author | urbanc |
Sat, 11 Feb 2012 09:34:46 +0000 | |
changeset 294 | bc5bf9e9ada2 |
parent 161 | a8a442ba0dbf |
permissions | -rw-r--r-- |
123 | 1 |
\documentclass[runningheads]{llncs} |
24 | 2 |
\usepackage{isabelle} |
3 |
\usepackage{isabellesym} |
|
4 |
\usepackage{amsmath} |
|
5 |
\usepackage{amssymb} |
|
6 |
\usepackage{tikz} |
|
7 |
\usepackage{pgf} |
|
125 | 8 |
\usetikzlibrary{arrows,automata,decorations,fit,calc} |
9 |
\usetikzlibrary{shapes,shapes.arrows,snakes,positioning} |
|
10 |
\usepgflibrary{shapes.misc} % LATEX and plain TEX and pure pgf |
|
11 |
\usetikzlibrary{matrix} |
|
24 | 12 |
\usepackage{pdfsetup} |
13 |
\usepackage{ot1patch} |
|
14 |
\usepackage{times} |
|
161 | 15 |
%%\usepackage{proof} |
90 | 16 |
%%\usepackage{mathabx} |
52
4a517c6ac07d
tuning of the syntax; needs the stmaryrd latex package
urbanc
parents:
24
diff
changeset
|
17 |
\usepackage{stmaryrd} |
24 | 18 |
|
123 | 19 |
\titlerunning{Myhill-Nerode using Regular Expressions} |
20 |
||
21 |
||
24 | 22 |
\urlstyle{rm} |
23 |
\isabellestyle{it} |
|
24 |
\renewcommand{\isastyleminor}{\it}% |
|
25 |
\renewcommand{\isastyle}{\normalsize\it}% |
|
26 |
||
27 |
||
28 |
\def\dn{\,\stackrel{\mbox{\scriptsize def}}{=}\,} |
|
29 |
\renewcommand{\isasymequiv}{$\dn$} |
|
30 |
\renewcommand{\isasymemptyset}{$\varnothing$} |
|
31 |
\renewcommand{\isacharunderscore}{\mbox{$\_\!\_$}} |
|
32 |
||
83 | 33 |
\newcommand{\isasymcalL}{\ensuremath{\cal{L}}} |
90 | 34 |
\newcommand{\isasymbigplus}{\ensuremath{\bigplus}} |
35 |
||
94 | 36 |
\newcommand{\bigplus}{\mbox{\Large\bf$+$}} |
24 | 37 |
\begin{document} |
38 |
||
54 | 39 |
\title{A Formalisation of the Myhill-Nerode Theorem\\ based on Regular |
40 |
Expressions (Proof Pearl)} |
|
116 | 41 |
\author{Chunhan Wu\inst{1} \and Xingyuan Zhang\inst{1} \and Christian Urban\inst{2}} |
92 | 42 |
\institute{PLA University of Science and Technology, China \and TU Munich, Germany} |
24 | 43 |
\maketitle |
44 |
||
159 | 45 |
%\mbox{}\\[-10mm] |
24 | 46 |
\begin{abstract} |
88 | 47 |
There are numerous textbooks on regular languages. Nearly all of them |
48 |
introduce the subject by describing finite automata and only mentioning on the |
|
115 | 49 |
side a connection with regular expressions. Unfortunately, automata are difficult |
50 |
to formalise in HOL-based theorem provers. The reason is that |
|
88 | 51 |
they need to be represented as graphs, matrices or functions, none of which |
52 |
are inductive datatypes. Also convenient operations for disjoint unions of |
|
53 |
graphs and functions are not easily formalisiable in HOL. In contrast, regular |
|
154 | 54 |
expressions can be defined conveniently as a datatype and a corresponding |
88 | 55 |
reasoning infrastructure comes for free. We show in this paper that a central |
56 |
result from formal language theory---the Myhill-Nerode theorem---can be |
|
57 |
recreated using only regular expressions. |
|
58 |
||
24 | 59 |
\end{abstract} |
60 |
||
75 | 61 |
|
24 | 62 |
\input{session} |
63 |
||
154 | 64 |
%%\mbox{}\\[-10mm] |
24 | 65 |
\bibliographystyle{plain} |
66 |
\bibliography{root} |
|
67 |
||
68 |
\end{document} |
|
69 |
||
70 |
%%% Local Variables: |
|
71 |
%%% mode: latex |
|
72 |
%%% TeX-master: t |
|
73 |
%%% End: |