42
|
1 |
theory Myhill_1
|
43
|
2 |
imports Main List_Prefix Prefix_subtract Prelude
|
42
|
3 |
begin
|
|
4 |
|
|
5 |
(*
|
|
6 |
text {*
|
|
7 |
\begin{figure}
|
|
8 |
\centering
|
|
9 |
\scalebox{0.95}{
|
|
10 |
\begin{tikzpicture}[->,>=latex,shorten >=1pt,auto,node distance=1.2cm, semithick]
|
|
11 |
\node[state,initial] (n1) {$1$};
|
|
12 |
\node[state,accepting] (n2) [right = 10em of n1] {$2$};
|
|
13 |
|
|
14 |
\path (n1) edge [bend left] node {$0$} (n2)
|
|
15 |
(n1) edge [loop above] node{$1$} (n1)
|
|
16 |
(n2) edge [loop above] node{$0$} (n2)
|
|
17 |
(n2) edge [bend left] node {$1$} (n1)
|
|
18 |
;
|
|
19 |
\end{tikzpicture}}
|
|
20 |
\caption{An example automaton (or partition)}\label{fig:example_automata}
|
|
21 |
\end{figure}
|
|
22 |
*}
|
|
23 |
|
|
24 |
*)
|
|
25 |
|
|
26 |
|
|
27 |
section {* Preliminary definitions *}
|
|
28 |
|
43
|
29 |
types lang = "string set"
|
|
30 |
|
|
31 |
text {*
|
|
32 |
Sequential composition of two languages @{text "L1"} and @{text "L2"}
|
|
33 |
*}
|
|
34 |
|
42
|
35 |
definition Seq :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100)
|
|
36 |
where
|
|
37 |
"L1 ;; L2 = {s1 @ s2 | s1 s2. s1 \<in> L1 \<and> s2 \<in> L2}"
|
|
38 |
|
|
39 |
text {* Transitive closure of language @{text "L"}. *}
|
|
40 |
inductive_set
|
43
|
41 |
Star :: "lang \<Rightarrow> lang" ("_\<star>" [101] 102)
|
|
42 |
for L
|
42
|
43 |
where
|
|
44 |
start[intro]: "[] \<in> L\<star>"
|
|
45 |
| step[intro]: "\<lbrakk>s1 \<in> L; s2 \<in> L\<star>\<rbrakk> \<Longrightarrow> s1@s2 \<in> L\<star>"
|
|
46 |
|
|
47 |
text {* Some properties of operator @{text ";;"}.*}
|
|
48 |
|
|
49 |
lemma seq_union_distrib:
|
|
50 |
"(A \<union> B) ;; C = (A ;; C) \<union> (B ;; C)"
|
|
51 |
by (auto simp:Seq_def)
|
|
52 |
|
|
53 |
lemma seq_intro:
|
|
54 |
"\<lbrakk>x \<in> A; y \<in> B\<rbrakk> \<Longrightarrow> x @ y \<in> A ;; B "
|
|
55 |
by (auto simp:Seq_def)
|
|
56 |
|
|
57 |
lemma seq_assoc:
|
|
58 |
"(A ;; B) ;; C = A ;; (B ;; C)"
|
|
59 |
apply(auto simp:Seq_def)
|
|
60 |
apply blast
|
|
61 |
by (metis append_assoc)
|
|
62 |
|
|
63 |
lemma star_intro1[rule_format]: "x \<in> lang\<star> \<Longrightarrow> \<forall> y. y \<in> lang\<star> \<longrightarrow> x @ y \<in> lang\<star>"
|
|
64 |
by (erule Star.induct, auto)
|
|
65 |
|
|
66 |
lemma star_intro2: "y \<in> lang \<Longrightarrow> y \<in> lang\<star>"
|
|
67 |
by (drule step[of y lang "[]"], auto simp:start)
|
|
68 |
|
|
69 |
lemma star_intro3[rule_format]:
|
|
70 |
"x \<in> lang\<star> \<Longrightarrow> \<forall>y . y \<in> lang \<longrightarrow> x @ y \<in> lang\<star>"
|
|
71 |
by (erule Star.induct, auto intro:star_intro2)
|
|
72 |
|
|
73 |
lemma star_decom:
|
|
74 |
"\<lbrakk>x \<in> lang\<star>; x \<noteq> []\<rbrakk> \<Longrightarrow>(\<exists> a b. x = a @ b \<and> a \<noteq> [] \<and> a \<in> lang \<and> b \<in> lang\<star>)"
|
|
75 |
by (induct x rule: Star.induct, simp, blast)
|
|
76 |
|
|
77 |
lemma star_decom':
|
|
78 |
"\<lbrakk>x \<in> lang\<star>; x \<noteq> []\<rbrakk> \<Longrightarrow> \<exists>a b. x = a @ b \<and> a \<in> lang\<star> \<and> b \<in> lang"
|
|
79 |
apply (induct x rule:Star.induct, simp)
|
|
80 |
apply (case_tac "s2 = []")
|
|
81 |
apply (rule_tac x = "[]" in exI, rule_tac x = s1 in exI, simp add:start)
|
|
82 |
apply (simp, (erule exE| erule conjE)+)
|
|
83 |
by (rule_tac x = "s1 @ a" in exI, rule_tac x = b in exI, simp add:step)
|
|
84 |
|
|
85 |
text {* Ardens lemma expressed at the level of language, rather than the level of regular expression. *}
|
|
86 |
|
|
87 |
theorem ardens_revised:
|
|
88 |
assumes nemp: "[] \<notin> A"
|
|
89 |
shows "(X = X ;; A \<union> B) \<longleftrightarrow> (X = B ;; A\<star>)"
|
|
90 |
proof
|
|
91 |
assume eq: "X = B ;; A\<star>"
|
|
92 |
have "A\<star> = {[]} \<union> A\<star> ;; A"
|
|
93 |
by (auto simp:Seq_def star_intro3 star_decom')
|
|
94 |
then have "B ;; A\<star> = B ;; ({[]} \<union> A\<star> ;; A)"
|
|
95 |
unfolding Seq_def by simp
|
|
96 |
also have "\<dots> = B \<union> B ;; (A\<star> ;; A)"
|
|
97 |
unfolding Seq_def by auto
|
|
98 |
also have "\<dots> = B \<union> (B ;; A\<star>) ;; A"
|
|
99 |
by (simp only:seq_assoc)
|
|
100 |
finally show "X = X ;; A \<union> B"
|
|
101 |
using eq by blast
|
|
102 |
next
|
|
103 |
assume eq': "X = X ;; A \<union> B"
|
|
104 |
hence c1': "\<And> x. x \<in> B \<Longrightarrow> x \<in> X"
|
|
105 |
and c2': "\<And> x y. \<lbrakk>x \<in> X; y \<in> A\<rbrakk> \<Longrightarrow> x @ y \<in> X"
|
|
106 |
using Seq_def by auto
|
|
107 |
show "X = B ;; A\<star>"
|
|
108 |
proof
|
|
109 |
show "B ;; A\<star> \<subseteq> X"
|
|
110 |
proof-
|
|
111 |
{ fix x y
|
|
112 |
have "\<lbrakk>y \<in> A\<star>; x \<in> X\<rbrakk> \<Longrightarrow> x @ y \<in> X "
|
|
113 |
apply (induct arbitrary:x rule:Star.induct, simp)
|
|
114 |
by (auto simp only:append_assoc[THEN sym] dest:c2')
|
|
115 |
} thus ?thesis using c1' by (auto simp:Seq_def)
|
|
116 |
qed
|
|
117 |
next
|
|
118 |
show "X \<subseteq> B ;; A\<star>"
|
|
119 |
proof-
|
|
120 |
{ fix x
|
|
121 |
have "x \<in> X \<Longrightarrow> x \<in> B ;; A\<star>"
|
|
122 |
proof (induct x taking:length rule:measure_induct)
|
|
123 |
fix z
|
|
124 |
assume hyps:
|
|
125 |
"\<forall>y. length y < length z \<longrightarrow> y \<in> X \<longrightarrow> y \<in> B ;; A\<star>"
|
|
126 |
and z_in: "z \<in> X"
|
|
127 |
show "z \<in> B ;; A\<star>"
|
|
128 |
proof (cases "z \<in> B")
|
|
129 |
case True thus ?thesis by (auto simp:Seq_def start)
|
|
130 |
next
|
|
131 |
case False hence "z \<in> X ;; A" using eq' z_in by auto
|
|
132 |
then obtain za zb where za_in: "za \<in> X"
|
|
133 |
and zab: "z = za @ zb \<and> zb \<in> A" and zbne: "zb \<noteq> []"
|
|
134 |
using nemp unfolding Seq_def by blast
|
|
135 |
from zbne zab have "length za < length z" by auto
|
|
136 |
with za_in hyps have "za \<in> B ;; A\<star>" by blast
|
|
137 |
hence "za @ zb \<in> B ;; A\<star>" using zab
|
|
138 |
by (clarsimp simp:Seq_def, blast dest:star_intro3)
|
|
139 |
thus ?thesis using zab by simp
|
|
140 |
qed
|
|
141 |
qed
|
|
142 |
} thus ?thesis by blast
|
|
143 |
qed
|
|
144 |
qed
|
|
145 |
qed
|
|
146 |
|
|
147 |
|
|
148 |
text {* The syntax of regular expressions is defined by the datatype @{text "rexp"}. *}
|
|
149 |
datatype rexp =
|
|
150 |
NULL
|
|
151 |
| EMPTY
|
|
152 |
| CHAR char
|
|
153 |
| SEQ rexp rexp
|
|
154 |
| ALT rexp rexp
|
|
155 |
| STAR rexp
|
|
156 |
|
|
157 |
|
|
158 |
text {*
|
|
159 |
The following @{text "L"} is an overloaded operator, where @{text "L(x)"} evaluates to
|
|
160 |
the language represented by the syntactic object @{text "x"}.
