|
1 (*<*) |
|
2 theory Slides5 |
|
3 imports "~~/src/HOL/Library/LaTeXsugar" |
|
4 begin |
|
5 |
|
6 notation (latex output) |
|
7 set ("_") and |
|
8 Cons ("_::/_" [66,65] 65) |
|
9 |
|
10 (*>*) |
|
11 |
|
12 |
|
13 text_raw {* |
|
14 \renewcommand{\slidecaption}{London, 29 August 2012} |
|
15 \newcommand{\bl}[1]{\textcolor{blue}{#1}} |
|
16 \newcommand{\sout}[1]{\tikz[baseline=(X.base), inner sep=-0.1pt, outer sep=0pt] |
|
17 \node [cross out,red, ultra thick, draw] (X) {\textcolor{black}{#1}};} |
|
18 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
19 \mode<presentation>{ |
|
20 \begin{frame} |
|
21 \frametitle{% |
|
22 \begin{tabular}{@ {}c@ {}} |
|
23 \\[-3mm] |
|
24 \LARGE The Myhill-Nerode Theorem\\[-3mm] |
|
25 \LARGE in a Theorem Prover\\[0mm] |
|
26 \end{tabular}} |
|
27 |
|
28 \begin{center} |
|
29 Christian Urban\\ |
|
30 \small King's College London |
|
31 \end{center}\bigskip |
|
32 |
|
33 \begin{center} |
|
34 \small joint work with Chunhan Wu and Xingyuan Zhang from the PLA |
|
35 University of Science and Technology in Nanjing |
|
36 \end{center} |
|
37 |
|
38 \only<2->{ |
|
39 \begin{textblock}{6}(9,5.3) |
|
40 \alert{\bf Isabelle/HOL} |
|
41 \end{textblock}} |
|
42 |
|
43 \end{frame}} |
|
44 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
45 *} |
|
46 |
|
47 text_raw {* |
|
48 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
49 \mode<presentation>{ |
|
50 \begin{frame}<1->[c] |
|
51 \frametitle{} |
|
52 |
|
53 \mbox{}\\[2mm] |
|
54 \begin{itemize} |
|
55 \item my background is in |
|
56 \begin{itemize} |
|
57 \item \normalsize programming languages and theorem provers |
|
58 \item \normalsize develop Nominal Isabelle |
|
59 \end{itemize}\bigskip\bigskip\bigskip\bigskip\bigskip |
|
60 |
|
61 \item<1->to formalise and mechanically check proofs from |
|
62 programming language research, TCS \textcolor{gray}{and OS}\bigskip |
|
63 |
|
64 \item<2->we found out that the variable convention can lead to |
|
65 faulty proofs\ldots |
|
66 \end{itemize} |
|
67 |
|
68 \onslide<2->{ |
|
69 \begin{center} |
|
70 \begin{block}{} |
|
71 \color{gray} |
|
72 \footnotesize |
|
73 {\bf\mbox{}\hspace{-1.5mm}Variable Convention:}\\[0mm] |
|
74 If $M_1,\ldots,M_n$ occur in a certain mathematical context |
|
75 (e.g. definition, proof), then in these terms all bound variables |
|
76 are chosen to be different from the free variables.\hfill Henk Barendregt |
|
77 \end{block} |
|
78 \end{center}} |
|
79 |
|
80 |
|
81 \only<1->{ |
|
82 \begin{textblock}{6}(10.9,3.5) |
|
83 \includegraphics[scale=0.23]{isabelle1.png} |
|
84 \end{textblock}} |
|
85 |
|
86 |
|
87 |
|
88 \end{frame}} |
|
89 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
90 *} |
|
91 |
|
92 |
|
93 |
|
94 |
|
95 text_raw {* |
|
96 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
97 \mode<presentation>{ |
|
98 \begin{frame}[c] |
|
99 \frametitle{} |
|
100 |
|
101 \begin{tabular}{c@ {\hspace{2mm}}c} |
|
102 \\[6mm] |
|
103 \begin{tabular}{c} |
|
104 \includegraphics[scale=0.11]{harper.jpg}\\[-2mm] |
|
105 {\footnotesize Bob Harper}\\[-2.5mm] |
|
106 {\footnotesize (CMU)} |
|
107 \end{tabular} |
|
108 \begin{tabular}{c} |
|
109 \includegraphics[scale=0.37]{pfenning.jpg}\\[-2mm] |
|
110 {\footnotesize Frank Pfenning}\\[-2.5mm] |
|
111 {\footnotesize (CMU)} |
|
112 \end{tabular} & |
|
113 |
|
114 \begin{tabular}{p{6cm}} |
|
115 \raggedright |
|
116 \color{gray}{published a proof on LF in\\ {\bf ACM Transactions on Computational Logic}, 2005, |
|
117 $\sim$31pp} |
|
118 \end{tabular}\\ |
|
119 |
|
120 \pause |
|
121 \\[0mm] |
|
122 |
|
123 \begin{tabular}{c} |
|
124 \includegraphics[scale=0.36]{appel.jpg}\\[-2mm] |
|
125 {\footnotesize Andrew Appel}\\[-2.5mm] |
|
126 {\footnotesize (Princeton)} |
|
127 \end{tabular} & |
|
128 |
|
129 \begin{tabular}{p{6cm}} |
|
130 \raggedright |
|
131 \color{gray}{relied on their proof in a\\ {\bf security} critical application\\ (proof-carrying code)} |
|
132 \end{tabular} |
|
133 \end{tabular} |
|
134 |
|
135 |
|
136 |
|
137 \end{frame}} |
|
138 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
139 *} |
|
140 |
|
141 |
|
142 |
|
143 text {* |
|
144 \tikzstyle{every node}=[node distance=25mm,text height=1.5ex, text depth=.25ex] |
|
145 \tikzstyle{node1}=[rectangle, minimum size=10mm, rounded corners=3mm, very thick, |
|
146 draw=black!50, top color=white, bottom color=black!20] |
|
147 \tikzstyle{node2}=[rectangle, minimum size=12mm, rounded corners=3mm, very thick, |
|
148 draw=red!70, top color=white, bottom color=red!50!black!20] |
|
149 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
150 \mode<presentation>{ |
|
151 \begin{frame}<2->[squeeze] |
|
152 \frametitle{} |
|
153 |
|
154 \begin{columns} |
|
155 |
|
156 \begin{column}{0.8\textwidth} |
|
157 \begin{textblock}{0}(1,2) |
|
158 |
|
159 \begin{tikzpicture} |
|
160 \matrix[ampersand replacement=\&,column sep=7mm, row sep=5mm] |
|
161 { \&[-10mm] |
|
162 \node (def1) [node1] {\large\hspace{1mm}Spec\hspace{1mm}\mbox{}}; \& |
|
163 \node (proof1) [node1] {\large Proof}; \& |
|
164 \node (alg1) [node1] {\large\hspace{1mm}Alg\hspace{1mm}\mbox{}}; \\ |
|
165 |
|
166 \onslide<4->{\node {\begin{tabular}{c}\small 1st\\[-2.5mm] \footnotesize solution\end{tabular}};} \& |
|
167 \onslide<4->{\node (def2) [node2] {\large Spec$^\text{+ex}$};} \& |
|
168 \onslide<4->{\node (proof2) [node1] {\large Proof};} \& |
|
169 \onslide<4->{\node (alg2) [node1] {\large\hspace{1mm}Alg\hspace{1mm}\mbox{}};} \\ |
|
170 |
|
171 \onslide<5->{\node {\begin{tabular}{c}\small 2nd\\[-2.5mm] \footnotesize solution\end{tabular}};} \& |
|
172 \onslide<5->{\node (def3) [node1] {\large\hspace{1mm}Spec\hspace{1mm}\mbox{}};} \& |
|
173 \onslide<5->{\node (proof3) [node1] {\large Proof};} \& |
|
174 \onslide<5->{\node (alg3) [node2] {\large Alg$^\text{-ex}$};} \\ |
|
175 |
|
176 \onslide<6->{\node {\begin{tabular}{c}\small 3rd\\[-2.5mm] \footnotesize solution\end{tabular}};} \& |
|
177 \onslide<6->{\node (def4) [node1] {\large\hspace{1mm}Spec\hspace{1mm}\mbox{}};} \& |
|
178 \onslide<6->{\node (proof4) [node2] {\large\hspace{1mm}Proof\hspace{1mm}};} \& |
|
179 \onslide<6->{\node (alg4) [node1] {\large\hspace{1mm}Alg\hspace{1mm}\mbox{}};} \\ |
|
180 }; |
|
181 |
|
182 \draw[->,black!50,line width=2mm] (proof1) -- (def1); |
|
183 \draw[->,black!50,line width=2mm] (proof1) -- (alg1); |
|
184 |
|
185 \onslide<4->{\draw[->,black!50,line width=2mm] (proof2) -- (def2);} |
