{\draw[blue, fill] (0.0, 0.6) rectangle (0.2, 0.8);} |
|
382 \only<3->{\draw[red, fill] (0.2, 0.2) rectangle (0.4, 0.4); |
|
383 \draw[red, fill] (0.4, 0.8) rectangle (0.6, 1.0); |
|
384 \draw[red, fill] (0.6, 0.0) rectangle (0.8, 0.2); |
|
385 \draw[red, fill] (0.8, 0.4) rectangle (1.0, 0.6);} |
|
386 \end{tikzpicture} |
|
387 \end{center} |
|
388 |
|
389 \begin{itemize} |
|
390 \item \smath{\text{finals}\,A\,\dn \{[\!|x|\!]_{\approx_{A}}\;|\;x \in A\}} |
|
391 \smallskip |
|
392 \item we can prove: \smath{A = \bigcup \text{finals}\,A} |
|
393 \end{itemize} |
|
394 |
|
395 \only<2->{% |
|
396 \begin{textblock}{5}(2.1,4.6) |
|
397 \begin{tikzpicture} |
|
398 \node at (0,0) [single arrow, fill=blue,text=white, minimum height=2cm] |
|
399 {$[] \in X$}; |
|
400 \end{tikzpicture} |
|
401 \end{textblock}} |
|
402 |
|
403 \only<3->{% |
|
404 \begin{textblock}{5}(10,7.4) |
|
405 \begin{tikzpicture} |
|
406 \node at (0,0) [shape border rotate=180,single arrow, fill=red,text=white, minimum height=2cm] |
|
407 {a final}; |
|
408 \end{tikzpicture} |
|
409 \end{textblock}} |
|
410 |
|
411 \end{frame}} |
|
412 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
413 *} |
|
414 |
|
415 |
|
416 text_raw {* |
|
417 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
418 \mode<presentation>{ |
|
419 \begin{frame}<-1>[c] |
|
420 \frametitle{\begin{tabular}{@ {}l}\LARGE% |
|
421 Transitions between Eq-Classes\end{tabular}} |
|
422 |
|
423 \begin{center} |
|
424 \begin{tikzpicture}[scale=3] |
|
425 \draw[very thick] (0.5,0.5) circle (.6cm); |
|
426 \clip[draw] (0.5,0.5) circle (.6cm); |
|
427 \draw[step=2mm, very thick] (-1.4,-1.4) grid (1.4,1.4); |
|
428 \draw[blue, fill] (0.0, 0.6) rectangle (0.2, 0.8); |
|
429 \draw[blue, fill] (0.8, 0.4) rectangle (1.0, 0.6); |
|
430 \draw[white] (0.1,0.7) node (X) {$X$}; |
|
431 \draw[white] (0.9,0.5) node (Y) {$Y$}; |
|
432 \draw[blue, ->, line width = 2mm, bend left=45] (X) -- (Y); |
|
433 \node [inner sep=1pt,label=above:\textcolor{blue}{$c$}] at ($ (X)!.5!(Y) $) {}; |
|
434 \end{tikzpicture} |
|
435 \end{center} |
|
436 |
|
437 \begin{center} |
|
438 \smath{X \stackrel{c}{\longrightarrow} Y \;\dn\; X ; c \subseteq Y} |
|
439 \end{center} |
|
440 |
|
441 \onslide<8>{ |
|
442 \begin{tabular}{c} |
|
443 \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick] |
|
444 \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm] |
|
445 \node[state,initial] (q_0) {$R_1$}; |
|
446 \end{tikzpicture} |
|
447 \end{tabular}} |
|
448 |
|
449 \end{frame}} |
|
450 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
451 *} |
|
452 |
|
453 |
|
454 text_raw {* |
|
455 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
456 \mode<presentation>{ |
|
457 \begin{frame}[c] |
|
458 \frametitle{\LARGE Systems of Equations} |
|
459 |
|
460 Inspired by a method of Brzozowski\;'64:\bigskip\bigskip |