|
|
161 |
*}
|
|
162 |
consts L:: "'a \<Rightarrow> string set"
|
|
163 |
|
|
164 |
|
|
165 |
text {*
|
|
166 |
The @{text "L(rexp)"} for regular expression @{text "rexp"} is defined by the
|
|
167 |
following overloading function @{text "L_rexp"}.
|
|
168 |
*}
|
|
169 |
overloading L_rexp \<equiv> "L:: rexp \<Rightarrow> string set"
|
|
170 |
begin
|
|
171 |
fun
|
|
172 |
L_rexp :: "rexp \<Rightarrow> string set"
|
|
173 |
where
|
|
174 |
"L_rexp (NULL) = {}"
|
|
175 |
| "L_rexp (EMPTY) = {[]}"
|
|
176 |
| "L_rexp (CHAR c) = {[c]}"
|
|
177 |
| "L_rexp (SEQ r1 r2) = (L_rexp r1) ;; (L_rexp r2)"
|
|
178 |
| "L_rexp (ALT r1 r2) = (L_rexp r1) \<union> (L_rexp r2)"
|
|
179 |
| "L_rexp (STAR r) = (L_rexp r)\<star>"
|
|
180 |
end
|
|
181 |
|
|
182 |
text {*
|
|
183 |
To obtain equational system out of finite set of equivalent classes, a fold operation
|
|
184 |
on finite set @{text "folds"} is defined. The use of @{text "SOME"} makes @{text "fold"}
|
|
185 |
more robust than the @{text "fold"} in Isabelle library. The expression @{text "folds f"}
|
|
186 |
makes sense when @{text "f"} is not @{text "associative"} and @{text "commutitive"},
|
|
187 |
while @{text "fold f"} does not.
|
|
188 |
*}
|
|
189 |
|
|
190 |
definition
|
|
191 |
folds :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b"
|
|
192 |
where
|
|
193 |
"folds f z S \<equiv> SOME x. fold_graph f z S x"
|
|
194 |
|
|
195 |
text {*
|
|
196 |
The following lemma assures that the arbitrary choice made by the @{text "SOME"} in @{text "folds"}
|
|
197 |
does not affect the @{text "L"}-value of the resultant regular expression.
|
|
198 |
*}
|
|
199 |
lemma folds_alt_simp [simp]:
|
|
200 |
"finite rs \<Longrightarrow> L (folds ALT NULL rs) = \<Union> (L ` rs)"
|
43
|
201 |
apply (rule set_eq_intro, simp add:folds_def)
|
42
|
202 |
apply (rule someI2_ex, erule finite_imp_fold_graph)
|
|
203 |
by (erule fold_graph.induct, auto)
|
|
204 |
|
|
205 |
(* Just a technical lemma. *)
|
|
206 |
lemma [simp]:
|
|
207 |
shows "(x, y) \<in> {(x, y). P x y} \<longleftrightarrow> P x y"
|
|
208 |
by simp
|
|
209 |
|
|
210 |
text {*
|
|
211 |
@{text "\<approx>L"} is an equivalent class defined by language @{text "Lang"}.
|
|
212 |
*}
|
|
213 |
definition
|
43
|
214 |
str_eq_rel ("\<approx>_" [100] 100)
|
42
|
215 |
where
|
|
216 |
"\<approx>Lang \<equiv> {(x, y). (\<forall>z. x @ z \<in> Lang \<longleftrightarrow> y @ z \<in> Lang)}"
|
|
217 |
|
|
218 |
text {*
|
|
219 |
Among equivlant clases of @{text "\<approx>Lang"}, the set @{text "finals(Lang)"} singles out
|
|
220 |
those which contains strings from @{text "Lang"}.
|
|
221 |
*}
|
|
222 |
|
|
223 |
definition
|
|
224 |
"finals Lang \<equiv> {\<approx>Lang `` {x} | x . x \<in> Lang}"
|
|
225 |
|
|
226 |
text {*
|
|
227 |
The following lemma show the relationshipt between @{text "finals(Lang)"} and @{text "Lang"}.
|
|
228 |
*}
|
|
229 |
lemma lang_is_union_of_finals:
|
|
230 |
"Lang = \<Union> finals(Lang)"
|
|
231 |
proof
|
|
232 |
show "Lang \<subseteq> \<Union> (finals Lang)"
|
|
233 |
proof
|
|
234 |
fix x
|
|
235 |
assume "x \<in> Lang"
|
|
236 |
thus "x \<in> \<Union> (finals Lang)"
|
|
237 |
apply (simp add:finals_def, rule_tac x = "(\<approx>Lang) `` {x}" in exI)
|
|
238 |
by (auto simp:Image_def str_eq_rel_def)
|
|
239 |
qed
|
|
240 |
next
|
|
241 |
show "\<Union> (finals Lang) \<subseteq> Lang"
|
|
242 |
apply (clarsimp simp:finals_def str_eq_rel_def)
|
|
243 |
by (drule_tac x = "[]" in spec, auto)
|
|
244 |
qed
|
|
245 |
|
|
246 |
section {* Direction @{text "finite partition \<Rightarrow> regular language"}*}
|
|
247 |
|
|
248 |
text {*
|
|
249 |
The relationship between equivalent classes can be described by an
|
|
250 |
equational system.
|
|
251 |
For example, in equational system \eqref{example_eqns}, $X_0, X_1$ are equivalent
|
|
252 |
classes. The first equation says every string in $X_0$ is obtained either by
|
|
253 |
appending one $b$ to a string in $X_0$ or by appending one $a$ to a string in
|
|
254 |
$X_1$ or just be an empty string (represented by the regular expression $\lambda$). Similary,
|
|
255 |
the second equation tells how the strings inside $X_1$ are composed.
|
|
256 |
\begin{equation}\label{example_eqns}
|
|
257 |
\begin{aligned}
|
|
258 |
X_0 & = X_0 b + X_1 a + \lambda \\
|
|
259 |
X_1 & = X_0 a + X_1 b
|
|
260 |
\end{aligned}
|
|
261 |
\end{equation}
|
|
262 |
The summands on the right hand side is represented by the following data type
|
|
263 |
@{text "rhs_item"}, mnemonic for 'right hand side item'.
|
|
264 |
Generally, there are two kinds of right hand side items, one kind corresponds to
|
|
265 |
pure regular expressions, like the $\lambda$ in \eqref{example_eqns}, the other kind corresponds to
|
|
266 |
transitions from one one equivalent class to another, like the $X_0 b, X_1 a$ etc.
|
|
267 |
*}
|
|
268 |
|
|
269 |
datatype rhs_item =
|
|
270 |
Lam "rexp" (* Lambda *)
|
|
271 |
| Trn "(string set)" "rexp" (* Transition *)
|
|
272 |
|
|
273 |
text {*
|
|
274 |
In this formalization, pure regular expressions like $\lambda$ is
|
|
275 |
repsented by @{text "Lam(EMPTY)"}, while transitions like $X_0 a$ is represented by $Trn~X_0~(CHAR~a)$.
|
|
276 |
*}
|
|
277 |
|
|
278 |
text {*
|
|
279 |
The functions @{text "the_r"} and @{text "the_Trn"} are used to extract
|
|
280 |
subcomponents from right hand side items.
