| author | urbanc |
| Thu, 02 Jun 2011 20:02:16 +0000 | |
| changeset 167 | 61d0a412a3ae |
| parent 162 | e93760534354 |
| child 172 | 21ee3a852a02 |
| permissions | -rw-r--r-- |
| 167 | 1 |
\documentclass{ita}
|
| 24 | 2 |
\usepackage{isabelle}
|
3 |
\usepackage{isabellesym}
|
|
4 |
\usepackage{amsmath}
|
|
5 |
\usepackage{amssymb}
|
|
6 |
\usepackage{tikz}
|
|
7 |
\usepackage{pgf}
|
|
| 125 | 8 |
\usetikzlibrary{arrows,automata,decorations,fit,calc}
|
9 |
\usetikzlibrary{shapes,shapes.arrows,snakes,positioning}
|
|
10 |
\usepgflibrary{shapes.misc} % LATEX and plain TEX and pure pgf
|
|
11 |
\usetikzlibrary{matrix}
|
|
| 24 | 12 |
\usepackage{pdfsetup}
|
13 |
\usepackage{ot1patch}
|
|
14 |
\usepackage{times}
|
|
| 161 | 15 |
%%\usepackage{proof}
|
| 90 | 16 |
%%\usepackage{mathabx}
|
|
52
4a517c6ac07d
tuning of the syntax; needs the stmaryrd latex package
urbanc
parents:
24
diff
changeset
|
17 |
\usepackage{stmaryrd}
|
| 24 | 18 |
|
| 123 | 19 |
|
| 24 | 20 |
\urlstyle{rm}
|
21 |
\isabellestyle{it}
|
|
22 |
\renewcommand{\isastyleminor}{\it}%
|
|
23 |
\renewcommand{\isastyle}{\normalsize\it}%
|
|
24 |
||
25 |
||
26 |
\def\dn{\,\stackrel{\mbox{\scriptsize def}}{=}\,}
|
|
27 |
\renewcommand{\isasymequiv}{$\dn$}
|
|
28 |
\renewcommand{\isasymemptyset}{$\varnothing$}
|
|
29 |
\renewcommand{\isacharunderscore}{\mbox{$\_\!\_$}}
|
|
30 |
||
| 83 | 31 |
\newcommand{\isasymcalL}{\ensuremath{\cal{L}}}
|
| 90 | 32 |
\newcommand{\isasymbigplus}{\ensuremath{\bigplus}}
|
33 |
||
| 94 | 34 |
\newcommand{\bigplus}{\mbox{\Large\bf$+$}}
|
| 24 | 35 |
\begin{document}
|
36 |
||
| 167 | 37 |
\title{A Formalisation of the Myhill-Nerode Theorem based on Regular
|
38 |
Expressions} |
|
39 |
\author{Chunhan Wu}\address{PLA University of Science and Technology, China}
|
|
40 |
\author{Xingyuan Zhang}\sameaddress{1}
|
|
41 |
\author{Christian Urban}\address{TU Munich,
|
|
42 |
Germany}\secondaddress{corresponding author}
|
|
| 24 | 43 |
|
44 |
\begin{abstract}
|
|
| 88 | 45 |
There are numerous textbooks on regular languages. Nearly all of them |
46 |
introduce the subject by describing finite automata and only mentioning on the |
|
| 115 | 47 |
side a connection with regular expressions. Unfortunately, automata are difficult |
48 |
to formalise in HOL-based theorem provers. The reason is that |
|
| 88 | 49 |
they need to be represented as graphs, matrices or functions, none of which |
50 |
are inductive datatypes. Also convenient operations for disjoint unions of |
|
51 |
graphs and functions are not easily formalisiable in HOL. In contrast, regular |
|
| 154 | 52 |
expressions can be defined conveniently as a datatype and a corresponding |
| 88 | 53 |
reasoning infrastructure comes for free. We show in this paper that a central |
54 |
result from formal language theory---the Myhill-Nerode theorem---can be |
|
55 |
recreated using only regular expressions. |
|
| 24 | 56 |
\end{abstract}
|
| 167 | 57 |
\maketitle |
| 75 | 58 |
|
| 24 | 59 |
\input{session}
|
60 |
||
| 154 | 61 |
%%\mbox{}\\[-10mm]
|
| 24 | 62 |
\bibliographystyle{plain}
|
63 |
\bibliography{root}
|
|
64 |
||
65 |
\end{document}
|
|
66 |
||
67 |
%%% Local Variables: |
|
68 |
%%% mode: latex |
|
69 |
%%% TeX-master: t |
|
70 |
%%% End: |