|
461 |
|
462 \begin{center} |
|
463 \begin{tabular}{@ {\hspace{-20mm}}c} |
|
464 \\[-13mm] |
|
465 \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick] |
|
466 \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm] |
|
467 |
|
468 %\draw[help lines] (0,0) grid (3,2); |
|
469 |
|
470 \node[state,initial] (p_0) {$X_1$}; |
|
471 \node[state,accepting] (p_1) [right of=q_0] {$X_2$}; |
|
472 |
|
473 \path[->] (p_0) edge [bend left] node {a} (p_1) |
|
474 edge [loop above] node {b} () |
|
475 (p_1) edge [loop above] node {a} () |
|
476 edge [bend left] node {b} (p_0); |
|
477 \end{tikzpicture}\\ |
|
478 \\[-13mm] |
|
479 \end{tabular} |
|
480 \end{center} |
|
481 |
|
482 \begin{center} |
|
483 \begin{tabular}{@ {\hspace{-6mm}}ll@ {\hspace{1mm}}c@ {\hspace{1mm}}l} |
|
484 & \smath{X_1} & \smath{=} & \smath{X_1;b + X_2;b \onslide<2->{\alert<2>{+ \lambda;[]}}}\\ |
|
485 & \smath{X_2} & \smath{=} & \smath{X_1;a + X_2;a}\medskip\\ |
|
486 \end{tabular} |
|
487 \end{center} |
|
488 |
|
489 \end{frame}} |
|
490 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
491 *} |
|
492 |
|
493 |
|
494 text_raw {* |
|
495 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
496 \mode<presentation>{ |
|
497 \begin{frame}<1-2,4->[t] |
|
498 \small |
|
499 |
|
500 \begin{center} |
|
501 \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}ll} |
|
502 \onslide<1->{\smath{X_1}} & \onslide<1->{\smath{=}} |
|
503 & \onslide<1->{\smath{X_1; b + X_2; b + \lambda;[]}}\\ |
|
504 \onslide<1->{\smath{X_2}} & \onslide<1->{\smath{=}} |
|
505 & \onslide<1->{\smath{X_1; a + X_2; a}}\\ |
|
506 |
|
507 & & & \onslide<2->{by Arden}\\ |
|
508 |
|
509 \onslide<2->{\smath{X_1}} & \onslide<2->{\smath{=}} |
|
510 & \onslide<2->{\smath{X_1; b + X_2; b + \lambda;[]}}\\ |
|
511 \onslide<2->{\smath{X_2}} & \onslide<2->{\smath{=}} |
|
512 & \only<2->{\smath{X_1; a\cdot a^\star}}\\ |
|
513 |
|
514 & & & \onslide<4->{by Arden}\\ |
|
515 |
|
516 \onslide<4->{\smath{X_1}} & \onslide<4->{\smath{=}} |
|
517 & \onslide<4->{\smath{X_2; b \cdot b^\star+ \lambda;b^\star}}\\ |
|
518 \onslide<4->{\smath{X_2}} & \onslide<4->{\smath{=}} |
|
519 & \onslide<4->{\smath{X_1; a\cdot a^\star}}\\ |
|
520 |
|
521 & & & \onslide<5->{by substitution}\\ |
|
522 |
|
523 \onslide<5->{\smath{X_1}} & \onslide<5->{\smath{=}} |
|
524 & \onslide<5->{\smath{X_1; a\cdot a^\star \cdot b \cdot b^\star+ \lambda;b^\star}}\\ |
|
525 \onslide<5->{\smath{X_2}} & \onslide<5->{\smath{=}} |
|
526 & \onslide<5->{\smath{X_1; a\cdot a^\star}}\\ |
|
527 |
|
528 & & & \onslide<6->{by Arden}\\ |
|
529 |
|
530 \onslide<6->{\smath{X_1}} & \onslide<6->{\smath{=}} |
|
531 & \onslide<6->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\ |
|
532 \onslide<6->{\smath{X_2}} & \onslide<6->{\smath{=}} |
|
533 & \onslide<6->{\smath{X_1; a\cdot a^\star}}\\ |
|
534 |
|