|
|
281 |
*}
|
|
282 |
|
|
283 |
fun the_r :: "rhs_item \<Rightarrow> rexp"
|
|
284 |
where "the_r (Lam r) = r"
|
|
285 |
|
|
286 |
fun the_Trn:: "rhs_item \<Rightarrow> (string set \<times> rexp)"
|
|
287 |
where "the_Trn (Trn Y r) = (Y, r)"
|
|
288 |
|
|
289 |
text {*
|
|
290 |
Every right hand side item @{text "itm"} defines a string set given
|
|
291 |
@{text "L(itm)"}, defined as:
|
|
292 |
*}
|
|
293 |
overloading L_rhs_e \<equiv> "L:: rhs_item \<Rightarrow> string set"
|
|
294 |
begin
|
|
295 |
fun L_rhs_e:: "rhs_item \<Rightarrow> string set"
|
|
296 |
where
|
|
297 |
"L_rhs_e (Lam r) = L r" |
|
|
298 |
"L_rhs_e (Trn X r) = X ;; L r"
|
|
299 |
end
|
|
300 |
|
|
301 |
text {*
|
|
302 |
The right hand side of every equation is represented by a set of
|
|
303 |
items. The string set defined by such a set @{text "itms"} is given
|
|
304 |
by @{text "L(itms)"}, defined as:
|
|
305 |
*}
|
|
306 |
|
|
307 |
overloading L_rhs \<equiv> "L:: rhs_item set \<Rightarrow> string set"
|
|
308 |
begin
|
|
309 |
fun L_rhs:: "rhs_item set \<Rightarrow> string set"
|
|
310 |
where "L_rhs rhs = \<Union> (L ` rhs)"
|
|
311 |
end
|
|
312 |
|
|
313 |
text {*
|
|
314 |
Given a set of equivalent classses @{text "CS"} and one equivalent class @{text "X"} among
|
|
315 |
@{text "CS"}, the term @{text "init_rhs CS X"} is used to extract the right hand side of
|
|
316 |
the equation describing the formation of @{text "X"}. The definition of @{text "init_rhs"}
|
|
317 |
is:
|
|
318 |
*}
|
|
319 |
|
|
320 |
definition
|
|
321 |
"init_rhs CS X \<equiv>
|
|
322 |
if ([] \<in> X) then
|
|
323 |
{Lam(EMPTY)} \<union> {Trn Y (CHAR c) | Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}
|
|
324 |
else
|
|
325 |
{Trn Y (CHAR c)| Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}"
|
|
326 |
|
|
327 |
text {*
|
|
328 |
In the definition of @{text "init_rhs"}, the term
|
|
329 |
@{text "{Trn Y (CHAR c)| Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}"} appearing on both branches
|
|
330 |
describes the formation of strings in @{text "X"} out of transitions, while
|
|
331 |
the term @{text "{Lam(EMPTY)}"} describes the empty string which is intrinsically contained in
|
|
332 |
@{text "X"} rather than by transition. This @{text "{Lam(EMPTY)}"} corresponds to
|
|
333 |
the $\lambda$ in \eqref{example_eqns}.
|
|
334 |
|
|
335 |
With the help of @{text "init_rhs"}, the equitional system descrbing the formation of every
|
|
336 |
equivalent class inside @{text "CS"} is given by the following @{text "eqs(CS)"}.
|
|
337 |
*}
|
|
338 |
|
|
339 |
definition "eqs CS \<equiv> {(X, init_rhs CS X) | X. X \<in> CS}"
|
|
340 |
(************ arden's lemma variation ********************)
|
|
341 |
|
|
342 |
text {*
|
|
343 |
The following @{text "items_of rhs X"} returns all @{text "X"}-items in @{text "rhs"}.
|
|
344 |
*}
|
|
345 |
definition
|
|
346 |
"items_of rhs X \<equiv> {Trn X r | r. (Trn X r) \<in> rhs}"
|
|
347 |
|
|
348 |
text {*
|
|
349 |
The following @{text "rexp_of rhs X"} combines all regular expressions in @{text "X"}-items
|
|
350 |
using @{text "ALT"} to form a single regular expression.
|
|
351 |
It will be used later to implement @{text "arden_variate"} and @{text "rhs_subst"}.
|
|
352 |
*}
|
|
353 |
|
|
354 |
definition
|
|
355 |
"rexp_of rhs X \<equiv> folds ALT NULL ((snd o the_Trn) ` items_of rhs X)"
|
|
356 |
|
|
357 |
text {*
|
|
358 |
The following @{text "lam_of rhs"} returns all pure regular expression items in @{text "rhs"}.
|
|
359 |
*}
|
|
360 |
|
|
361 |
definition
|
|
362 |
"lam_of rhs \<equiv> {Lam r | r. Lam r \<in> rhs}"
|
|
363 |
|
|
364 |
text {*
|
|
365 |
The following @{text "rexp_of_lam rhs"} combines pure regular expression items in @{text "rhs"}
|
|
366 |
using @{text "ALT"} to form a single regular expression.
|
|
367 |
When all variables inside @{text "rhs"} are eliminated, @{text "rexp_of_lam rhs"}
|
|
368 |
is used to compute compute the regular expression corresponds to @{text "rhs"}.
|
|
369 |
*}
|
|
370 |
|
|
371 |
definition
|
|
372 |
"rexp_of_lam rhs \<equiv> folds ALT NULL (the_r ` lam_of rhs)"
|
|
373 |
|
|
374 |
text {*
|
|
375 |
The following @{text "attach_rexp rexp' itm"} attach
|
|
376 |
the regular expression @{text "rexp'"} to
|
|
377 |
the right of right hand side item @{text "itm"}.
|
|
378 |
*}
|
|
379 |
|
|
380 |
fun attach_rexp :: "rexp \<Rightarrow> rhs_item \<Rightarrow> rhs_item"
|
|
381 |
where
|
|
382 |
"attach_rexp rexp' (Lam rexp) = Lam (SEQ rexp rexp')"
|
|
383 |
| "attach_rexp rexp' (Trn X rexp) = Trn X (SEQ rexp rexp')"
|
|
384 |
|
|
385 |
text {*
|
|
386 |
The following @{text "append_rhs_rexp rhs rexp"} attaches
|
|
387 |
@{text "rexp"} to every item in @{text "rhs"}.
|
|
388 |
*}
|
|
389 |
|
|
390 |
definition
|
|
391 |
"append_rhs_rexp rhs rexp \<equiv> (attach_rexp rexp) ` rhs"
|
|
392 |
|
|
393 |
text {*
|
|
394 |
With the help of the two functions immediately above, Ardens'
|
|
395 |
transformation on right hand side @{text "rhs"} is implemented
|
|
396 |
by the following function @{text "arden_variate X rhs"}.
|
|
397 |
After this transformation, the recursive occurent of @{text "X"}
|
|
398 |
in @{text "rhs"} will be eliminated, while the
|
|
399 |
string set defined by @{text "rhs"} is kept unchanged.
|
|
400 |
*}
|
|
401 |
definition
|
|
402 |
"arden_variate X rhs \<equiv>
|
|
403 |
append_rhs_rexp (rhs - items_of rhs X) (STAR (rexp_of rhs X))"
|
|
404 |
|
|
405 |
|
|
406 |
(*********** substitution of ES *************)
|
|
407 |
|
|
408 |
text {*
|
|
409 |
Suppose the equation defining @{text "X"} is $X = xrhs$,
|
|
410 |
the purpose of @{text "rhs_subst"} is to substitute all occurences of @{text "X"} in
|
|
411 |
@{text "rhs"} by @{text "xrhs"}.
|
|
412 |
A litte thought may reveal that the final result
|
|
413 |
should be: first append $(a_1 | a_2 | \ldots | a_n)$ to every item of @{text "xrhs"} and then
|
|
414 |
union the result with all non-@{text "X"}-items of @{text "rhs"}.
|
|
415 |
*}
|
|
416 |
definition
|
|
417 |
"rhs_subst rhs X xrhs \<equiv>
|
|
418 |
(rhs - (items_of rhs X)) \<union> (append_rhs_rexp xrhs (rexp_of rhs X))"
|
|
419 |
|
|
420 |
text {*
|
|
421 |
Suppose the equation defining @{text "X"} is $X = xrhs$, the follwing
|
|
422 |
@{text "eqs_subst ES X xrhs"} substitute @{text "xrhs"} into every equation
|
|
423 |
of the equational system @{text "ES"}.
|
|
424 |
*}
|
|
425 |
|
|
426 |
definition
|
|
427 |
"eqs_subst ES X xrhs \<equiv> {(Y, rhs_subst yrhs X xrhs) | Y yrhs. (Y, yrhs) \<in> ES}"
|
|
428 |
|
|
429 |
text {*
|
|
430 |
The computation of regular expressions for equivalent classes is accomplished
|
|
431 |
using a iteration principle given by the following lemma.
|
|
432 |
*}
|
|
433 |
|
|
434 |
lemma wf_iter [rule_format]:
|
|
435 |
fixes f
|
|
436 |
assumes step: "\<And> e. \<lbrakk>P e; \<not> Q e\<rbrakk> \<Longrightarrow> (\<exists> e'. P e' \<and> (f(e'), f(e)) \<in> less_than)"
|
|
437 |
shows pe: "P e \<longrightarrow> (\<exists> e'. P e' \<and> Q e')"
|
|
438 |
proof(induct e rule: wf_induct
|
|
439 |
[OF wf_inv_image[OF wf_less_than, where f = "f"]], clarify)
|
|
440 |
fix x
|
|
441 |
assume h [rule_format]:
|
|
442 |
"\<forall>y. (y, x) \<in> inv_image less_than f \<longrightarrow> P y \<longrightarrow> (\<exists>e'. P e' \<and> Q e')"
|
|
443 |
and px: "P x"
|
|
444 |
show "\<exists>e'. P e' \<and> Q e'"
|
|
445 |
proof(cases "Q x")
|
|
446 |
assume "Q x" with px show ?thesis by blast
|
|
447 |
next
|
|
448 |
assume nq: "\<not> Q x"
|
|
449 |
from step [OF px nq]
|
|
450 |
obtain e' where pe': "P e'" and ltf: "(f e', f x) \<in> less_than" by auto
|
|
451 |
show ?thesis
|
|
452 |
proof(rule h)
|
|
453 |
from ltf show "(e', x) \<in> inv_image less_than f"
|
|
454 |
by (simp add:inv_image_def)
|
|
455 |
next
|
|
456 |
from pe' show "P e'" .