|
186 \onslide<4->{\draw[->,black!50,line width=2mm] (proof2) -- (alg2);} |
|
187 |
|
188 \onslide<5->{\draw[->,black!50,line width=2mm] (proof3) -- (def3);} |
|
189 \onslide<5->{\draw[->,black!50,line width=2mm] (proof3) -- (alg3);} |
|
190 |
|
191 \onslide<6->{\draw[->,black!50,line width=2mm] (proof4) -- (def4);} |
|
192 \onslide<6->{\draw[->,black!50,line width=2mm] (proof4) -- (alg4);} |
|
193 |
|
194 \onslide<3->{\draw[white,line width=1mm] (1.1,3.2) -- (0.9,2.85) -- (1.1,2.35) -- (0.9,2.0);} |
|
195 \end{tikzpicture} |
|
196 |
|
197 \end{textblock} |
|
198 \end{column} |
|
199 \end{columns} |
|
200 |
|
201 |
|
202 \begin{textblock}{3}(12,3.6) |
|
203 \onslide<4->{ |
|
204 \begin{tikzpicture} |
|
205 \node at (0,0) [single arrow, shape border rotate=270, fill=red,text=white]{2h}; |
|
206 \end{tikzpicture}} |
|
207 \end{textblock} |
|
208 |
|
209 \end{frame}} |
|
210 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
211 |
|
212 *} |
|
213 |
|
214 |
|
215 text_raw {* |
|
216 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
217 \mode<presentation>{ |
|
218 \begin{frame}[c] |
|
219 \frametitle{} |
|
220 |
|
221 \begin{itemize} |
|
222 \item I also found fixable errors in my Ph.D.-thesis about cut-elimination |
|
223 (examined by Henk Barendregt and Andy Pitts)\bigskip |
|
224 \item found flaws in a proof about a classic OS scheduling algorithm |
|
225 --- helped us to implement\\ it correctly and ef$\!$ficiently\\ |
|
226 {\small\textcolor{gray}{(the existing literature ``proved'' |
|
227 correct an incorrect algorithm; used in the Mars Pathfinder mission)}} |
|
228 \end{itemize}\bigskip\bigskip\pause |
|
229 |
|
230 |
|
231 {\bf Conclusion:}\smallskip |
|
232 |
|
233 Pencil-and-paper proofs in TCS are not foolproof, |
|
234 not even expertproof. |
|
235 |
|
236 \end{frame}} |
|
237 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
238 *} |
|
239 |
|
240 |
|
241 text_raw {* |
|
242 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
243 \mode<presentation>{ |
|
244 \begin{frame}[t] |
|
245 |
|
246 \small Scott Aaronson (Berkeley/MIT):\\[-7mm]\mbox{} |
|
247 \begin{center} |
|
248 \begin{block}{} |
|
249 \color{gray} |
|
250 \small |
|
251 ``I still remember having to grade hundreds of exams where the |
|
252 students started out by assuming what had to be proved, or filled |
|
253 page after page with gibberish in the hope that, somewhere in the |
|
254 mess, they might accidentally have said something |
|
255 correct. \ldots{}innumerable examples of ``parrot proofs'' --- |
|
256 NP-completeness reductions done in the wrong direction, arguments |
|
257 that look more like LSD trips than coherent chains of logic \ldots{}'' |
|
258 \end{block} |
|
259 \end{center}\pause |
|
260 |
|
261 \begin{tabular}{@ {}c@ {}} |
|
262 Tobias Nipkow calls this the ``London Underground Phenomenon'': |
|
263 \end{tabular} |
|
264 |
|
265 \begin{center} |
|
266 \begin{tabular}{ccc} |
|
267 students & \;\;\raisebox{-8mm}{\includegraphics[scale=0.16]{gap.jpg}}\;\; & proofs |
|
268 \end{tabular} |
|
269 \end{center} |
|
270 |
|
271 \end{frame}} |
|
272 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
273 *} |
|
274 |
|
275 text_raw {* |
|
276 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
277 \mode<presentation>{ |
|
278 \begin{frame}[c] |
|
279 \frametitle{} |
|
280 |
|
281 \begin{textblock}{12.9}(1.5,2.0) |
|
282 \begin{block}{} |
|
283 \begin{minipage}{12.4cm}\raggedright |
|
284 \large {\bf Motivation:}\\[2mm]I want to teach \alert{students} with |
|
285 theorem\\ provers (especially for inductions). |
|
286 \end{minipage} |
|
287 \end{block} |
|
288 \end{textblock}\pause |
|
289 |
|
290 \mbox{}\\[35mm]\mbox{} |
|
291 |
|
292 \begin{itemize} |
|
293 \item \only<2>{\smath{\text{fib}}, \smath{\text{even}} and \smath{\text{odd}}}% |
|
294 \only<3->{\sout{\smath{\text{fib}}, \smath{\text{even}} and \smath{\text{odd}}}}\medskip |
|
295 \item<3-> formal language theory \\ |
|
296 \mbox{}\;\;@{text "\<Rightarrow>"} nice textbooks: Kozen, Hopcroft \& Ullman\ldots |
|
297 \end{itemize} |
|
298 |
|
299 \end{frame}} |
|
300 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
301 |
|
302 *} |
|
303 |
|
304 |
|
305 text_raw {* |
|
306 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
307 \mode<presentation>{ |
|
308 \begin{frame}<1->[t] |
|
309 \frametitle{Regular Expressions} |
|
310 |
|
311 \begin{textblock}{6}(2,4) |
|
312 \begin{tabular}{@ {}rrl} |
|
313 \bl{r} & \bl{$::=$} & \bl{$\varnothing$}\\ |
|
314 & \bl{$\mid$} & \bl{[]}\\ |
|
315 & \bl{$\mid$} & \bl{c}\\ |
|
316 & \bl{$\mid$} & \bl{r$_1$ $\cdot$ r$_2$}\\ |
|
317 & \bl{$\mid$} & \bl{r$_1$ + r$_2$}\\ |
|
318 & \bl{$\mid$} & \bl{r$^*$}\\ |
|
319 \end{tabular} |
|
320 \end{textblock} |
|
321 |
|
322 \begin{textblock}{6}(8,3.5) |
|
323 \includegraphics[scale=0.35]{Screen1.png} |
|
324 \end{textblock} |
|
325 |
|
326 \begin{textblock}{6}(10.2,2.8) |
|
327 \footnotesize Isabelle: |
|
328 \end{textblock} |
|
329 |
|
330 \begin{textblock}{6}(7,12) |
|
331 \footnotesize\textcolor{gray}{students have seen them and can be motivated about them} |
|
332 \end{textblock} |
|
333 |
|
334 \end{frame}} |
|
335 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
336 *} |
|
337 |
|
338 text_raw {* |
|
339 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
340 \mode<presentation>{ |
|
341 \begin{frame}<1->[t] |
|
342 |
|
343 \mbox{}\\[-2mm] |
|
344 |
|
345 \small |
|
346 \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}ll@ {}} |
|
347 \bl{nullable ($\varnothing$)} & \bl{$=$} & \bl{false} &\\ |
|
348 \bl{nullable ([])} & \bl{$=$} & \bl{true} &\\ |
|
349 \bl{nullable (c)} & \bl{$=$} & \bl{false} &\\ |
|
350 \bl{nullable (r$_1$ + r$_2$)} & \bl{$=$} & \bl{(nullable r$_1$) $\vee$ (nullable r$_2$)} & \\ |
|
351 \bl{nullable (r$_1$ $\cdot$ r$_2$)} & \bl{$=$} & \bl{(nullable r$_1$) $\wedge$ (nullable r$_2$)} & \\ |
|
352 \bl{nullable (r$^*$)} & \bl{$=$} & \bl{true} & \\ |
|
353 \end{tabular}\medskip\pause |
|
354 |
|
355 \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {\hspace{-10mm}}l@ {}} |
|
356 \bl{der c ($\varnothing$)} & \bl{$=$} & \bl{$\varnothing$} & \\ |
|
357 \bl{der c ([])} & \bl{$=$} & \bl{$\varnothing$} & \\ |
|
358 \bl{der c (d)} & \bl{$=$} & \bl{if c $=$ d then [] else $\varnothing$} & \\ |
|
359 \bl{der c (r$_1$ + r$_2$)} & \bl{$=$} & \bl{(der c r$_1$) + (der c r$_2$)} & \\ |
|