535 & & & \onslide<7->{by substitution}\\ |
|
536 |
|
537 \onslide<7->{\smath{X_1}} & \onslide<7->{\smath{=}} |
|
538 & \onslide<7->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\ |
|
539 \onslide<7->{\smath{X_2}} & \onslide<7->{\smath{=}} |
|
540 & \onslide<7->{\smath{\lambda; b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star |
|
541 \cdot a\cdot a^\star}}\\ |
|
542 \end{tabular} |
|
543 \end{center} |
|
544 |
|
545 \only<8->{ |
|
546 \begin{textblock}{6}(2.5,4) |
|
547 \begin{block}{} |
|
548 \begin{minipage}{8cm}\raggedright |
|
549 |
|
550 \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick, inner sep=1mm] |
|
551 \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm] |
|
552 |
|
553 %\draw[help lines] (0,0) grid (3,2); |
|
554 |
|
555 \node[state,initial] (p_0) {$X_1$}; |
|
556 \node[state,accepting] (p_1) [right of=q_0] {$X_2$}; |
|
557 |
|
558 \path[->] (p_0) edge [bend left] node {a} (p_1) |
|
559 edge [loop above] node {b} () |
|
560 (p_1) edge [loop above] node {a} () |
|
561 edge [bend left] node {b} (p_0); |
|
562 \end{tikzpicture} |
|
563 |
|
564 \end{minipage} |
|
565 \end{block} |
|
566 \end{textblock}} |
|
567 |
|
568 \only<1,2>{% |
|
569 \begin{textblock}{3}(0.6,1.2) |
|
570 \begin{tikzpicture} |
|
571 \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm] |
|
572 {\textcolor{red}{a}}; |
|
573 \end{tikzpicture} |
|
574 \end{textblock}} |
|
575 \only<2>{% |
|
576 \begin{textblock}{3}(0.6,3.6) |
|
577 \begin{tikzpicture} |
|
578 \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm] |
|
579 {\textcolor{red}{a}}; |
|
580 \end{tikzpicture} |
|
581 \end{textblock}} |
|
582 \only<4>{% |
|
583 \begin{textblock}{3}(0.6,2.9) |
|
584 \begin{tikzpicture} |
|
585 \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm] |
|
586 {\textcolor{red}{a}}; |
|
587 \end{tikzpicture} |
|
588 \end{textblock}} |
|
589 \only<4>{% |
|
590 \begin{textblock}{3}(0.6,5.3) |
|
591 \begin{tikzpicture} |
|
592 \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm] |
|
593 {\textcolor{red}{a}}; |
|
594 \end{tikzpicture} |
|
595 \end{textblock}} |
|
596 \only<5>{% |
|
597 \begin{textblock}{3}(1.0,5.6) |
|
598 \begin{tikzpicture} |
|
599 \node at (0,0) (A) {}; |
|
600 \node at (0,1) (B) {}; |
|
601 \draw[<-, line width=2mm, red] (B) to (A); |
|
602 \end{tikzpicture} |
|
603 \end{textblock}} |
|
604 \only<5,6>{% |
|
605 \begin{textblock}{3}(0.6,7.7) |
|
606 \begin{tikzpicture} |
|
607 \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm] |
|
608 {\textcolor{red}{a}}; |
|
609 \end{tikzpicture} |
|
610 \end{textblock}} |
|
611 \only<6>{% |
|
612 \begin{textblock}{3}(0.6,10.1) |
|
613 \begin{tikzpicture} |
|
614 \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm] |
|
615 {\textcolor{red}{a}}; |
|
616 \end{tikzpicture} |
|
617 \end{textblock}} |
|
618 \only<7>{% |
|
619 \begin{textblock}{3}(1.0,10.3) |