|
|
457 |
qed
|
|
458 |
qed
|
|
459 |
qed
|
|
460 |
|
|
461 |
text {*
|
|
462 |
The @{text "P"} in lemma @{text "wf_iter"} is an invaiant kept throughout the iteration procedure.
|
|
463 |
The particular invariant used to solve our problem is defined by function @{text "Inv(ES)"},
|
|
464 |
an invariant over equal system @{text "ES"}.
|
|
465 |
Every definition starting next till @{text "Inv"} stipulates a property to be satisfied by @{text "ES"}.
|
|
466 |
*}
|
|
467 |
|
|
468 |
text {*
|
|
469 |
Every variable is defined at most onece in @{text "ES"}.
|
|
470 |
*}
|
|
471 |
definition
|
|
472 |
"distinct_equas ES \<equiv>
|
|
473 |
\<forall> X rhs rhs'. (X, rhs) \<in> ES \<and> (X, rhs') \<in> ES \<longrightarrow> rhs = rhs'"
|
|
474 |
text {*
|
|
475 |
Every equation in @{text "ES"} (represented by @{text "(X, rhs)"}) is valid, i.e. @{text "(X = L rhs)"}.
|
|
476 |
*}
|
|
477 |
definition
|
|
478 |
"valid_eqns ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> (X = L rhs)"
|
|
479 |
|
|
480 |
text {*
|
|
481 |
The following @{text "rhs_nonempty rhs"} requires regular expressions occuring in transitional
|
|
482 |
items of @{text "rhs"} does not contain empty string. This is necessary for
|
|
483 |
the application of Arden's transformation to @{text "rhs"}.
|
|
484 |
*}
|
|
485 |
definition
|
|
486 |
"rhs_nonempty rhs \<equiv> (\<forall> Y r. Trn Y r \<in> rhs \<longrightarrow> [] \<notin> L r)"
|
|
487 |
|
|
488 |
text {*
|
|
489 |
The following @{text "ardenable ES"} requires that Arden's transformation is applicable
|
|
490 |
to every equation of equational system @{text "ES"}.
|
|
491 |
*}
|
|
492 |
definition
|
|
493 |
"ardenable ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> rhs_nonempty rhs"
|
|
494 |
|
|
495 |
(* The following non_empty seems useless. *)
|
|
496 |
definition
|
|
497 |
"non_empty ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> X \<noteq> {}"
|
|
498 |
|
|
499 |
text {*
|
|
500 |
The following @{text "finite_rhs ES"} requires every equation in @{text "rhs"} be finite.
|
|
501 |
*}
|
|
502 |
definition
|
|
503 |
"finite_rhs ES \<equiv> \<forall> X rhs. (X, rhs) \<in> ES \<longrightarrow> finite rhs"
|
|
504 |
|
|
505 |
text {*
|
|
506 |
The following @{text "classes_of rhs"} returns all variables (or equivalent classes)
|
|
507 |
occuring in @{text "rhs"}.
|
|
508 |
*}
|
|
509 |
definition
|
|
510 |
"classes_of rhs \<equiv> {X. \<exists> r. Trn X r \<in> rhs}"
|
|
511 |
|
|
512 |
text {*
|
|
513 |
The following @{text "lefts_of ES"} returns all variables
|
|
514 |
defined by equational system @{text "ES"}.
|
|
515 |
*}
|
|
516 |
definition
|
|
517 |
"lefts_of ES \<equiv> {Y | Y yrhs. (Y, yrhs) \<in> ES}"
|
|
518 |
|
|
519 |
text {*
|
|
520 |
The following @{text "self_contained ES"} requires that every
|
|
521 |
variable occuring on the right hand side of equations is already defined by some
|
|
522 |
equation in @{text "ES"}.
|
|
523 |
*}
|
|
524 |
definition
|
|
525 |
"self_contained ES \<equiv> \<forall> (X, xrhs) \<in> ES. classes_of xrhs \<subseteq> lefts_of ES"
|
|
526 |
|
|
527 |
|
|
528 |
text {*
|
|
529 |
The invariant @{text "Inv(ES)"} is a conjunction of all the previously defined constaints.
|
|
530 |
*}
|
|
531 |
definition
|
|
532 |
"Inv ES \<equiv> valid_eqns ES \<and> finite ES \<and> distinct_equas ES \<and> ardenable ES \<and>
|
|
533 |
non_empty ES \<and> finite_rhs ES \<and> self_contained ES"
|
|
534 |
|
|
535 |
subsection {* The proof of this direction *}
|
|
536 |
|
|
537 |
subsubsection {* Basic properties *}
|
|
538 |
|
|
539 |
text {*
|
|
540 |
The following are some basic properties of the above definitions.
|
|
541 |
*}
|
|
542 |
|
|
543 |
lemma L_rhs_union_distrib:
|
|
544 |
" L (A::rhs_item set) \<union> L B = L (A \<union> B)"
|
|
545 |
by simp
|
|
546 |
|
|
547 |
lemma finite_snd_Trn:
|
|
548 |
assumes finite:"finite rhs"
|
|
549 |
shows "finite {r\<^isub>2. Trn Y r\<^isub>2 \<in> rhs}" (is "finite ?B")
|
|
550 |
proof-
|
|
551 |
def rhs' \<equiv> "{e \<in> rhs. \<exists> r. e = Trn Y r}"
|
|
552 |
have "?B = (snd o the_Trn) ` rhs'" using rhs'_def by (auto simp:image_def)
|
|
553 |
moreover have "finite rhs'" using finite rhs'_def by auto
|
|
554 |
ultimately show ?thesis by simp
|
|
555 |
qed
|
|
556 |
|
|
557 |
lemma rexp_of_empty:
|
|
558 |
assumes finite:"finite rhs"
|
|
559 |
and nonempty:"rhs_nonempty rhs"
|
|
560 |
shows "[] \<notin> L (rexp_of rhs X)"
|
|
561 |
using finite nonempty rhs_nonempty_def
|
|
562 |
by (drule_tac finite_snd_Trn[where Y = X], auto simp:rexp_of_def items_of_def)
|
|
563 |
|
|
564 |
lemma [intro!]:
|
|
565 |
"P (Trn X r) \<Longrightarrow> (\<exists>a. (\<exists>r. a = Trn X r \<and> P a))" by auto
|
|
566 |
|
|
567 |
lemma finite_items_of:
|
|
568 |
"finite rhs \<Longrightarrow> finite (items_of rhs X)"
|
|
569 |
by (auto simp:items_of_def intro:finite_subset)
|
|
570 |
|
|
571 |
lemma lang_of_rexp_of:
|
|
572 |
assumes finite:"finite rhs"
|
|
573 |
shows "L (items_of rhs X) = X ;; (L (rexp_of rhs X))"
|
|
574 |
proof -
|
|
575 |
have "finite ((snd \<circ> the_Trn) ` items_of rhs X)" using finite_items_of[OF finite] by auto
|
|
576 |
thus ?thesis
|
|
577 |
apply (auto simp:rexp_of_def Seq_def items_of_def)
|
|
578 |
apply (rule_tac x = s1 in exI, rule_tac x = s2 in exI, auto)
|
|
579 |
by (rule_tac x= "Trn X r" in exI, auto simp:Seq_def)
|
|
580 |
qed
|
|
581 |
|
|
582 |
lemma rexp_of_lam_eq_lam_set:
|
|
583 |
assumes finite: "finite rhs"
|
|
584 |
shows "L (rexp_of_lam rhs) = L (lam_of rhs)"
|
|
585 |
proof -
|
|
586 |
have "finite (the_r ` {Lam r |r. Lam r \<in> rhs})" using finite
|
|
587 |
by (rule_tac finite_imageI, auto intro:finite_subset)
|
|
588 |
thus ?thesis by (auto simp:rexp_of_lam_def lam_of_def)
|
|
589 |
qed
|
|
590 |
|
|
591 |
lemma [simp]:
|
|
592 |
" L (attach_rexp r xb) = L xb ;; L r"
|
|
593 |
apply (cases xb, auto simp:Seq_def)
|
|
594 |
by (rule_tac x = "s1 @ s1a" in exI, rule_tac x = s2a in exI,auto simp:Seq_def)
|
|
595 |
|
|
596 |
lemma lang_of_append_rhs:
|
|
597 |
"L (append_rhs_rexp rhs r) = L rhs ;; L r"
|
|
598 |
apply (auto simp:append_rhs_rexp_def image_def)
|
|
599 |
apply (auto simp:Seq_def)
|
|
600 |
apply (rule_tac x = "L xb ;; L r" in exI, auto simp add:Seq_def)
|
|
601 |
by (rule_tac x = "attach_rexp r xb" in exI, auto simp:Seq_def)
|
|
602 |
|
|
603 |
lemma classes_of_union_distrib:
|
|
604 |
"classes_of A \<union> classes_of B = classes_of (A \<union> B)"
|
|
605 |
by (auto simp add:classes_of_def)
|
|
606 |
|
|
607 |
lemma lefts_of_union_distrib:
|
|
608 |
"lefts_of A \<union> lefts_of B = lefts_of (A \<union> B)"
|
|
609 |
by (auto simp:lefts_of_def)
|
|
610 |
|
|
611 |
|
|
612 |
subsubsection {* Intialization *}
|
|
613 |
|
|
614 |
text {*
|
|
615 |
The following several lemmas until @{text "init_ES_satisfy_Inv"} shows that
|
|
616 |
the initial equational system satisfies invariant @{text "Inv"}.