360 \bl{der c (r$_1$ $\cdot$ r$_2$)} & \bl{$=$} & \bl{((der c r$_1$) $\cdot$ r$_2$) + } & \\ |
|
361 & & \bl{\hspace{3mm}(if nullable r$_1$ then der c r$_2$ else $\varnothing$)}\\ |
|
362 \bl{der c (r$^*$)} & \bl{$=$} & \bl{(der c r) $\cdot$ (r$^*$)} &\smallskip\\\pause |
|
363 |
|
364 \bl{derivative [] r} & \bl{$=$} & \bl{r} & \\ |
|
365 \bl{derivative (c::s) r} & \bl{$=$} & \bl{derivative s (der c r)} & \\ |
|
366 \end{tabular}\medskip |
|
367 |
|
368 \bl{matches r s $=$ nullable (derivative s r)} |
|
369 |
|
370 \end{frame}} |
|
371 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
372 *} |
|
373 |
|
374 text_raw {* |
|
375 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
376 \mode<presentation>{ |
|
377 \begin{frame}[c] |
|
378 \frametitle{\LARGE Regular Expression Matching\\[-2mm] in Education} |
|
379 |
|
380 \begin{itemize} |
|
381 \item Harper in JFP'99: ``Functional Pearl: Proof- Directed Debugging''\medskip |
|
382 \item Yi in JFP'06: ``Educational Pearl: `Proof-Directed Debugging' revisited |
|
383 for a first-order version''\medskip\bigskip\bigskip\pause |
|
384 \item Owens et al in JFP'09: ``Regular-expression derivatives re-examined'' |
|
385 \bigskip |
|
386 |
|
387 \begin{quote}\small |
|
388 ``Unfortunately, regular expression derivatives have been lost in the |
|
389 sands of time, and few computer scientists are aware of them.'' |
|
390 \end{quote} |
|
391 \end{itemize} |
|
392 |
|
393 |
|
394 \end{frame}} |
|
395 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
396 |
|
397 *} |
|
398 |
|
399 text_raw {* |
|
400 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
401 \mode<presentation>{ |
|
402 \begin{frame}[t] |
|
403 \frametitle{\normalsize Formal language theory\ldots\hfill\mbox{}} |
|
404 \mbox{}\\[-15mm]\mbox{} |
|
405 |
|
406 \begin{center} |
|
407 \huge\bf\textcolor{gray}{in Theorem Provers}\\ |
|
408 \footnotesize\textcolor{gray}{e.g.~Isabelle, Coq, HOL4, \ldots} |
|
409 \end{center} |
|
410 |
|
411 \begin{itemize} |
|
412 \item automata @{text "\<Rightarrow>"} graphs, matrices, functions |
|
413 \item<2-> combining automata / graphs |
|
414 |
|
415 \onslide<2->{ |
|
416 \begin{center} |
|
417 \begin{tabular}{ccc} |
|
418 \begin{tikzpicture}[scale=1] |
|
419 %\draw[step=2mm] (-1,-1) grid (1,1); |
|
420 |
|
421 \draw[rounded corners=1mm, very thick] (-1.0,-0.3) rectangle (-0.2,0.3); |
|
422 \draw[rounded corners=1mm, very thick] ( 0.2,-0.3) rectangle ( 1.0,0.3); |
|
423 |
|
424 \node (A) at (-1.0,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
425 \node (B) at ( 0.2,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
426 |
|
427 \node (C) at (-0.2, 0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
428 \node (D) at (-0.2,-0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
429 |
|
430 \node (E) at (1.0, 0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
431 \node (F) at (1.0,-0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
432 \node (G) at (1.0,-0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
433 |
|
434 \draw (-0.6,0.0) node {\small$A_1$}; |
|
435 \draw ( 0.6,0.0) node {\small$A_2$}; |
|
436 \end{tikzpicture}} |
|
437 |
|
438 & |
|
439 |
|
440 \onslide<3->{\raisebox{1.1mm}{\bf\Large$\;\Rightarrow\,$}} |
|
441 |
|
442 & |
|
443 |
|
444 \onslide<3->{\begin{tikzpicture}[scale=1] |
|
445 %\draw[step=2mm] (-1,-1) grid (1,1); |
|
446 |
|
447 \draw[rounded corners=1mm, very thick] (-1.0,-0.3) rectangle (-0.2,0.3); |
|
448 \draw[rounded corners=1mm, very thick] ( 0.2,-0.3) rectangle ( 1.0,0.3); |
|
449 |
|
450 \node (A) at (-1.0,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
451 \node (B) at ( 0.2,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
452 |
|
453 \node (C) at (-0.2, 0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
454 \node (D) at (-0.2,-0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
455 |
|
456 \node (E) at (1.0, 0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
457 \node (F) at (1.0,-0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
458 \node (G) at (1.0,-0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
459 |
|
460 \draw [very thick, red] (C) to [bend left=45] (B); |
|
461 \draw [very thick, red] (D) to [bend right=45] (B); |
|
462 |
|
463 \draw (-0.6,0.0) node {\small$A_1$}; |
|
464 \draw ( 0.6,0.0) node {\small$A_2$}; |
|
465 \end{tikzpicture}} |
|
466 |
|
467 \end{tabular} |
|
468 \end{center}\medskip |
|
469 |
|
470 \only<4-5>{ |
|
471 \begin{tabular}{@ {\hspace{-5mm}}l@ {}} |
|
472 disjoint union:\\[2mm] |
|
473 \smath{A_1\uplus A_2 \dn \{(1, x)\,|\, x \in A_1\} \,\cup\, \{(2, y)\,|\, y \in A_2\}} |
|
474 \end{tabular}} |
|
475 \end{itemize} |
|
476 |
|
477 \only<5>{ |
|
478 \begin{textblock}{13.9}(0.7,7.7) |
|
479 \begin{block}{} |
|
480 \medskip |
|
481 \begin{minipage}{14cm}\raggedright |
|
482 Problems with definition for regularity:\bigskip\\ |
|
483 \smath{\;\text{is\_regular}(A) \dn \exists M.\;\text{is\_dfa}(M) \wedge {\cal L} (M) = A}\bigskip |
|
484 \end{minipage} |
|
485 \end{block} |
|
486 \end{textblock}} |
|
487 \medskip |
|
488 |
|
489 \only<6->{\underline{A solution}:\;\;use \smath{\text{nat}}s \;@{text "\<Rightarrow>"}\; state nodes\medskip} |
|
490 |
|
491 \only<7->{You have to \alert{rename} states!} |
|
492 |
|
493 \end{frame}} |
|
494 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
495 *} |
|
496 |
|
497 text_raw {* |
|
498 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
499 \mode<presentation>{ |
|
500 \begin{frame}[t] |
|
501 \frametitle{\normalsize Formal language theory\ldots\hfill\mbox{}} |
|
502 \mbox{}\\[-15mm]\mbox{} |
|
503 |
|
504 \begin{center} |
|
505 \huge\bf\textcolor{gray}{in Theorem Provers}\\ |
|
506 \footnotesize\textcolor{gray}{e.g.~Isabelle, Coq, HOL4, \ldots} |
|
507 \end{center} |
|
508 |
|
509 \begin{itemize} |
|
510 \item Kozen's paper-proof of Myhill-Nerode:\\ |
|
511 requires absence of \alert{inaccessible states} |
|
512 \item complementation of automata only works for \alert{complete} automata |
|
513 (need sink states)\medskip |
|
514 \end{itemize}\bigskip\bigskip |
|
515 |
|
516 \begin{center} |
|
517 \smath{\;\text{is\_regular}(A) \dn \exists M.\;\text{is\_dfa}(M) \wedge {\cal L} (M) = A} |
|
518 \end{center} |
|
519 |
|
520 |
|
521 \end{frame}} |
|
522 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
523 *} |
|
524 |
|
525 text_raw {* |
|
526 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
527 \mode<presentation>{ |
|