|
620 \begin{tikzpicture} |
|
621 \node at (0,0) (A) {}; |
|
622 \node at (0,1) (B) {}; |
|
623 \draw[->, line width=2mm, red] (B) to (A); |
|
624 \end{tikzpicture} |
|
625 \end{textblock}} |
|
626 |
|
627 \end{frame}} |
|
628 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
629 *} |
|
630 |
|
631 |
|
632 text_raw {* |
|
633 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
634 \mode<presentation>{ |
|
635 \begin{frame}[c] |
|
636 \frametitle{\LARGE The Other Direction} |
|
637 |
|
638 One has to prove |
|
639 |
|
640 \begin{center} |
|
641 \smath{\text{finite} (U\!N\!IV /\!/ \approx_{{\cal L}(r)})} |
|
642 \end{center} |
|
643 |
|
644 by induction on \smath{r}. Not trivial, but after a bit |
|
645 of thinking, one can find a \alert{refined} relation:\bigskip |
|
646 |
|
647 |
|
648 \begin{center} |
|
649 \mbox{\begin{tabular}{c@ {\hspace{7mm}}c@ {\hspace{7mm}}c} |
|
650 \begin{tikzpicture}[scale=1.1] |
|
651 %Circle |
|
652 \draw[thick] (0,0) circle (1.1); |
|
653 \end{tikzpicture} |
|
654 & |
|
655 \begin{tikzpicture}[scale=1.1] |
|
656 %Circle |
|
657 \draw[thick] (0,0) circle (1.1); |
|
658 %Main rays |
|
659 \foreach \a in {0, 90,...,359} |
|
660 \draw[very thick] (0, 0) -- (\a:1.1); |
|
661 \foreach \a / \l in {45/1, 135/2, 225/3, 315/4} |
|
662 \draw (\a: 0.65) node {\small$a_\l$}; |
|
663 \end{tikzpicture} |
|
664 & |
|
665 \begin{tikzpicture}[scale=1.1] |
|
666 %Circle |
|
667 \draw[red, thick] (0,0) circle (1.1); |
|
668 %Main rays |
|
669 \foreach \a in {0, 45,...,359} |
|
670 \draw[red, very thick] (0, 0) -- (\a:1.1); |
|
671 \foreach \a / \l in {22.5/1.1, 67.5/1.2, 112.5/2.1, 157.5/2.2, 202.4/3.1, 247.5/3.2, 292.5/4.1, 337.5/4.2} |
|
672 \draw (\a: 0.77) node {\textcolor{red}{\footnotesize$a_{\l}$}}; |
|
673 \end{tikzpicture}\\ |
|
674 \small\smath{U\!N\!IV} & |
|
675 \small\smath{U\!N\!IV /\!/ \approx_{{\cal L}(r)}} & |
|
676 \small\smath{U\!N\!IV /\!/ \alert{R}} |
|
677 \end{tabular}} |
|
678 \end{center} |
|
679 |
|
680 \begin{textblock}{5}(9.8,2.6) |
|
681 \begin{tikzpicture} |
|
682 \node at (0,0) [shape border rotate=270,single arrow, fill=red,text=white, minimum height=0cm]{\textcolor{red}{a}}; |
|
683 \end{tikzpicture} |
|
684 \end{textblock} |
|
685 |
|
686 |
|
687 \end{frame}} |
|
688 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
689 *} |
|
690 |
|
691 text_raw {* |
|
692 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
693 \mode<presentation>{ |
|
694 \begin{frame}[t] |
|
695 \frametitle{\LARGE\begin{tabular}{c}Derivatives of RExps\end{tabular}} |
|
696 |
|
697 \begin{itemize} |
|
698 \item introduced by Brozowski~'64 |
|
699 \item a regular expressions after a character has been parsed\\[-18mm]\mbox{} |
|
700 \end{itemize} |
|
701 |
|
702 \only<1>{% |
|
703 \textcolor{blue}{% |
|
704 \begin{center} |
|
705 \begin{tabular}{@ {}lc@ {\hspace{3mm}}l@ {}} |