|
|
617 |
*}
|
|
618 |
|
|
619 |
lemma defined_by_str:
|
|
620 |
"\<lbrakk>s \<in> X; X \<in> UNIV // (\<approx>Lang)\<rbrakk> \<Longrightarrow> X = (\<approx>Lang) `` {s}"
|
|
621 |
by (auto simp:quotient_def Image_def str_eq_rel_def)
|
|
622 |
|
|
623 |
lemma every_eqclass_has_transition:
|
|
624 |
assumes has_str: "s @ [c] \<in> X"
|
|
625 |
and in_CS: "X \<in> UNIV // (\<approx>Lang)"
|
|
626 |
obtains Y where "Y \<in> UNIV // (\<approx>Lang)" and "Y ;; {[c]} \<subseteq> X" and "s \<in> Y"
|
|
627 |
proof -
|
|
628 |
def Y \<equiv> "(\<approx>Lang) `` {s}"
|
|
629 |
have "Y \<in> UNIV // (\<approx>Lang)"
|
|
630 |
unfolding Y_def quotient_def by auto
|
|
631 |
moreover
|
|
632 |
have "X = (\<approx>Lang) `` {s @ [c]}"
|
|
633 |
using has_str in_CS defined_by_str by blast
|
|
634 |
then have "Y ;; {[c]} \<subseteq> X"
|
|
635 |
unfolding Y_def Image_def Seq_def
|
|
636 |
unfolding str_eq_rel_def
|
|
637 |
by clarsimp
|
|
638 |
moreover
|
|
639 |
have "s \<in> Y" unfolding Y_def
|
|
640 |
unfolding Image_def str_eq_rel_def by simp
|
|
641 |
ultimately show thesis by (blast intro: that)
|
|
642 |
qed
|
|
643 |
|
|
644 |
lemma l_eq_r_in_eqs:
|
|
645 |
assumes X_in_eqs: "(X, xrhs) \<in> (eqs (UNIV // (\<approx>Lang)))"
|
|
646 |
shows "X = L xrhs"
|
|
647 |
proof
|
|
648 |
show "X \<subseteq> L xrhs"
|
|
649 |
proof
|
|
650 |
fix x
|
|
651 |
assume "(1)": "x \<in> X"
|
|
652 |
show "x \<in> L xrhs"
|
|
653 |
proof (cases "x = []")
|
|
654 |
assume empty: "x = []"
|
|
655 |
thus ?thesis using X_in_eqs "(1)"
|
|
656 |
by (auto simp:eqs_def init_rhs_def)
|
|
657 |
next
|
|
658 |
assume not_empty: "x \<noteq> []"
|
|
659 |
then obtain clist c where decom: "x = clist @ [c]"
|
|
660 |
by (case_tac x rule:rev_cases, auto)
|
|
661 |
have "X \<in> UNIV // (\<approx>Lang)" using X_in_eqs by (auto simp:eqs_def)
|
|
662 |
then obtain Y
|
|
663 |
where "Y \<in> UNIV // (\<approx>Lang)"
|
|
664 |
and "Y ;; {[c]} \<subseteq> X"
|
|
665 |
and "clist \<in> Y"
|
|
666 |
using decom "(1)" every_eqclass_has_transition by blast
|
|
667 |
hence
|
|
668 |
"x \<in> L {Trn Y (CHAR c)| Y c. Y \<in> UNIV // (\<approx>Lang) \<and> Y ;; {[c]} \<subseteq> X}"
|
|
669 |
using "(1)" decom
|
|
670 |
by (simp, rule_tac x = "Trn Y (CHAR c)" in exI, simp add:Seq_def)
|
|
671 |
thus ?thesis using X_in_eqs "(1)"
|
|
672 |
by (simp add:eqs_def init_rhs_def)
|
|
673 |
qed
|
|
674 |
qed
|
|
675 |
next
|
|
676 |
show "L xrhs \<subseteq> X" using X_in_eqs
|
|
677 |
by (auto simp:eqs_def init_rhs_def)
|
|
678 |
qed
|
|
679 |
|
|
680 |
lemma finite_init_rhs:
|
|
681 |
assumes finite: "finite CS"
|
|
682 |
shows "finite (init_rhs CS X)"
|
|
683 |
proof-
|
|
684 |
have "finite {Trn Y (CHAR c) |Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}" (is "finite ?A")
|
|
685 |
proof -
|
|
686 |
def S \<equiv> "{(Y, c)| Y c. Y \<in> CS \<and> Y ;; {[c]} \<subseteq> X}"
|
|
687 |
def h \<equiv> "\<lambda> (Y, c). Trn Y (CHAR c)"
|
|
688 |
have "finite (CS \<times> (UNIV::char set))" using finite by auto
|
|
689 |
hence "finite S" using S_def
|
|
690 |
by (rule_tac B = "CS \<times> UNIV" in finite_subset, auto)
|
|
691 |
moreover have "?A = h ` S" by (auto simp: S_def h_def image_def)
|
|
692 |
ultimately show ?thesis
|
|
693 |
by auto
|
|
694 |
qed
|
|
695 |
thus ?thesis by (simp add:init_rhs_def)
|
|
696 |
qed
|
|
697 |
|
|
698 |
lemma init_ES_satisfy_Inv:
|
|
699 |
assumes finite_CS: "finite (UNIV // (\<approx>Lang))"
|
|
700 |
shows "Inv (eqs (UNIV // (\<approx>Lang)))"
|
|
701 |
proof -
|
|
702 |
have "finite (eqs (UNIV // (\<approx>Lang)))" using finite_CS
|
|
703 |
by (simp add:eqs_def)
|
|
704 |
moreover have "distinct_equas (eqs (UNIV // (\<approx>Lang)))"
|
|
705 |
by (simp add:distinct_equas_def eqs_def)
|
|
706 |
moreover have "ardenable (eqs (UNIV // (\<approx>Lang)))"
|
|
707 |
by (auto simp add:ardenable_def eqs_def init_rhs_def rhs_nonempty_def del:L_rhs.simps)
|
|
708 |
moreover have "valid_eqns (eqs (UNIV // (\<approx>Lang)))"
|
|
709 |
using l_eq_r_in_eqs by (simp add:valid_eqns_def)
|
|
710 |
moreover have "non_empty (eqs (UNIV // (\<approx>Lang)))"
|
|
711 |
by (auto simp:non_empty_def eqs_def quotient_def Image_def str_eq_rel_def)
|
|
712 |
moreover have "finite_rhs (eqs (UNIV // (\<approx>Lang)))"
|
|
713 |
using finite_init_rhs[OF finite_CS]
|
|
714 |
by (auto simp:finite_rhs_def eqs_def)
|
|
715 |
moreover have "self_contained (eqs (UNIV // (\<approx>Lang)))"
|
|
716 |
by (auto simp:self_contained_def eqs_def init_rhs_def classes_of_def lefts_of_def)
|
|
717 |
ultimately show ?thesis by (simp add:Inv_def)
|
|
718 |
qed
|
|
719 |
|
|
720 |
subsubsection {*
|
|
721 |
Interation step
|
|
722 |
*}
|
|
723 |
|
|
724 |
text {*
|
|
725 |
From this point until @{text "iteration_step"}, it is proved
|
|
726 |
that there exists iteration steps which keep @{text "Inv(ES)"} while
|
|
727 |
decreasing the size of @{text "ES"}.