528 \begin{frame}[t] |
|
529 \frametitle{} |
|
530 \mbox{}\\[25mm]\mbox{} |
|
531 |
|
532 \begin{textblock}{13.9}(0.7,1.2) |
|
533 \begin{block}{} |
|
534 \begin{minipage}{13.4cm}\raggedright |
|
535 {\bf Definition:}\smallskip\\ |
|
536 |
|
537 A language \smath{A} is \alert{regular}, provided there exists a\\ |
|
538 \alert{regular expression} that matches all strings of \smath{A}. |
|
539 \end{minipage} |
|
540 \end{block} |
|
541 \end{textblock}\pause |
|
542 |
|
543 {\noindent\large\bf\alert{\ldots{}and forget about automata}}\bigskip\bigskip\pause |
|
544 |
|
545 Infrastructure for free. But do we lose anything?\medskip\pause |
|
546 |
|
547 \begin{minipage}{1.1\textwidth} |
|
548 \begin{itemize} |
|
549 \item pumping lemma\pause |
|
550 \item closure under complementation\pause |
|
551 \item \only<6>{regular expression matching}% |
|
552 \only<7->{\sout{regular expression matching} |
|
553 {\footnotesize(@{text "\<Rightarrow>"}Brzozowski'64, Owens et al '09)}} |
|
554 \item<8-> most textbooks are about automata |
|
555 \end{itemize} |
|
556 \end{minipage} |
|
557 |
|
558 |
|
559 \end{frame}} |
|
560 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
561 |
|
562 *} |
|
563 |
|
564 |
|
565 text_raw {* |
|
566 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
567 \mode<presentation>{ |
|
568 \begin{frame}[c] |
|
569 \frametitle{\LARGE The Myhill-Nerode Theorem} |
|
570 |
|
571 \begin{itemize} |
|
572 \item provides necessary and suf\!ficient conditions\\ for a language |
|
573 being regular\\ \textcolor{gray}{(pumping lemma only necessary)}\bigskip |
|
574 |
|
575 \item key is the equivalence relation:\medskip |
|
576 \begin{center} |
|
577 \smath{x \approx_{A} y \,\dn\, \forall z.\; x @ z \in A \Leftrightarrow y @ z \in A} |
|
578 \end{center} |
|
579 \end{itemize} |
|
580 |
|
581 |
|
582 \end{frame}} |
|
583 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
584 |
|
585 *} |
|
586 |
|
587 text_raw {* |
|
588 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
589 \mode<presentation>{ |
|
590 \begin{frame}[c] |
|
591 \frametitle{\LARGE The Myhill-Nerode Theorem} |
|
592 |
|
593 \begin{center} |
|
594 \only<1>{% |
|
595 \begin{tikzpicture}[scale=3] |
|
596 \draw[very thick] (0.5,0.5) circle (.6cm); |
|
597 \end{tikzpicture}}% |
|
598 \only<2->{% |
|
599 \begin{tikzpicture}[scale=3] |
|
600 \draw[very thick] (0.5,0.5) circle (.6cm); |
|
601 \clip[draw] (0.5,0.5) circle (.6cm); |
|
602 \draw[step=2mm, very thick] (-1.4,-1.4) grid (1.4,1.4); |
|
603 \end{tikzpicture}} |
|
604 \end{center} |
|
605 |
|
606 \begin{itemize} |
|
607 \item \smath{\text{finite}\, (U\!N\!IV /\!/ \approx_A) \;\Leftrightarrow\; A\; \text{is regular}} |
|
608 \end{itemize} |
|
609 |
|
610 \begin{textblock}{5}(2.1,5.3) |
|
611 \begin{tikzpicture} |
|
612 \node at (0,0) [single arrow, fill=red,text=white, minimum height=2cm] |
|
613 {$U\!N\!IV$}; |
|
614 \draw (-0.3,-1.1) node {\begin{tabular}{l}set of all\\[-1mm] strings\end{tabular}}; |
|
615 \end{tikzpicture} |
|
616 \end{textblock} |
|
617 |
|
618 \only<2->{% |
|
619 \begin{textblock}{5}(9.1,7.2) |
|
620 \begin{tikzpicture} |
|
621 \node at (0,0) [shape border rotate=180,single arrow, fill=red,text=white, minimum height=2cm] |
|
622 {@{text "\<lbrakk>s\<rbrakk>"}$_{\approx_{A}}$}; |
|
623 \draw (0.9,-1.1) node {\begin{tabular}{l}an equivalence class\end{tabular}}; |
|
624 \end{tikzpicture} |
|
625 \end{textblock}} |
|
626 |
|
627 \only<3->{ |
|
628 \begin{textblock}{11.9}(1.7,3) |
|
629 \begin{block}{} |
|
630 \begin{minipage}{11.4cm}\raggedright |
|
631 Two directions:\medskip\\ |
|
632 \begin{tabular}{@ {}ll} |
|
633 1.)\;finite $\Rightarrow$ regular\\ |
|
634 \;\;\;\smath{\text{finite}\,(U\!N\!IV /\!/ \approx_A) \Rightarrow \exists r.\;A = {\cal L}(r)}\\[3mm] |
|
635 2.)\;regular $\Rightarrow$ finite\\ |
|
636 \;\;\;\smath{\text{finite}\, (U\!N\!IV /\!/ \approx_{{\cal L}(r)})} |
|
637 \end{tabular} |
|
638 |
|
639 \end{minipage} |
|
640 \end{block} |
|
641 \end{textblock}} |
|
642 |
|
643 \end{frame}} |
|
644 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
645 |
|
646 *} |
|
647 |
|
648 |
|
649 text_raw {* |
|
650 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
651 \mode<presentation>{ |
|
652 \begin{frame}[c] |
|
653 \frametitle{\LARGE Initial and Final {\sout{\textcolor{gray}{States}}}} |
|
654 |
|
655 \begin{textblock}{8}(10, 2) |
|
656 \textcolor{black}{Equivalence Classes} |
|
657 \end{textblock} |
|
658 |
|
659 |
|
660 \begin{center} |
|
661 \begin{tikzpicture}[scale=3] |
|
662 \draw[very thick] (0.5,0.5) circle (.6cm); |
|
663 \clip[draw] (0.5,0.5) circle (.6cm); |
|
664 \draw[step=2mm, very thick] (-1.4,-1.4) grid (1.4,1.4); |
|
665 \only<2->{\draw[blue, fill] (0.0, 0.6) rectangle (0.2, 0.8);} |
|
666 \only<3->{\draw[red, fill] (0.2, 0.2) rectangle (0.4, 0.4); |
|
667 \draw[red, fill] (0.4, 0.8) rectangle (0.6, 1.0); |
|
668 \draw[red, fill] (0.6, 0.0) rectangle (0.8, 0.2); |
|
669 \draw[red, fill] (0.8, 0.4) rectangle (1.0, 0.6);} |
|
670 \end{tikzpicture} |
|
671 \end{center} |
|
672 |
|
673 \begin{itemize} |
|
674 \item \smath{\text{finals}\,A\,\dn \{[\!|s|\!]_{\approx_{A}}\;|\;s \in A\}} |
|
675 \smallskip |
|
676 \item we can prove: \smath{A = \bigcup \text{finals}\,A} |
|
677 \end{itemize} |
|
678 |
|
679 \only<2->{% |
|
680 \begin{textblock}{5}(2.1,4.6) |
|
681 \begin{tikzpicture} |
|
682 \node at (0,0) [single arrow, fill=blue,text=white, minimum height=2cm] |
|
683 {$[] \in X$}; |
|
684 \end{tikzpicture} |
|
685 \end{textblock}} |
|
686 |
|
687 \only<3->{% |
|
688 \begin{textblock}{5}(10,7.4) |
|
689 \begin{tikzpicture} |
|
690 \node at (0,0) [shape border rotate=180,single arrow, fill=red,text=white, minimum height=2cm] |
|
691 {a final}; |
|
692 \end{tikzpicture} |
|
693 \end{textblock}} |
|
694 |
|
695 \end{frame}} |
|
696 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
697 *} |
|
698 |
|
699 |
|
700 text_raw {* |
|
701 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
702 \mode<presentation>{ |
|
703 \begin{frame}<-1>[c] |
|
704 \frametitle{\begin{tabular}{@ {}l}\LARGE% |
|
705 Transitions between Eq-Classes\end{tabular}} |
|
706 |
|
707 \begin{center} |
|
708 \begin{tikzpicture}[scale=3] |
|
709 \draw[very thick] (0.5,0.5) circle (.6cm); |
|
710 \clip[draw] (0.5,0.5) circle (.6cm); |
|
711 \draw[step=2mm, very thick] (-1.4,-1.4) grid (1.4,1.4); |
|
712 \draw[blue, fill] (0.0, 0.6) rectangle (0.2, 0.8); |
|
