262
|
1 |
\documentclass[runningheads]{llncs}
|
|
2 |
\usepackage{isabelle}
|
|
3 |
\usepackage{isabellesym}
|
|
4 |
\usepackage{amsmath}
|
|
5 |
\usepackage{amssymb}
|
284
|
6 |
\usepackage{mathpartir}
|
268
|
7 |
%\usepackage{tikz}
|
|
8 |
%\usepackage{pgf}
|
262
|
9 |
%\usetikzlibrary{arrows,automata,decorations,fit,calc}
|
|
10 |
%\usetikzlibrary{shapes,shapes.arrows,snakes,positioning}
|
|
11 |
%\usepgflibrary{shapes.misc} % LATEX and plain TEX and pure pgf
|
|
12 |
%\usetikzlibrary{matrix}
|
|
13 |
\usepackage{pdfsetup}
|
|
14 |
\usepackage{ot1patch}
|
|
15 |
\usepackage{times}
|
|
16 |
%%\usepackage{proof}
|
|
17 |
%%\usepackage{mathabx}
|
|
18 |
\usepackage{stmaryrd}
|
|
19 |
\usepackage{url}
|
|
20 |
|
268
|
21 |
\titlerunning{Proving the Priority Inheritance Protocol Correct}
|
262
|
22 |
|
|
23 |
|
|
24 |
\urlstyle{rm}
|
|
25 |
\isabellestyle{it}
|
|
26 |
\renewcommand{\isastyleminor}{\it}%
|
|
27 |
\renewcommand{\isastyle}{\normalsize\it}%
|
|
28 |
|
|
29 |
|
|
30 |
\def\dn{\,\stackrel{\mbox{\scriptsize def}}{=}\,}
|
|
31 |
\renewcommand{\isasymequiv}{$\dn$}
|
|
32 |
\renewcommand{\isasymemptyset}{$\varnothing$}
|
|
33 |
\renewcommand{\isacharunderscore}{\mbox{$\_\!\_$}}
|
|
34 |
|
|
35 |
\newcommand{\isasymcalL}{\ensuremath{\cal{L}}}
|
|
36 |
\newcommand{\isasymbigplus}{\ensuremath{\bigplus}}
|
|
37 |
|
|
38 |
\newcommand{\bigplus}{\mbox{\Large\bf$+$}}
|
|
39 |
\begin{document}
|
|
40 |
|
277
|
41 |
\title{Priority Inheritance Protocol Proved Correct}
|
262
|
42 |
\author{Xingyuan Zhang\inst{1} \and Christian Urban\inst{2} \and Chunhan Wu\inst{1}}
|
|
43 |
\institute{PLA University of Science and Technology, China \and
|
265
|
44 |
King's College London, United Kingdom}
|
262
|
45 |
\maketitle
|
|
46 |
|
|
47 |
\begin{abstract}
|
284
|
48 |
In real-time systems with threads, resource locking and
|
|
49 |
priority sched\-uling, one faces the problem of Priority
|
|
50 |
Inversion. This problem can make the behaviour of threads
|
267
|
51 |
unpredictable and the resulting bugs can be hard to find. The
|
|
52 |
Priority Inheritance Protocol is one solution implemented in many
|
|
53 |
systems for solving this problem, but the correctness of this solution
|
|
54 |
has never been formally verified in a theorem prover. As already
|
268
|
55 |
pointed out in the literature, the original informal investigation of
|
|
56 |
the Property Inheritance Protocol presents a correctness ``proof'' for
|
269
|
57 |
an \emph{incorrect} algorithm. In this paper we fix the problem of
|
|
58 |
this proof by making all notions precise and implementing a variant of
|
|
59 |
a solution proposed earlier. Our formalisation in Isabelle/HOL
|
277
|
60 |
uncovers facts not mentioned in the literature, but also shows how to
|
269
|
61 |
efficiently implement this protocol. Earlier correct implementations
|
|
62 |
were criticised as too inefficient. Our formalisation is based on
|
|
63 |
Paulson's inductive approach to verifying protocols.\medskip
|
265
|
64 |
|
|
65 |
{\bf Keywords:} Priority Inheritance Protocol, formal connectness proof,
|
284
|
66 |
real-time systems, Isabelle/HOL
|
262
|
67 |
\end{abstract}
|
|
68 |
|
|
69 |
\input{session}
|
|
70 |
|
|
71 |
\bibliographystyle{plain}
|
|
72 |
\bibliography{root}
|
|
73 |
|
|
74 |
\end{document}
|
|
75 |
|
|
76 |
%%% Local Variables:
|
|
77 |
%%% mode: latex
|
|
78 |
%%% TeX-master: t
|
|
79 |
%%% End:
|