|
|
728 |
*}
|
|
729 |
lemma arden_variate_keeps_eq:
|
|
730 |
assumes l_eq_r: "X = L rhs"
|
|
731 |
and not_empty: "[] \<notin> L (rexp_of rhs X)"
|
|
732 |
and finite: "finite rhs"
|
|
733 |
shows "X = L (arden_variate X rhs)"
|
|
734 |
proof -
|
|
735 |
def A \<equiv> "L (rexp_of rhs X)"
|
|
736 |
def b \<equiv> "rhs - items_of rhs X"
|
|
737 |
def B \<equiv> "L b"
|
|
738 |
have "X = B ;; A\<star>"
|
|
739 |
proof-
|
|
740 |
have "rhs = items_of rhs X \<union> b" by (auto simp:b_def items_of_def)
|
|
741 |
hence "L rhs = L(items_of rhs X \<union> b)" by simp
|
|
742 |
hence "L rhs = L(items_of rhs X) \<union> B" by (simp only:L_rhs_union_distrib B_def)
|
|
743 |
with lang_of_rexp_of
|
|
744 |
have "L rhs = X ;; A \<union> B " using finite by (simp only:B_def b_def A_def)
|
|
745 |
thus ?thesis
|
|
746 |
using l_eq_r not_empty
|
|
747 |
apply (drule_tac B = B and X = X in ardens_revised)
|
|
748 |
by (auto simp:A_def simp del:L_rhs.simps)
|
|
749 |
qed
|
|
750 |
moreover have "L (arden_variate X rhs) = (B ;; A\<star>)" (is "?L = ?R")
|
|
751 |
by (simp only:arden_variate_def L_rhs_union_distrib lang_of_append_rhs
|
|
752 |
B_def A_def b_def L_rexp.simps seq_union_distrib)
|
|
753 |
ultimately show ?thesis by simp
|
|
754 |
qed
|
|
755 |
|
|
756 |
lemma append_keeps_finite:
|
|
757 |
"finite rhs \<Longrightarrow> finite (append_rhs_rexp rhs r)"
|
|
758 |
by (auto simp:append_rhs_rexp_def)
|
|
759 |
|
|
760 |
lemma arden_variate_keeps_finite:
|
|
761 |
"finite rhs \<Longrightarrow> finite (arden_variate X rhs)"
|
|
762 |
by (auto simp:arden_variate_def append_keeps_finite)
|
|
763 |
|
|
764 |
lemma append_keeps_nonempty:
|
|
765 |
"rhs_nonempty rhs \<Longrightarrow> rhs_nonempty (append_rhs_rexp rhs r)"
|
|
766 |
apply (auto simp:rhs_nonempty_def append_rhs_rexp_def)
|
|
767 |
by (case_tac x, auto simp:Seq_def)
|
|
768 |
|
|
769 |
lemma nonempty_set_sub:
|
|
770 |
"rhs_nonempty rhs \<Longrightarrow> rhs_nonempty (rhs - A)"
|
|
771 |
by (auto simp:rhs_nonempty_def)
|
|
772 |
|
|
773 |
lemma nonempty_set_union:
|
|
774 |
"\<lbrakk>rhs_nonempty rhs; rhs_nonempty rhs'\<rbrakk> \<Longrightarrow> rhs_nonempty (rhs \<union> rhs')"
|
|
775 |
by (auto simp:rhs_nonempty_def)
|
|
776 |
|
|
777 |
lemma arden_variate_keeps_nonempty:
|
|
778 |
"rhs_nonempty rhs \<Longrightarrow> rhs_nonempty (arden_variate X rhs)"
|
|
779 |
by (simp only:arden_variate_def append_keeps_nonempty nonempty_set_sub)
|
|
780 |
|
|
781 |
|
|
782 |
lemma rhs_subst_keeps_nonempty:
|
|
783 |
"\<lbrakk>rhs_nonempty rhs; rhs_nonempty xrhs\<rbrakk> \<Longrightarrow> rhs_nonempty (rhs_subst rhs X xrhs)"
|
|
784 |
by (simp only:rhs_subst_def append_keeps_nonempty nonempty_set_union nonempty_set_sub)
|
|
785 |
|
|
786 |
lemma rhs_subst_keeps_eq:
|
|
787 |
assumes substor: "X = L xrhs"
|
|
788 |
and finite: "finite rhs"
|
|
789 |
shows "L (rhs_subst rhs X xrhs) = L rhs" (is "?Left = ?Right")
|
|
790 |
proof-
|
|
791 |
def A \<equiv> "L (rhs - items_of rhs X)"
|
|
792 |
have "?Left = A \<union> L (append_rhs_rexp xrhs (rexp_of rhs X))"
|
|
793 |
by (simp only:rhs_subst_def L_rhs_union_distrib A_def)
|
|
794 |
moreover have "?Right = A \<union> L (items_of rhs X)"
|
|
795 |
proof-
|
|
796 |
have "rhs = (rhs - items_of rhs X) \<union> (items_of rhs X)" by (auto simp:items_of_def)
|
|
797 |
thus ?thesis by (simp only:L_rhs_union_distrib A_def)
|
|
798 |
qed
|
|
799 |
moreover have "L (append_rhs_rexp xrhs (rexp_of rhs X)) = L (items_of rhs X)"
|
|
800 |
using finite substor by (simp only:lang_of_append_rhs lang_of_rexp_of)
|
|
801 |
ultimately show ?thesis by simp
|
|
802 |
qed
|
|
803 |
|
|
804 |
lemma rhs_subst_keeps_finite_rhs:
|
|
805 |
"\<lbrakk>finite rhs; finite yrhs\<rbrakk> \<Longrightarrow> finite (rhs_subst rhs Y yrhs)"
|
|
806 |
by (auto simp:rhs_subst_def append_keeps_finite)
|
|
807 |
|
|
808 |
lemma eqs_subst_keeps_finite:
|
|
809 |
assumes finite:"finite (ES:: (string set \<times> rhs_item set) set)"
|
|
810 |
shows "finite (eqs_subst ES Y yrhs)"
|
|
811 |
proof -
|
|
812 |
have "finite {(Ya, rhs_subst yrhsa Y yrhs) |Ya yrhsa. (Ya, yrhsa) \<in> ES}"
|
|
813 |
(is "finite ?A")
|
|
814 |
proof-
|
|
815 |
def eqns' \<equiv> "{((Ya::string set), yrhsa)| Ya yrhsa. (Ya, yrhsa) \<in> ES}"
|
|
816 |
def h \<equiv> "\<lambda> ((Ya::string set), yrhsa). (Ya, rhs_subst yrhsa Y yrhs)"
|
|
817 |
have "finite (h ` eqns')" using finite h_def eqns'_def by auto
|
|
818 |
moreover have "?A = h ` eqns'" by (auto simp:h_def eqns'_def)
|
|
819 |
ultimately show ?thesis by auto
|
|
820 |
qed
|
|
821 |
thus ?thesis by (simp add:eqs_subst_def)
|
|
822 |
qed
|
|
823 |
|
|
824 |
lemma eqs_subst_keeps_finite_rhs:
|
|
825 |
"\<lbrakk>finite_rhs ES; finite yrhs\<rbrakk> \<Longrightarrow> finite_rhs (eqs_subst ES Y yrhs)"
|
|
826 |
by (auto intro:rhs_subst_keeps_finite_rhs simp add:eqs_subst_def finite_rhs_def)
|
|
827 |
|
|
828 |
lemma append_rhs_keeps_cls:
|
|
829 |
"classes_of (append_rhs_rexp rhs r) = classes_of rhs"
|
|
830 |
apply (auto simp:classes_of_def append_rhs_rexp_def)
|
|
831 |
apply (case_tac xa, auto simp:image_def)
|
|
832 |
by (rule_tac x = "SEQ ra r" in exI, rule_tac x = "Trn x ra" in bexI, simp+)
|
|
833 |
|
|
834 |
lemma arden_variate_removes_cl:
|
|
835 |
"classes_of (arden_variate Y yrhs) = classes_of yrhs - {Y}"
|
|
836 |
apply (simp add:arden_variate_def append_rhs_keeps_cls items_of_def)
|
|
837 |
by (auto simp:classes_of_def)
|
|
838 |
|
|
839 |
lemma lefts_of_keeps_cls:
|
|
840 |
"lefts_of (eqs_subst ES Y yrhs) = lefts_of ES"
|
|
841 |
by (auto simp:lefts_of_def eqs_subst_def)
|
|
842 |
|
|
843 |
lemma rhs_subst_updates_cls:
|
|
844 |
"X \<notin> classes_of xrhs \<Longrightarrow>
|
|
845 |
classes_of (rhs_subst rhs X xrhs) = classes_of rhs \<union> classes_of xrhs - {X}"
|
|
846 |
apply (simp only:rhs_subst_def append_rhs_keeps_cls
|
|
847 |
classes_of_union_distrib[THEN sym])
|
|
848 |
by (auto simp:classes_of_def items_of_def)
|
|
849 |
|
|
850 |
lemma eqs_subst_keeps_self_contained:
|
|
851 |
fixes Y
|
|
852 |
assumes sc: "self_contained (ES \<union> {(Y, yrhs)})" (is "self_contained ?A")
|
|
853 |
shows "self_contained (eqs_subst ES Y (arden_variate Y yrhs))"
|
|
854 |
(is "self_contained ?B")
|
|
855 |
proof-
|
|
856 |
{ fix X xrhs'
|
|
857 |
assume "(X, xrhs') \<in> ?B"
|
|
858 |
then obtain xrhs
|
|
859 |
where xrhs_xrhs': "xrhs' = rhs_subst xrhs Y (arden_variate Y yrhs)"
|
|
860 |
and X_in: "(X, xrhs) \<in> ES" by (simp add:eqs_subst_def, blast)
|
|
861 |
have "classes_of xrhs' \<subseteq> lefts_of ?B"
|
|
862 |
proof-
|
|
863 |
have "lefts_of ?B = lefts_of ES" by (auto simp add:lefts_of_def eqs_subst_def)
|
|
864 |
moreover have "classes_of xrhs' \<subseteq> lefts_of ES"
|
|
865 |
proof-
|
|
866 |
have "classes_of xrhs' \<subseteq>
|
|
867 |
classes_of xrhs \<union> classes_of (arden_variate Y yrhs) - {Y}"
|
|
868 |
proof-
|
|