713 \draw[blue, fill] (0.8, 0.4) rectangle (1.0, 0.6); |
|
714 \draw[white] (0.1,0.7) node (X) {$X$}; |
|
715 \draw[white] (0.9,0.5) node (Y) {$Y$}; |
|
716 \draw[blue, ->, line width = 2mm, bend left=45] (X) -- (Y); |
|
717 \node [inner sep=1pt,label=above:\textcolor{blue}{$c$}] at ($ (X)!.5!(Y) $) {}; |
|
718 \end{tikzpicture} |
|
719 \end{center} |
|
720 |
|
721 \begin{center} |
|
722 \smath{X \stackrel{c}{\longrightarrow} Y \;\dn\; X ; c \subseteq Y} |
|
723 \end{center} |
|
724 |
|
725 \onslide<8>{ |
|
726 \begin{tabular}{c} |
|
727 \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick] |
|
728 \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm] |
|
729 \node[state,initial] (q_0) {$R_1$}; |
|
730 \end{tikzpicture} |
|
731 \end{tabular}} |
|
732 |
|
733 \end{frame}} |
|
734 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
735 *} |
|
736 |
|
737 |
|
738 text_raw {* |
|
739 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
740 \mode<presentation>{ |
|
741 \begin{frame}[c] |
|
742 \frametitle{\LARGE Systems of Equations} |
|
743 |
|
744 Inspired by a method of Brzozowski\;'64:\bigskip\bigskip |
|
745 |
|
746 \begin{center} |
|
747 \begin{tabular}{@ {\hspace{-20mm}}c} |
|
748 \\[-13mm] |
|
749 \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick] |
|
750 \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm] |
|
751 |
|
752 %\draw[help lines] (0,0) grid (3,2); |
|
753 |
|
754 \node[state,initial] (p_0) {$X_1$}; |
|
755 \node[state,accepting] (p_1) [right of=q_0] {$X_2$}; |
|
756 |
|
757 \path[->] (p_0) edge [bend left] node {a} (p_1) |
|
758 edge [loop above] node {b} () |
|
759 (p_1) edge [loop above] node {a} () |
|
760 edge [bend left] node {b} (p_0); |
|
761 \end{tikzpicture}\\ |
|
762 \\[-13mm] |
|
763 \end{tabular} |
|
764 \end{center} |
|
765 |
|
766 \begin{center} |
|
767 \begin{tabular}{@ {\hspace{-6mm}}ll@ {\hspace{1mm}}c@ {\hspace{1mm}}l} |
|
768 & \smath{X_1} & \smath{=} & \smath{X_1;b + X_2;b \onslide<2->{\alert<2>{+ \lambda;[]}}}\\ |
|
769 & \smath{X_2} & \smath{=} & \smath{X_1;a + X_2;a}\medskip\\ |
|
770 \end{tabular} |
|
771 \end{center} |
|
772 |
|
773 \end{frame}} |
|
774 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
775 *} |
|
776 |
|
777 text_raw {* |
|
778 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
779 \mode<presentation>{ |
|
780 \begin{frame}<1>[t] |
|
781 \small |
|
782 |
|
783 \begin{center} |
|
784 \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}ll} |
|
785 \onslide<1->{\smath{X_1}} & \onslide<1->{\smath{=}} |
|
786 & \onslide<1->{\smath{X_1; b + X_2; b + \lambda;[]}}\\ |
|
787 \onslide<1->{\smath{X_2}} & \onslide<1->{\smath{=}} |
|
788 & \onslide<1->{\smath{X_1; a + X_2; a}}\\ |
|
789 |
|
790 & & & \onslide<2->{by Arden}\\ |
|
791 |
|
792 \onslide<2->{\smath{X_1}} & \onslide<2->{\smath{=}} |
|
793 & \onslide<2->{\smath{X_1; b + X_2; b + \lambda;[]}}\\ |
|
794 \onslide<2->{\smath{X_2}} & \onslide<2->{\smath{=}} |
|
795 & \only<2->{\smath{X_1; a\cdot a^\star}}\\ |
|
796 |
|
797 & & & \onslide<4->{by Arden}\\ |
|
798 |
|
799 \onslide<4->{\smath{X_1}} & \onslide<4->{\smath{=}} |
|
800 & \onslide<4->{\smath{X_2; b \cdot b^\star+ \lambda;b^\star}}\\ |
|
801 \onslide<4->{\smath{X_2}} & \onslide<4->{\smath{=}} |
|
802 & \onslide<4->{\smath{X_1; a\cdot a^\star}}\\ |
|
803 |
|
804 & & & \onslide<5->{by substitution}\\ |
|
805 |
|
806 \onslide<5->{\smath{X_1}} & \onslide<5->{\smath{=}} |
|
807 & \onslide<5->{\smath{X_1; a\cdot a^\star \cdot b \cdot b^\star+ \lambda;b^\star}}\\ |
|
808 \onslide<5->{\smath{X_2}} & \onslide<5->{\smath{=}} |
|
809 & \onslide<5->{\smath{X_1; a\cdot a^\star}}\\ |
|
810 |
|
811 & & & \onslide<6->{by Arden}\\ |
|
812 |
|
813 \onslide<6->{\smath{X_1}} & \onslide<6->{\smath{=}} |
|
814 & \onslide<6->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\ |
|
815 \onslide<6->{\smath{X_2}} & \onslide<6->{\smath{=}} |
|
816 & \onslide<6->{\smath{X_1; a\cdot a^\star}}\\ |
|
817 |
|
818 & & & \onslide<7->{by substitution}\\ |
|
819 |
|
820 \onslide<7->{\smath{X_1}} & \onslide<7->{\smath{=}} |
|
821 & \onslide<7->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\ |
|
822 \onslide<7->{\smath{X_2}} & \onslide<7->{\smath{=}} |
|
823 & \onslide<7->{\smath{\lambda; b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star |
|
824 \cdot a\cdot a^\star}}\\ |
|
825 \end{tabular} |
|
826 \end{center} |
|
827 |
|
828 \only<8->{ |
|
829 \begin{textblock}{6}(2.5,4) |
|
830 \begin{block}{} |
|
831 \begin{minipage}{8cm}\raggedright |
|
832 |
|
833 \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick, inner sep=1mm] |
|
834 \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm] |
|
835 |
|
836 %\draw[help lines] (0,0) grid (3,2); |
|
837 |
|
838 \node[state,initial] (p_0) {$X_1$}; |
|
839 \node[state,accepting] (p_1) [right of=q_0] {$X_2$}; |
|
840 |
|
841 \path[->] (p_0) edge [bend left] node {a} (p_1) |
|
842 edge [loop above] node {b} () |
|
843 (p_1) edge [loop above] node {a} () |
|
844 edge [bend left] node {b} (p_0); |
|
845 \end{tikzpicture} |
|
846 |
|
847 \end{minipage} |
|
848 \end{block} |
|
849 \end{textblock}} |
|
850 |
|
851 \only<1,2>{% |
|
852 \begin{textblock}{3}(0.6,1.2) |
|
853 \begin{tikzpicture} |
|
854 \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm] |
|
855 {\textcolor{red}{a}}; |
|
856 \end{tikzpicture} |
|
857 \end{textblock}} |
|
858 \only<2>{% |
|
859 \begin{textblock}{3}(0.6,3.6) |
|
860 \begin{tikzpicture} |
|
861 \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm] |
|
862 {\textcolor{red}{a}}; |
|
863 \end{tikzpicture} |
|
864 \end{textblock}} |
|
865 \only<4>{% |
|
866 \begin{textblock}{3}(0.6,2.9) |
|
867 \begin{tikzpicture} |
|
868 \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm] |
|
869 {\textcolor{red}{a}}; |
|
870 \end{tikzpicture} |
|
871 \end{textblock}} |
|
872 \only<4>{% |
|
873 \begin{textblock}{3}(0.6,5.3) |
|
874 \begin{tikzpicture} |
|
875 \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm] |
|
876 {\textcolor{red}{a}}; |
|
877 \end{tikzpicture} |
|
878 \end{textblock}} |
|
879 \only<5>{% |
|
880 \begin{textblock}{3}(1.0,5.6) |
|
881 \begin{tikzpicture} |
|
882 \node at (0,0) (A) {}; |
|
883 \node at (0,1) (B) {}; |
|
884 \draw[<-, line width=2mm, red] (B) to (A); |
|
885 \end{tikzpicture} |
|
886 \end{textblock}} |
|
887 \only<5,6>{% |
|
888 \begin{textblock}{3}(0.6,7.7) |
|
889 \begin{tikzpicture} |
|
890 \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm] |