|
706 der c $\varnothing$ & $\dn$ & $\varnothing$\\ |
|
707 der c [] & $\dn$ & $\varnothing$\\ |
|
708 der c d & $\dn$ & if c $=$ d then [] else $\varnothing$\\ |
|
709 der c ($r_1 + r_2$) & $\dn$ & (der c $r_1$) $+$ (der c $r_2$)\\ |
|
710 der c ($r^\star$) & $\dn$ & (der c $r$) $\cdot$ $r^\star$\\ |
|
711 der c ($r_1 \cdot r_2$) & $\dn$ & if nullable $r_1$\\ |
|
712 & & then (der c $r_1$) $\cdot$ $r_2$ $+$ (der c $r_2$)\\ |
|
713 & & else (der c $r_1$) $\cdot$ $r_2$\\ |
|
714 \end{tabular} |
|
715 \end{center}}} |
|
716 \only<2>{% |
|
717 \textcolor{blue}{% |
|
718 \begin{center} |
|
719 \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}} |
|
720 pder c $\varnothing$ & $\dn$ & \alert{$\{\}$}\\ |
|
721 pder c [] & $\dn$ & \alert{$\{\}$}\\ |
|
722 pder c d & $\dn$ & if c $=$ d then $\{$[]$\}$ else $\{\}$\\ |
|
723 pder c ($r_1 + r_2$) & $\dn$ & (pder c $r_1$) \alert{$\cup$} (der c $r_2$)\\ |
|
724 pder c ($r^\star$) & $\dn$ & (pder c $r$) $\cdot$ $r^\star$\\ |
|
725 pder c ($r_1 \cdot r_2$) & $\dn$ & if nullable $r_1$\\ |
|
726 & & then (pder c $r_1$) $\cdot$ $r_2$ \alert{$\cup$} (pder c $r_2$)\\ |
|
727 & & else (pder c $r_1$) $\cdot$ $r_2$\\ |
|
728 \end{tabular} |
|
729 \end{center}}} |
|
730 |
|
731 \only<2>{ |
|
732 \begin{textblock}{6}(8.5,4.7) |
|
733 \begin{block}{} |
|
734 \begin{quote} |
|
735 \begin{minipage}{6cm}\raggedright |
|
736 \begin{itemize} |
|
737 \item partial derivatives |
|
738 \item by Antimirov~'95 |
|
739 \end{itemize} |
|
740 \end{minipage} |
|
741 \end{quote} |
|
742 \end{block} |
|
743 \end{textblock}} |
|
744 |
|
745 \end{frame}} |
|
746 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
747 *} |
|
748 |
|
749 |
|
750 text_raw {* |
|
751 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
752 \mode<presentation>{ |
|
753 \begin{frame}[t] |
|
754 \frametitle{\LARGE Partial Derivatives} |
|
755 |
|
756 \mbox{}\\[0mm]\mbox{} |
|
757 |
|
758 \begin{itemize} |
|
759 |
|
760 \item \alt<1>{\smath{\text{pders $x$ $r$ \mbox{$=$} pders $y$ $r$}}} |
|
761 {\smath{\underbrace{\text{pders $x$ $r$ \mbox{$=$} pders $y$ $r$}}_{R}}} |
|
762 refines \textcolor{blue}{$x$ $\approx_{{\cal L}(r)}$ $y$}\\[16mm]\pause |
|
763 \item \smath{\text{finite} (U\!N\!IV /\!/ R)} \bigskip\pause |
|
764 \item Therefore \smath{\text{finite} (U\!N\!IV /\!/ \approx_{{\cal L}(r)})}. Qed. |
|
765 \end{itemize} |
|
766 |
|
767 \only<2->{% |
|
768 \begin{textblock}{5}(3.9,7.2) |
|
769 \begin{tikzpicture} |
|
770 \node at (0,0) [shape border rotate=270,single arrow, fill=red,text=white, minimum height=0cm]{\textcolor{red}{a}}; |
|
771 \draw (2.2,0) node {Antimirov '95}; |
|
772 \end{tikzpicture} |
|
773 \end{textblock}} |
|
774 |
|
775 \end{frame}} |
|
776 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
777 *} |
|
778 |
|
779 |
|
780 |
|
781 text_raw {* |
|