869 |
have "Y \<notin> classes_of (arden_variate Y yrhs)"
|
|
870 |
using arden_variate_removes_cl by simp
|
|
871 |
thus ?thesis using xrhs_xrhs' by (auto simp:rhs_subst_updates_cls)
|
|
872 |
qed
|
|
873 |
moreover have "classes_of xrhs \<subseteq> lefts_of ES \<union> {Y}" using X_in sc
|
|
874 |
apply (simp only:self_contained_def lefts_of_union_distrib[THEN sym])
|
|
875 |
by (drule_tac x = "(X, xrhs)" in bspec, auto simp:lefts_of_def)
|
|
876 |
moreover have "classes_of (arden_variate Y yrhs) \<subseteq> lefts_of ES \<union> {Y}"
|
|
877 |
using sc
|
|
878 |
by (auto simp add:arden_variate_removes_cl self_contained_def lefts_of_def)
|
|
879 |
ultimately show ?thesis by auto
|
|
880 |
qed
|
|
881 |
ultimately show ?thesis by simp
|
|
882 |
qed
|
|
883 |
} thus ?thesis by (auto simp only:eqs_subst_def self_contained_def)
|
|
884 |
qed
|
|
885 |
|
|
886 |
lemma eqs_subst_satisfy_Inv:
|
|
887 |
assumes Inv_ES: "Inv (ES \<union> {(Y, yrhs)})"
|
|
888 |
shows "Inv (eqs_subst ES Y (arden_variate Y yrhs))"
|
|
889 |
proof -
|
|
890 |
have finite_yrhs: "finite yrhs"
|
|
891 |
using Inv_ES by (auto simp:Inv_def finite_rhs_def)
|
|
892 |
have nonempty_yrhs: "rhs_nonempty yrhs"
|
|
893 |
using Inv_ES by (auto simp:Inv_def ardenable_def)
|
|
894 |
have Y_eq_yrhs: "Y = L yrhs"
|
|
895 |
using Inv_ES by (simp only:Inv_def valid_eqns_def, blast)
|
|
896 |
have "distinct_equas (eqs_subst ES Y (arden_variate Y yrhs))"
|
|
897 |
using Inv_ES
|
|
898 |
by (auto simp:distinct_equas_def eqs_subst_def Inv_def)
|
|
899 |
moreover have "finite (eqs_subst ES Y (arden_variate Y yrhs))"
|
|
900 |
using Inv_ES by (simp add:Inv_def eqs_subst_keeps_finite)
|
|
901 |
moreover have "finite_rhs (eqs_subst ES Y (arden_variate Y yrhs))"
|
|
902 |
proof-
|
|
903 |
have "finite_rhs ES" using Inv_ES
|
|
904 |
by (simp add:Inv_def finite_rhs_def)
|
|
905 |
moreover have "finite (arden_variate Y yrhs)"
|
|
906 |
proof -
|
|
907 |
have "finite yrhs" using Inv_ES
|
|
908 |
by (auto simp:Inv_def finite_rhs_def)
|
|
909 |
thus ?thesis using arden_variate_keeps_finite by simp
|
|
910 |
qed
|
|
911 |
ultimately show ?thesis
|
|
912 |
by (simp add:eqs_subst_keeps_finite_rhs)
|
|
913 |
qed
|
|
914 |
moreover have "ardenable (eqs_subst ES Y (arden_variate Y yrhs))"
|
|
915 |
proof -
|
|
916 |
{ fix X rhs
|
|
917 |
assume "(X, rhs) \<in> ES"
|
|
918 |
hence "rhs_nonempty rhs" using prems Inv_ES
|
|
919 |
by (simp add:Inv_def ardenable_def)
|
|
920 |
with nonempty_yrhs
|
|
921 |
have "rhs_nonempty (rhs_subst rhs Y (arden_variate Y yrhs))"
|
|
922 |
by (simp add:nonempty_yrhs
|
|
923 |
rhs_subst_keeps_nonempty arden_variate_keeps_nonempty)
|
|
924 |
} thus ?thesis by (auto simp add:ardenable_def eqs_subst_def)
|
|
925 |
qed
|
|
926 |
moreover have "valid_eqns (eqs_subst ES Y (arden_variate Y yrhs))"
|
|
927 |
proof-
|
|
928 |
have "Y = L (arden_variate Y yrhs)"
|
|
929 |
using Y_eq_yrhs Inv_ES finite_yrhs nonempty_yrhs
|
|
930 |
by (rule_tac arden_variate_keeps_eq, (simp add:rexp_of_empty)+)
|
|
931 |
thus ?thesis using Inv_ES
|
|
932 |
by (clarsimp simp add:valid_eqns_def
|
|
933 |
eqs_subst_def rhs_subst_keeps_eq Inv_def finite_rhs_def
|
|
934 |
simp del:L_rhs.simps)
|
|
935 |
qed
|
|
936 |
moreover have
|
|
937 |
non_empty_subst: "non_empty (eqs_subst ES Y (arden_variate Y yrhs))"
|
|
938 |
using Inv_ES by (auto simp:Inv_def non_empty_def eqs_subst_def)
|
|
939 |
moreover
|
|
940 |
have self_subst: "self_contained (eqs_subst ES Y (arden_variate Y yrhs))"
|
|
941 |
using Inv_ES eqs_subst_keeps_self_contained by (simp add:Inv_def)
|
|
942 |
ultimately show ?thesis using Inv_ES by (simp add:Inv_def)
|
|
943 |
qed
|
|
944 |
|
|
945 |
lemma eqs_subst_card_le:
|
|
946 |
assumes finite: "finite (ES::(string set \<times> rhs_item set) set)"
|
|
947 |
shows "card (eqs_subst ES Y yrhs) <= card ES"
|
|
948 |
proof-
|
|
949 |
def f \<equiv> "\<lambda> x. ((fst x)::string set, rhs_subst (snd x) Y yrhs)"
|
|
950 |
have "eqs_subst ES Y yrhs = f ` ES"
|
|
951 |
apply (auto simp:eqs_subst_def f_def image_def)
|
|
952 |
by (rule_tac x = "(Ya, yrhsa)" in bexI, simp+)
|
|
953 |
thus ?thesis using finite by (auto intro:card_image_le)
|
|
954 |
qed
|
|
955 |
|
|
956 |
lemma eqs_subst_cls_remains:
|
|
957 |
"(X, xrhs) \<in> ES \<Longrightarrow> \<exists> xrhs'. (X, xrhs') \<in> (eqs_subst ES Y yrhs)"
|
|
958 |
by (auto simp:eqs_subst_def)
|
|
959 |
|
|
960 |
lemma card_noteq_1_has_more:
|
|
961 |
assumes card:"card S \<noteq> 1"
|
|
962 |
and e_in: "e \<in> S"
|
|
963 |
and finite: "finite S"
|
|
964 |
obtains e' where "e' \<in> S \<and> e \<noteq> e'"
|
|
965 |
proof-
|
|
966 |
have "card (S - {e}) > 0"
|
|
967 |
proof -
|
|
968 |
have "card S > 1" using card e_in finite
|
|
969 |
by (case_tac "card S", auto)
|
|
970 |
thus ?thesis using finite e_in by auto
|
|
971 |
qed
|
|
972 |
hence "S - {e} \<noteq> {}" using finite by (rule_tac notI, simp)
|
|
973 |
thus "(\<And>e'. e' \<in> S \<and> e \<noteq> e' \<Longrightarrow> thesis) \<Longrightarrow> thesis" by auto
|
|
974 |
qed
|
|
975 |
|
|
976 |
lemma iteration_step:
|
|
977 |
assumes Inv_ES: "Inv ES"
|
|
978 |
and X_in_ES: "(X, xrhs) \<in> ES"
|
|
979 |
and not_T: "card ES \<noteq> 1"
|
|
980 |
shows "\<exists> ES'. (Inv ES' \<and> (\<exists> xrhs'.(X, xrhs') \<in> ES')) \<and>
|
|
981 |
(card ES', card ES) \<in> less_than" (is "\<exists> ES'. ?P ES'")
|
|
982 |
proof -
|
|
983 |
have finite_ES: "finite ES" using Inv_ES by (simp add:Inv_def)
|
|
984 |
then obtain Y yrhs
|
|
985 |
where Y_in_ES: "(Y, yrhs) \<in> ES" and not_eq: "(X, xrhs) \<noteq> (Y, yrhs)"
|
|
986 |
using not_T X_in_ES by (drule_tac card_noteq_1_has_more, auto)
|
|
987 |
def ES' == "ES - {(Y, yrhs)}"
|
|
988 |
let ?ES'' = "eqs_subst ES' Y (arden_variate Y yrhs)"
|
|
989 |
have "?P ?ES''"
|
|
990 |
proof -
|
|
991 |
have "Inv ?ES''" using Y_in_ES Inv_ES
|
|
992 |
by (rule_tac eqs_subst_satisfy_Inv, simp add:ES'_def insert_absorb)
|
|
993 |
moreover have "\<exists>xrhs'. (X, xrhs') \<in> ?ES''" using not_eq X_in_ES
|
|
994 |
by (rule_tac ES = ES' in eqs_subst_cls_remains, auto simp add:ES'_def)
|
|
995 |
moreover have "(card ?ES'', card ES) \<in> less_than"
|
|
996 |
proof -
|
|
997 |
have "finite ES'" using finite_ES ES'_def by auto
|
|
998 |
moreover have "card ES' < card ES" using finite_ES Y_in_ES
|
|
999 |
by (auto simp:ES'_def card_gt_0_iff intro:diff_Suc_less)
|
|
1000 |
ultimately show ?thesis
|
|
1001 |
by (auto dest:eqs_subst_card_le elim:le_less_trans)
|
|
1002 |
qed
|
|
1003 |
ultimately show ?thesis by simp
|
|
1004 |
qed
|
|
1005 |
thus ?thesis by blast
|
|
1006 |
qed
|
|
1007 |
|
|
1008 |
subsubsection {*
|
|
1009 |
Conclusion of the proof
|
|
1010 |
*}
|
|
1011 |
|
|
1012 |
text {*
|
|
1013 |
From this point until @{text "hard_direction"}, the hard direction is proved
|
|
1014 |
through a simple application of the iteration principle.