|
891 {\textcolor{red}{a}}; |
|
892 \end{tikzpicture} |
|
893 \end{textblock}} |
|
894 \only<6>{% |
|
895 \begin{textblock}{3}(0.6,10.1) |
|
896 \begin{tikzpicture} |
|
897 \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm] |
|
898 {\textcolor{red}{a}}; |
|
899 \end{tikzpicture} |
|
900 \end{textblock}} |
|
901 \only<7>{% |
|
902 \begin{textblock}{3}(1.0,10.3) |
|
903 \begin{tikzpicture} |
|
904 \node at (0,0) (A) {}; |
|
905 \node at (0,1) (B) {}; |
|
906 \draw[->, line width=2mm, red] (B) to (A); |
|
907 \end{tikzpicture} |
|
908 \end{textblock}} |
|
909 |
|
910 \end{frame}} |
|
911 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
912 *} |
|
913 |
|
914 |
|
915 text_raw {* |
|
916 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
917 \mode<presentation>{ |
|
918 \begin{frame}[c] |
|
919 \frametitle{\LARGE A Variant of Arden's Lemma} |
|
920 |
|
921 {\bf Arden's Lemma:}\smallskip |
|
922 |
|
923 If \smath{[] \not\in A} then |
|
924 \begin{center} |
|
925 \smath{X = X; A + \text{something}} |
|
926 \end{center} |
|
927 has the (unique) solution |
|
928 \begin{center} |
|
929 \smath{X = \text{something} ; A^\star} |
|
930 \end{center} |
|
931 |
|
932 |
|
933 \end{frame}} |
|
934 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
935 *} |
|
936 |
|
937 |
|
938 text_raw {* |
|
939 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
940 \mode<presentation>{ |
|
941 \begin{frame}<1-2,4->[t] |
|
942 \small |
|
943 |
|
944 \begin{center} |
|
945 \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}ll} |
|
946 \onslide<1->{\smath{X_1}} & \onslide<1->{\smath{=}} |
|
947 & \onslide<1->{\smath{X_1; b + X_2; b + \lambda;[]}}\\ |
|
948 \onslide<1->{\smath{X_2}} & \onslide<1->{\smath{=}} |
|
949 & \onslide<1->{\smath{X_1; a + X_2; a}}\\ |
|
950 |
|
951 & & & \onslide<2->{by Arden}\\ |
|
952 |
|
953 \onslide<2->{\smath{X_1}} & \onslide<2->{\smath{=}} |
|
954 & \onslide<2->{\smath{X_1; b + X_2; b + \lambda;[]}}\\ |
|
955 \onslide<2->{\smath{X_2}} & \onslide<2->{\smath{=}} |
|
956 & \only<2->{\smath{X_1; a\cdot a^\star}}\\ |
|
957 |
|
958 & & & \onslide<4->{by Arden}\\ |
|
959 |
|
960 \onslide<4->{\smath{X_1}} & \onslide<4->{\smath{=}} |
|
961 & \onslide<4->{\smath{X_2; b \cdot b^\star+ \lambda;b^\star}}\\ |
|
962 \onslide<4->{\smath{X_2}} & \onslide<4->{\smath{=}} |
|
963 & \onslide<4->{\smath{X_1; a\cdot a^\star}}\\ |
|
964 |
|
965 & & & \onslide<5->{by substitution}\\ |
|
966 |
|
967 \onslide<5->{\smath{X_1}} & \onslide<5->{\smath{=}} |
|
968 & \onslide<5->{\smath{X_1; a\cdot a^\star \cdot b \cdot b^\star+ \lambda;b^\star}}\\ |
|
969 \onslide<5->{\smath{X_2}} & \onslide<5->{\smath{=}} |
|
970 & \onslide<5->{\smath{X_1; a\cdot a^\star}}\\ |
|
971 |
|
972 & & & \onslide<6->{by Arden}\\ |
|
973 |
|
974 \onslide<6->{\smath{X_1}} & \onslide<6->{\smath{=}} |
|
975 & \onslide<6->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\ |
|
976 \onslide<6->{\smath{X_2}} & \onslide<6->{\smath{=}} |
|
977 & \onslide<6->{\smath{X_1; a\cdot a^\star}}\\ |
|
978 |
|
979 & & & \onslide<7->{by substitution}\\ |
|
980 |
|
981 \onslide<7->{\smath{X_1}} & \onslide<7->{\smath{=}} |
|
982 & \onslide<7->{\smath{\lambda;b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star}}\\ |
|
983 \onslide<7->{\smath{X_2}} & \onslide<7->{\smath{=}} |
|
984 & \onslide<7->{\smath{\lambda; b^\star\cdot (a\cdot a^\star \cdot b \cdot b^\star)^\star |
|
985 \cdot a\cdot a^\star}}\\ |
|
986 \end{tabular} |
|
987 \end{center} |
|
988 |
|
989 \only<8->{ |
|
990 \begin{textblock}{6}(2.5,4) |
|
991 \begin{block}{} |
|
992 \begin{minipage}{8cm}\raggedright |
|
993 |
|
994 \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick, inner sep=1mm] |
|
995 \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm] |
|
996 |
|
997 %\draw[help lines] (0,0) grid (3,2); |
|
998 |
|
999 \node[state,initial] (p_0) {$X_1$}; |
|
1000 \node[state,accepting] (p_1) [right of=q_0] {$X_2$}; |
|
1001 |
|
1002 \path[->] (p_0) edge [bend left] node {a} (p_1) |
|
1003 edge [loop above] node {b} () |
|
1004 (p_1) edge [loop above] node {a} () |
|
1005 edge [bend left] node {b} (p_0); |
|
1006 \end{tikzpicture} |
|
1007 |
|
1008 \end{minipage} |
|
1009 \end{block} |
|
1010 \end{textblock}} |
|
1011 |
|
1012 \only<1,2>{% |
|
1013 \begin{textblock}{3}(0.6,1.2) |
|
1014 \begin{tikzpicture} |
|
1015 \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm] |
|
1016 {\textcolor{red}{a}}; |
|
1017 \end{tikzpicture} |
|
1018 \end{textblock}} |
|
1019 \only<2>{% |
|
1020 \begin{textblock}{3}(0.6,3.6) |
|
1021 \begin{tikzpicture} |
|
1022 \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm] |
|
1023 {\textcolor{red}{a}}; |
|
1024 \end{tikzpicture} |
|
1025 \end{textblock}} |
|
1026 \only<4>{% |
|
1027 \begin{textblock}{3}(0.6,2.9) |
|
1028 \begin{tikzpicture} |
|
1029 \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm] |
|
1030 {\textcolor{red}{a}}; |
|
1031 \end{tikzpicture} |
|
1032 \end{textblock}} |
|
1033 \only<4>{% |
|
1034 \begin{textblock}{3}(0.6,5.3) |
|
1035 \begin{tikzpicture} |
|
1036 \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm] |
|
1037 {\textcolor{red}{a}}; |
|
1038 \end{tikzpicture} |
|
1039 \end{textblock}} |
|
1040 \only<5>{% |
|
1041 \begin{textblock}{3}(1.0,5.6) |
|
1042 \begin{tikzpicture} |
|
1043 \node at (0,0) (A) {}; |
|
1044 \node at (0,1) (B) {}; |
|
1045 \draw[<-, line width=2mm, red] (B) to (A); |
|
1046 \end{tikzpicture} |
|
1047 \end{textblock}} |
|
1048 \only<5,6>{% |
|
1049 \begin{textblock}{3}(0.6,7.7) |
|
1050 \begin{tikzpicture} |
|
1051 \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm] |
|
1052 {\textcolor{red}{a}}; |
|
1053 \end{tikzpicture} |
|
1054 \end{textblock}} |
|
1055 \only<6>{% |
|
1056 \begin{textblock}{3}(0.6,10.1) |
|
1057 \begin{tikzpicture} |
|
1058 \node at (0,0) [single arrow, fill=red,text=white, minimum height=0cm] |
|
1059 {\textcolor{red}{a}}; |
|
1060 \end{tikzpicture} |
|
1061 \end{textblock}} |
|
1062 \only<7>{% |
|
1063 \begin{textblock}{3}(1.0,10.3) |
|
1064 \begin{tikzpicture} |
|
1065 \node at (0,0) (A) {}; |
|
1066 \node at (0,1) (B) {}; |
|
1067 \draw[->, line width=2mm, red] (B) to (A); |
|
1068 \end{tikzpicture} |
|
1069 \end{textblock}} |
|
1070 |
|
1071 \end{frame}} |
|
1072 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1073 *} |
|
1074 |
|
1075 |
|
1076 text_raw {* |
|
1077 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1078 \mode<presentation>{ |
