author | urbanc |
Sun, 20 Feb 2011 06:02:58 +0000 | |
changeset 123 | 23c0e6f2929d |
parent 116 | 342983676c8f |
child 125 | 62925473bf6b |
permissions | -rw-r--r-- |
123 | 1 |
\documentclass[runningheads]{llncs} |
24 | 2 |
\usepackage{isabelle} |
3 |
\usepackage{isabellesym} |
|
4 |
\usepackage{amsmath} |
|
5 |
\usepackage{amssymb} |
|
6 |
\usepackage{tikz} |
|
7 |
\usepackage{pgf} |
|
8 |
\usepackage{pdfsetup} |
|
9 |
\usepackage{ot1patch} |
|
10 |
\usepackage{times} |
|
11 |
\usepackage{proof} |
|
90 | 12 |
%%\usepackage{mathabx} |
52
4a517c6ac07d
tuning of the syntax; needs the stmaryrd latex package
urbanc
parents:
24
diff
changeset
|
13 |
\usepackage{stmaryrd} |
24 | 14 |
|
123 | 15 |
\titlerunning{Myhill-Nerode using Regular Expressions} |
16 |
||
17 |
||
24 | 18 |
\urlstyle{rm} |
19 |
\isabellestyle{it} |
|
20 |
\renewcommand{\isastyleminor}{\it}% |
|
21 |
\renewcommand{\isastyle}{\normalsize\it}% |
|
22 |
||
23 |
||
24 |
\def\dn{\,\stackrel{\mbox{\scriptsize def}}{=}\,} |
|
25 |
\renewcommand{\isasymequiv}{$\dn$} |
|
26 |
\renewcommand{\isasymemptyset}{$\varnothing$} |
|
27 |
\renewcommand{\isacharunderscore}{\mbox{$\_\!\_$}} |
|
28 |
||
83 | 29 |
\newcommand{\isasymcalL}{\ensuremath{\cal{L}}} |
90 | 30 |
\newcommand{\isasymbigplus}{\ensuremath{\bigplus}} |
31 |
||
94 | 32 |
\newcommand{\bigplus}{\mbox{\Large\bf$+$}} |
24 | 33 |
\begin{document} |
34 |
||
54 | 35 |
\title{A Formalisation of the Myhill-Nerode Theorem\\ based on Regular |
36 |
Expressions (Proof Pearl)} |
|
116 | 37 |
\author{Chunhan Wu\inst{1} \and Xingyuan Zhang\inst{1} \and Christian Urban\inst{2}} |
92 | 38 |
\institute{PLA University of Science and Technology, China \and TU Munich, Germany} |
24 | 39 |
\maketitle |
40 |
||
41 |
\begin{abstract} |
|
88 | 42 |
There are numerous textbooks on regular languages. Nearly all of them |
43 |
introduce the subject by describing finite automata and only mentioning on the |
|
115 | 44 |
side a connection with regular expressions. Unfortunately, automata are difficult |
45 |
to formalise in HOL-based theorem provers. The reason is that |
|
88 | 46 |
they need to be represented as graphs, matrices or functions, none of which |
47 |
are inductive datatypes. Also convenient operations for disjoint unions of |
|
48 |
graphs and functions are not easily formalisiable in HOL. In contrast, regular |
|
49 |
expressions can be defined conveniently as datatype and a corresponding |
|
50 |
reasoning infrastructure comes for free. We show in this paper that a central |
|
51 |
result from formal language theory---the Myhill-Nerode theorem---can be |
|
52 |
recreated using only regular expressions. |
|
53 |
||
24 | 54 |
\end{abstract} |
55 |
||
75 | 56 |
|
24 | 57 |
\input{session} |
58 |
||
59 |
\bibliographystyle{plain} |
|
60 |
\bibliography{root} |
|
61 |
||
62 |
\end{document} |
|
63 |
||
64 |
%%% Local Variables: |
|
65 |
%%% mode: latex |
|
66 |
%%% TeX-master: t |
|
67 |
%%% End: |