|
|
1015 |
*}
|
|
1016 |
|
|
1017 |
lemma iteration_conc:
|
|
1018 |
assumes history: "Inv ES"
|
|
1019 |
and X_in_ES: "\<exists> xrhs. (X, xrhs) \<in> ES"
|
|
1020 |
shows
|
|
1021 |
"\<exists> ES'. (Inv ES' \<and> (\<exists> xrhs'. (X, xrhs') \<in> ES')) \<and> card ES' = 1"
|
|
1022 |
(is "\<exists> ES'. ?P ES'")
|
|
1023 |
proof (cases "card ES = 1")
|
|
1024 |
case True
|
|
1025 |
thus ?thesis using history X_in_ES
|
|
1026 |
by blast
|
|
1027 |
next
|
|
1028 |
case False
|
|
1029 |
thus ?thesis using history iteration_step X_in_ES
|
|
1030 |
by (rule_tac f = card in wf_iter, auto)
|
|
1031 |
qed
|
|
1032 |
|
|
1033 |
lemma last_cl_exists_rexp:
|
|
1034 |
assumes ES_single: "ES = {(X, xrhs)}"
|
|
1035 |
and Inv_ES: "Inv ES"
|
|
1036 |
shows "\<exists> (r::rexp). L r = X" (is "\<exists> r. ?P r")
|
|
1037 |
proof-
|
|
1038 |
let ?A = "arden_variate X xrhs"
|
|
1039 |
have "?P (rexp_of_lam ?A)"
|
|
1040 |
proof -
|
|
1041 |
have "L (rexp_of_lam ?A) = L (lam_of ?A)"
|
|
1042 |
proof(rule rexp_of_lam_eq_lam_set)
|
|
1043 |
show "finite (arden_variate X xrhs)" using Inv_ES ES_single
|
|
1044 |
by (rule_tac arden_variate_keeps_finite,
|
|
1045 |
auto simp add:Inv_def finite_rhs_def)
|
|
1046 |
qed
|
|
1047 |
also have "\<dots> = L ?A"
|
|
1048 |
proof-
|
|
1049 |
have "lam_of ?A = ?A"
|
|
1050 |
proof-
|
|
1051 |
have "classes_of ?A = {}" using Inv_ES ES_single
|
|
1052 |
by (simp add:arden_variate_removes_cl
|
|
1053 |
self_contained_def Inv_def lefts_of_def)
|
|
1054 |
thus ?thesis
|
|
1055 |
by (auto simp only:lam_of_def classes_of_def, case_tac x, auto)
|
|
1056 |
qed
|
|
1057 |
thus ?thesis by simp
|
|
1058 |
qed
|
|
1059 |
also have "\<dots> = X"
|
|
1060 |
proof(rule arden_variate_keeps_eq [THEN sym])
|
|
1061 |
show "X = L xrhs" using Inv_ES ES_single
|
|
1062 |
by (auto simp only:Inv_def valid_eqns_def)
|
|
1063 |
next
|
|
1064 |
from Inv_ES ES_single show "[] \<notin> L (rexp_of xrhs X)"
|
|
1065 |
by(simp add:Inv_def ardenable_def rexp_of_empty finite_rhs_def)
|
|
1066 |
next
|
|
1067 |
from Inv_ES ES_single show "finite xrhs"
|
|
1068 |
by (simp add:Inv_def finite_rhs_def)
|
|
1069 |
qed
|
|
1070 |
finally show ?thesis by simp
|
|
1071 |
qed
|
|
1072 |
thus ?thesis by auto
|
|
1073 |
qed
|
|
1074 |
|
|
1075 |
lemma every_eqcl_has_reg:
|
|
1076 |
assumes finite_CS: "finite (UNIV // (\<approx>Lang))"
|
|
1077 |
and X_in_CS: "X \<in> (UNIV // (\<approx>Lang))"
|
|
1078 |
shows "\<exists> (reg::rexp). L reg = X" (is "\<exists> r. ?E r")
|
|
1079 |
proof -
|
|
1080 |
from X_in_CS have "\<exists> xrhs. (X, xrhs) \<in> (eqs (UNIV // (\<approx>Lang)))"
|
|
1081 |
by (auto simp:eqs_def init_rhs_def)
|
|
1082 |
then obtain ES xrhs where Inv_ES: "Inv ES"
|
|
1083 |
and X_in_ES: "(X, xrhs) \<in> ES"
|
|
1084 |
and card_ES: "card ES = 1"
|
|
1085 |
using finite_CS X_in_CS init_ES_satisfy_Inv iteration_conc
|
|
1086 |
by blast
|
|
1087 |
hence ES_single_equa: "ES = {(X, xrhs)}"
|
|
1088 |
by (auto simp:Inv_def dest!:card_Suc_Diff1 simp:card_eq_0_iff)
|
|
1089 |
thus ?thesis using Inv_ES
|
|
1090 |
by (rule last_cl_exists_rexp)
|
|
1091 |
qed
|
|
1092 |
|
|
1093 |
lemma finals_in_partitions:
|
|
1094 |
"finals Lang \<subseteq> (UNIV // (\<approx>Lang))"
|
|
1095 |
by (auto simp:finals_def quotient_def)
|
|
1096 |
|
|
1097 |
theorem hard_direction:
|
|
1098 |
assumes finite_CS: "finite (UNIV // (\<approx>Lang))"
|
|
1099 |
shows "\<exists> (reg::rexp). Lang = L reg"
|
|
1100 |
proof -
|
|
1101 |
have "\<forall> X \<in> (UNIV // (\<approx>Lang)). \<exists> (reg::rexp). X = L reg"
|
|
1102 |
using finite_CS every_eqcl_has_reg by blast
|
|
1103 |
then obtain f
|
|
1104 |
where f_prop: "\<forall> X \<in> (UNIV // (\<approx>Lang)). X = L ((f X)::rexp)"
|
|
1105 |
by (auto dest:bchoice)
|
|
1106 |
def rs \<equiv> "f ` (finals Lang)"
|
|
1107 |
have "Lang = \<Union> (finals Lang)" using lang_is_union_of_finals by auto
|
|
1108 |
also have "\<dots> = L (folds ALT NULL rs)"
|
|
1109 |
proof -
|
|
1110 |
have "finite rs"
|
|
1111 |
proof -
|
|
1112 |
have "finite (finals Lang)"
|
|
1113 |
using finite_CS finals_in_partitions[of "Lang"]
|
|
1114 |
by (erule_tac finite_subset, simp)
|
|
1115 |
thus ?thesis using rs_def by auto
|
|
1116 |
qed
|
|
1117 |
thus ?thesis
|
|
1118 |
using f_prop rs_def finals_in_partitions[of "Lang"] by auto
|
|
1119 |
qed
|
|
1120 |
finally show ?thesis by blast
|
|
1121 |
qed
|
|
1122 |
|
|
1123 |
end |