|
1079 \begin{frame}[c] |
|
1080 \frametitle{\LARGE The Other Direction} |
|
1081 |
|
1082 One has to prove |
|
1083 |
|
1084 \begin{center} |
|
1085 \smath{\text{finite} (U\!N\!IV /\!/ \approx_{{\cal L}(r)})} |
|
1086 \end{center} |
|
1087 |
|
1088 by induction on \smath{r}. Not trivial, but after a bit |
|
1089 of thinking, one can find a \alert{refined} relation:\bigskip |
|
1090 |
|
1091 |
|
1092 \begin{center} |
|
1093 \mbox{\begin{tabular}{c@ {\hspace{7mm}}c@ {\hspace{7mm}}c} |
|
1094 \begin{tikzpicture}[scale=1.1] |
|
1095 %Circle |
|
1096 \draw[thick] (0,0) circle (1.1); |
|
1097 \end{tikzpicture} |
|
1098 & |
|
1099 \begin{tikzpicture}[scale=1.1] |
|
1100 %Circle |
|
1101 \draw[thick] (0,0) circle (1.1); |
|
1102 %Main rays |
|
1103 \foreach \a in {0, 90,...,359} |
|
1104 \draw[very thick] (0, 0) -- (\a:1.1); |
|
1105 \foreach \a / \l in {45/1, 135/2, 225/3, 315/4} |
|
1106 \draw (\a: 0.65) node {\small$a_\l$}; |
|
1107 \end{tikzpicture} |
|
1108 & |
|
1109 \begin{tikzpicture}[scale=1.1] |
|
1110 %Circle |
|
1111 \draw[red, thick] (0,0) circle (1.1); |
|
1112 %Main rays |
|
1113 \foreach \a in {0, 45,...,359} |
|
1114 \draw[red, very thick] (0, 0) -- (\a:1.1); |
|
1115 \foreach \a / \l in {22.5/1.1, 67.5/1.2, 112.5/2.1, 157.5/2.2, 202.4/3.1, 247.5/3.2, 292.5/4.1, 337.5/4.2} |
|
1116 \draw (\a: 0.77) node {\textcolor{red}{\footnotesize$a_{\l}$}}; |
|
1117 \end{tikzpicture}\\ |
|
1118 \small\smath{U\!N\!IV} & |
|
1119 \small\smath{U\!N\!IV /\!/ \approx_{{\cal L}(r)}} & |
|
1120 \small\smath{U\!N\!IV /\!/ \alert{R}} |
|
1121 \end{tabular}} |
|
1122 \end{center} |
|
1123 |
|
1124 \begin{textblock}{5}(9.8,2.6) |
|
1125 \begin{tikzpicture} |
|
1126 \node at (0,0) [shape border rotate=270,single arrow, fill=red,text=white, minimum height=0cm]{\textcolor{red}{a}}; |
|
1127 \end{tikzpicture} |
|
1128 \end{textblock} |
|
1129 |
|
1130 |
|
1131 \end{frame}} |
|
1132 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1133 *} |
|
1134 |
|
1135 text_raw {* |
|
1136 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1137 \mode<presentation>{ |
|
1138 \begin{frame}[t] |
|
1139 \frametitle{\LARGE\begin{tabular}{c}Derivatives of RExps\end{tabular}} |
|
1140 |
|
1141 \begin{itemize} |
|
1142 \item introduced by Brzozowski~'64 |
|
1143 \item produces a regular expression after a character has been ``parsed''\\[-18mm]\mbox{} |
|
1144 \end{itemize} |
|
1145 |
|
1146 \only<1->{% |
|
1147 \textcolor{blue}{% |
|
1148 \begin{center} |
|
1149 \begin{tabular}{@ {}lc@ {\hspace{3mm}}l@ {}} |
|
1150 der c $\varnothing$ & $\dn$ & $\varnothing$\\ |
|
1151 der c [] & $\dn$ & $\varnothing$\\ |
|
1152 der c d & $\dn$ & if c $=$ d then [] else $\varnothing$\\ |
|
1153 der c ($r_1 + r_2$) & $\dn$ & (der c $r_1$) $+$ (der c $r_2$)\\ |
|
1154 der c ($r^*$) & $\dn$ & (der c $r$) $\cdot$ ($r^*$)\\ |
|
1155 der c ($r_1 \cdot r_2$) & $\dn$ & ((der c $r_1$) $\cdot$ $r_2$) +\\ |
|
1156 & & \hspace{-3mm}(if nullable $r_1$ then der c $r_2$ else $\varnothing$)\\ |
|
1157 \end{tabular} |
|
1158 \end{center}}} |
|
1159 |
|
1160 \only<2->{ |
|
1161 \begin{textblock}{13}(1.5,5.7) |
|
1162 \begin{block}{} |
|
1163 \begin{quote} |
|
1164 \begin{minipage}{13cm}\raggedright |
|
1165 derivatives refine \smath{x \approx_{{\cal{L}}(r)} y}\bigskip |
|
1166 \begin{center} |
|
1167 \only<2>{\mbox{\hspace{-22mm}}\smath{{\cal{L}}(\text{ders}~x~r) = {\cal{L}}(\text{ders}~y~r) |
|
1168 \Longleftrightarrow x \approx_{{\cal{L}}(r)} y}} |
|
1169 \only<3>{\mbox{\hspace{-22mm}}\smath{\text{ders}~x~r = \text{ders}~y~r |
|
1170 \Longrightarrow x \approx_{{\cal{L}}(r)} y}} |
|
1171 \end{center}\bigskip |
|
1172 \ |
|
1173 \smath{\text{finite}(\text{ders}~A~r)}, but only modulo ACI |
|
1174 |
|
1175 \begin{center} |
|
1176 \begin{tabular}{@ {\hspace{-10mm}}rcl} |
|
1177 \smath{(r_1 + r_2) + r_3} & \smath{\equiv} & \smath{r_1 + (r_2 + r_3)}\\ |
|
1178 \smath{r_1 + r_2} & \smath{\equiv} & \smath{r_2 + r_1}\\ |
|
1179 \smath{r + r} & \smath{\equiv} & \smath{r}\\ |
|
1180 \end{tabular} |
|
1181 \end{center} |
|
1182 \end{minipage} |
|
1183 \end{quote} |
|
1184 \end{block} |
|
1185 \end{textblock}} |
|
1186 |
|
1187 \end{frame}} |
|
1188 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1189 *} |
|
1190 |
|
1191 text_raw {* |
|
1192 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1193 \mode<presentation>{ |
|
1194 \begin{frame}<2>[t] |
|
1195 \frametitle{\LARGE\begin{tabular}{c}Partial Derivatives of RExps\end{tabular}} |
|
1196 |
|
1197 |
|
1198 \only<2>{% |
|
1199 \textcolor{blue}{% |
|
1200 \begin{center} |
|
1201 \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}} |
|
1202 pder c $\varnothing$ & $\dn$ & \alert{$\{\}$}\\ |
|
1203 pder c [] & $\dn$ & \alert{$\{\}$}\\ |
|
1204 pder c d & $\dn$ & if c $=$ d then $\{$[]$\}$ else $\{\}$\\ |
|
1205 pder c ($r_1 + r_2$) & $\dn$ & (pder c $r_1$) \alert{$\cup$} (der c $r_2$)\\ |
|
1206 pder c ($r^\star$) & $\dn$ & (pder c $r$) $\cdot$ $r^\star$\\ |
|
1207 pder c ($r_1 \cdot r_2$) & $\dn$ & (pder c $r_1$) $\cdot$ $r_2$ \alert{$\cup$}\\ |
|
1208 & & \hspace{-4mm}if nullable $r_1$ then (pder c $r_2$) else $\varnothing$\\ |
|
1209 \end{tabular} |
|
1210 \end{center}}} |
|
1211 |
|
1212 \only<2>{ |
|
1213 \begin{textblock}{6}(8.5,2.7) |
|
1214 \begin{block}{} |
|
1215 \begin{quote} |
|
1216 \begin{minipage}{6cm}\raggedright |
|
1217 \begin{itemize} |
|
1218 \item partial derivatives |
|
1219 \item by Antimirov~'95 |
|
1220 \end{itemize} |
|
1221 \end{minipage} |
|
1222 \end{quote} |
|
1223 \end{block} |
|
1224 \end{textblock}} |
|
1225 |
|
1226 \end{frame}} |
|
1227 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1228 *} |
|
1229 |
|
1230 text_raw {* |
|
1231 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1232 \mode<presentation>{ |
|
1233 \begin{frame}[t] |
|
1234 \frametitle{\LARGE Partial Derivatives} |
|
1235 |
|
1236 \mbox{}\\[0mm]\mbox{} |
|
1237 |
|
1238 \begin{itemize} |
|
1239 |
|
1240 \item \alt<1>{\smath{\text{pders $x$ $r$ \mbox{$=$} pders $y$ $r$}}} |
|
1241 {\smath{\underbrace{\text{pders $x$ $r$ \mbox{$=$} pders $y$ $r$}}_{R}}} |
|
1242 refines \textcolor{blue}{$x$ $\approx_{{\cal L}(r)}$ $y$}\\[16mm]\pause |
|
1243 \item \smath{\text{finite} (U\!N\!IV /\!/ R)} \bigskip\pause |
|
1244 \item Therefore \smath{\text{finite} (U\!N\!IV /\!/ \approx_{{\cal L}(r)})}. Qed. |
|
1245 \end{itemize} |
|
1246 |
|
1247 \only<2->{% |
|
1248 \begin{textblock}{5}(3.9,7.2) |
