| author | urbanc |
| Sat, 19 Feb 2011 17:10:46 +0000 | |
| changeset 118 | c3fa11ee776e |
| parent 116 | 342983676c8f |
| child 123 | 23c0e6f2929d |
| permissions | -rw-r--r-- |
| 24 | 1 |
\documentclass{llncs}
|
2 |
\usepackage{isabelle}
|
|
3 |
\usepackage{isabellesym}
|
|
4 |
\usepackage{amsmath}
|
|
5 |
\usepackage{amssymb}
|
|
6 |
\usepackage{tikz}
|
|
7 |
\usepackage{pgf}
|
|
8 |
\usepackage{pdfsetup}
|
|
9 |
\usepackage{ot1patch}
|
|
10 |
\usepackage{times}
|
|
11 |
\usepackage{proof}
|
|
| 90 | 12 |
%%\usepackage{mathabx}
|
|
52
4a517c6ac07d
tuning of the syntax; needs the stmaryrd latex package
urbanc
parents:
24
diff
changeset
|
13 |
\usepackage{stmaryrd}
|
| 24 | 14 |
|
15 |
\urlstyle{rm}
|
|
16 |
\isabellestyle{it}
|
|
17 |
\renewcommand{\isastyleminor}{\it}%
|
|
18 |
\renewcommand{\isastyle}{\normalsize\it}%
|
|
19 |
||
20 |
||
21 |
\def\dn{\,\stackrel{\mbox{\scriptsize def}}{=}\,}
|
|
22 |
\renewcommand{\isasymequiv}{$\dn$}
|
|
23 |
\renewcommand{\isasymemptyset}{$\varnothing$}
|
|
24 |
\renewcommand{\isacharunderscore}{\mbox{$\_\!\_$}}
|
|
25 |
||
| 83 | 26 |
\newcommand{\isasymcalL}{\ensuremath{\cal{L}}}
|
| 90 | 27 |
\newcommand{\isasymbigplus}{\ensuremath{\bigplus}}
|
28 |
||
| 94 | 29 |
\newcommand{\bigplus}{\mbox{\Large\bf$+$}}
|
| 24 | 30 |
\begin{document}
|
31 |
||
| 54 | 32 |
\title{A Formalisation of the Myhill-Nerode Theorem\\ based on Regular
|
33 |
Expressions (Proof Pearl)} |
|
| 116 | 34 |
\author{Chunhan Wu\inst{1} \and Xingyuan Zhang\inst{1} \and Christian Urban\inst{2}}
|
| 92 | 35 |
\institute{PLA University of Science and Technology, China \and TU Munich, Germany}
|
| 24 | 36 |
\maketitle |
37 |
||
38 |
\begin{abstract}
|
|
| 88 | 39 |
There are numerous textbooks on regular languages. Nearly all of them |
40 |
introduce the subject by describing finite automata and only mentioning on the |
|
| 115 | 41 |
side a connection with regular expressions. Unfortunately, automata are difficult |
42 |
to formalise in HOL-based theorem provers. The reason is that |
|
| 88 | 43 |
they need to be represented as graphs, matrices or functions, none of which |
44 |
are inductive datatypes. Also convenient operations for disjoint unions of |
|
45 |
graphs and functions are not easily formalisiable in HOL. In contrast, regular |
|
46 |
expressions can be defined conveniently as datatype and a corresponding |
|
47 |
reasoning infrastructure comes for free. We show in this paper that a central |
|
48 |
result from formal language theory---the Myhill-Nerode theorem---can be |
|
49 |
recreated using only regular expressions. |
|
50 |
||
| 24 | 51 |
\end{abstract}
|
52 |
||
| 75 | 53 |
|
| 24 | 54 |
\input{session}
|
55 |
||
56 |
\bibliographystyle{plain}
|
|
57 |
\bibliography{root}
|
|
58 |
||
59 |
\end{document}
|
|
60 |
||
61 |
%%% Local Variables: |
|
62 |
%%% mode: latex |
|
63 |
%%% TeX-master: t |
|
64 |
%%% End: |