782 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
783 \mode<presentation>{ |
|
784 \begin{frame}[t] |
|
785 \frametitle{\LARGE What Have We Achieved?} |
|
786 |
|
787 \begin{itemize} |
|
788 \item \smath{\text{finite}\, (U\!N\!IV /\!/ \approx_A) \;\Leftrightarrow\; A\; \text{is regular}} |
|
789 \medskip\pause |
|
790 \item regular languages are closed under complementation; this is now easy |
|
791 \begin{center} |
|
792 \smath{U\!N\!IV /\!/ \approx_A \;\;=\;\; U\!N\!IV /\!/ \approx_{\overline{A}}} |
|
793 \end{center}\pause\medskip |
|
794 |
|
795 \item non-regularity (\smath{a^nb^n})\medskip\pause\pause |
|
796 |
|
797 \item take \alert{\bf any} language; build the language of substrings\\ |
|
798 \pause |
|
799 |
|
800 then this language \alert{\bf is} regular\;\; (\smath{a^nb^n} $\Rightarrow$ \smath{a^\star{}b^\star}) |
|
801 |
|
802 \end{itemize} |
|
803 |
|
804 \only<2>{ |
|
805 \begin{textblock}{10}(4,14) |
|
806 \small |
|
807 \smath{x \approx_{A} y \,\dn\, \forall z.\; x @ z \in A \Leftrightarrow y @ z \in A} |
|
808 \end{textblock}} |
|
809 |
|
810 \only<4>{ |
|
811 \begin{textblock}{5}(2,8.6) |
|
812 \begin{minipage}{8.8cm} |
|
813 \begin{block}{} |
|
814 \begin{minipage}{8.6cm} |
|
815 If there exists a sufficiently large set \smath{B} (for example infinitely large), |
|
816 such that |
|
817 |
|
818 \begin{center} |
|
819 \smath{\forall x,y \in B.\; x \not= y \;\Rightarrow\; x \not\approx_{A} y}. |
|
820 \end{center} |
|
821 |
|
822 then \smath{A} is not regular.\hspace{1.3cm}\small(\smath{B \dn \bigcup_n a^n}) |
|
823 \end{minipage} |
|
824 \end{block} |
|
825 \end{minipage} |
|
826 \end{textblock} |
|
827 } |
|
828 |
|
829 \end{frame}} |
|
830 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
831 *} |
|
832 |
|
833 |
|
834 text_raw {* |
|
835 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
836 \mode<presentation>{ |
|
837 \begin{frame}[c] |
|
838 \frametitle{\LARGE Conclusion} |
|
839 |
|
840 \begin{itemize} |
|
841 \item We have never seen a proof of Myhill-Nerode based on |
|
842 regular expressions.\smallskip\pause |
|
843 |
|
844 \item great source of examples (inductions)\smallskip\pause |
|
845 |
|
846 \item no need to fight the theorem prover:\\ |
|
847 \begin{itemize} |
|
848 \item first direction (790 loc)\\ |
|
849 \item second direction (400 / 390 loc) |
|
850 \end{itemize} |
|
851 \end{itemize} |
|
852 |
|
853 \end{frame}} |
|
854 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
855 *} |
|
856 |
|
857 text_raw {* |
|
858 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
859 \mode<presentation>{ |
|
860 \begin{frame}[b] |
|
861 \frametitle{\mbox{}\\[2cm]\textcolor{red}{Thank you!\\[5mm]Questions?}} |
|
862 |
|
863 \end{frame}} |
|
864 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
865 *} |
|
866 |
|
867 (*<*) |
|
868 end |
|
869 (*>*) |