|
1249 \begin{tikzpicture} |
|
1250 \node at (0,0) [shape border rotate=270,single arrow, fill=red,text=white, minimum height=0cm]{\textcolor{red}{a}}; |
|
1251 \draw (2.2,0) node {Antimirov '95}; |
|
1252 \end{tikzpicture} |
|
1253 \end{textblock}} |
|
1254 |
|
1255 \end{frame}} |
|
1256 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1257 *} |
|
1258 |
|
1259 |
|
1260 |
|
1261 text_raw {* |
|
1262 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1263 \mode<presentation>{ |
|
1264 \begin{frame}[t] |
|
1265 \frametitle{\LARGE What Have We Achieved?} |
|
1266 |
|
1267 \begin{itemize} |
|
1268 \item \smath{\text{finite}\, (U\!N\!IV /\!/ \approx_A) \;\Leftrightarrow\; A\; \text{is regular}} |
|
1269 \medskip\pause |
|
1270 \item regular languages are closed under complementation; this is now easy |
|
1271 \begin{center} |
|
1272 \smath{U\!N\!IV /\!/ \approx_A \;\;=\;\; U\!N\!IV /\!/ \approx_{\overline{A}}} |
|
1273 \end{center}\pause\medskip |
|
1274 |
|
1275 \item non-regularity (\smath{a^nb^n})\medskip\pause\pause |
|
1276 |
|
1277 \item take \alert{\bf any} language\\ build the language of substrings\\ |
|
1278 \pause |
|
1279 |
|
1280 then this language \alert{\bf is} regular\;\; (\smath{a^nb^n} $\Rightarrow$ \smath{a^\star{}b^\star}) |
|
1281 |
|
1282 \end{itemize} |
|
1283 |
|
1284 \only<2>{ |
|
1285 \begin{textblock}{10}(4,14) |
|
1286 \small |
|
1287 \smath{x \approx_{A} y \,\dn\, \forall z.\; x @ z \in A \Leftrightarrow y @ z \in A} |
|
1288 \end{textblock}} |
|
1289 |
|
1290 \only<4>{ |
|
1291 \begin{textblock}{5}(2,8.6) |
|
1292 \begin{minipage}{8.8cm} |
|
1293 \begin{block}{} |
|
1294 \begin{minipage}{8.6cm} |
|
1295 If there exists a sufficiently large set \smath{B} (for example infinitely large), |
|
1296 such that |
|
1297 |
|
1298 \begin{center} |
|
1299 \smath{\forall x,y \in B.\; x \not= y \;\Rightarrow\; x \not\approx_{A} y}. |
|
1300 \end{center} |
|
1301 |
|
1302 then \smath{A} is not regular.\hspace{1.3cm}\small(\smath{B \dn \bigcup_n a^n}) |
|
1303 \end{minipage} |
|
1304 \end{block} |
|
1305 \end{minipage} |
|
1306 \end{textblock} |
|
1307 } |
|
1308 |
|
1309 \end{frame}} |
|
1310 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1311 *} |
|
1312 |
|
1313 text_raw {* |
|
1314 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1315 \mode<presentation>{ |
|
1316 \begin{frame}[c] |
|
1317 \frametitle{\normalsize Formal language theory\ldots\hfill\mbox{}} |
|
1318 |
|
1319 \begin{center} |
|
1320 \huge\bf\textcolor{gray}{in Nuprl} |
|
1321 \end{center} |
|
1322 |
|
1323 \begin{itemize} |
|
1324 \item Constable, Jackson, Naumov, Uribe\medskip |
|
1325 \item \alert{18 months} for automata theory from Hopcroft \& Ullman chapters 1--11 (including Myhill-Nerode) |
|
1326 \end{itemize} |
|
1327 |
|
1328 \end{frame}} |
|
1329 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1330 |
|
1331 *} |
|
1332 |
|
1333 text_raw {* |
|
1334 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1335 \mode<presentation>{ |
|
1336 \begin{frame}[c] |
|
1337 \frametitle{\normalsize Formal language theory\ldots\hfill\mbox{}} |
|
1338 |
|
1339 \begin{center} |
|
1340 \huge\bf\textcolor{gray}{in Coq} |
|
1341 \end{center} |
|
1342 |
|
1343 \begin{itemize} |
|
1344 \item Filli\^atre, Briais, Braibant and others |
|
1345 \item multi-year effort; a number of results in automata theory, e.g.\medskip |
|
1346 \begin{itemize} |
|
1347 \item Kleene's thm.~by Filli\^atre (\alert{``rather big''}) |
|
1348 \item automata theory by Briais (5400 loc) |
|
1349 \item Braibant ATBR library, including Myhill-Nerode\\ ($>$7000 loc) |
|
1350 \item Mirkin's partial derivative automaton construction (10600 loc) |
|
1351 \end{itemize} |
|
1352 \end{itemize} |
|
1353 |
|
1354 \end{frame}} |
|
1355 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1356 *} |
|
1357 |
|
1358 |
|
1359 text_raw {* |
|
1360 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1361 \mode<presentation>{ |
|
1362 \begin{frame}[c] |
|
1363 \frametitle{\LARGE Conclusion} |
|
1364 |
|
1365 \begin{itemize} |
|
1366 \item we have never seen a proof of Myhill-Nerode based on |
|
1367 regular expressions only\smallskip\pause |
|
1368 |
|
1369 \item great source of examples (inductions)\smallskip\pause |
|
1370 |
|
1371 \item no need to fight the theorem prover:\\ |
|
1372 \begin{itemize} |
|
1373 \item first direction (790 loc)\\ |
|
1374 \item second direction (400 / 390 loc) |
|
1375 \end{itemize} |
|
1376 |
|
1377 \item I am not saying automata are bad; just formal proofs about |
|
1378 them are quite dif$\!$ficult\pause\bigskip\medskip |
|
1379 |
|
1380 \item parsing with derivatives of grammars\\ (Matt Might ICFP'11) |
|
1381 \end{itemize} |
|
1382 |
|
1383 \end{frame}} |
|
1384 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1385 *} |
|
1386 |
|
1387 text_raw {* |
|
1388 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1389 \mode<presentation>{ |
|
1390 \begin{frame}[c] |
|
1391 \frametitle{\LARGE An Apology} |
|
1392 |
|
1393 \begin{itemize} |
|
1394 \item This should all of course be done co-inductively |
|
1395 \end{itemize} |
|
1396 |
|
1397 \footnotesize |
|
1398 \begin{tabular}{@ {\hspace{4mm}}l} |
|
1399 From: Jasmin Christian Blanchette\\ |
|
1400 To: isabelle-dev@mailbroy.informatik.tu-muenchen.de\\ |
|
1401 Subject: [isabelle-dev] NEWS\\ |
|
1402 Date: \alert{\bf Tue, 28 Aug 2012} 17:40:55 +0200\\ |
|
1403 \\ |
|
1404 * {\bf HOL/Codatatype}: New (co)datatype package with support for mixed,\\ |
|
1405 nested recursion and interesting non-free datatypes.\\ |
|
1406 \\ |
|
1407 * HOL/Ordinals\_and\_Cardinals: Theories of ordinals and cardinals\\ |
|
1408 (supersedes the AFP entry of the same name).\\[2mm] |
|
1409 Kudos to Andrei and Dmitriy!\\ |
|
1410 \\ |
|
1411 Jasmin\\[-1mm] |
|
1412 ------------------------------------\\ |
|
1413 isabelle-dev mailing list\\ |
|
1414 isabelle-dev@in.tum.de\\ |
|
1415 \end{tabular} |
|
1416 |
|
1417 \end{frame}} |
|
1418 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1419 *} |
|
1420 |
|
1421 |
|
1422 text_raw {* |
|
1423 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1424 \mode<presentation>{ |
|
1425 \begin{frame}[b] |
|
1426 \frametitle{\mbox{}\\[2cm]\textcolor{red}{Thank you very much!\\[5mm]Questions?}} |
|
1427 |
|
1428 \end{frame}} |
|
1429 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1430 *} |
|
1431 |
|
1432 (*<*) |
|
1433 end |
|
1434 (*>*) |