167
|
1 |
\documentclass{ita}
|
24
|
2 |
\usepackage{isabelle}
|
|
3 |
\usepackage{isabellesym}
|
|
4 |
\usepackage{amsmath}
|
|
5 |
\usepackage{amssymb}
|
|
6 |
\usepackage{tikz}
|
|
7 |
\usepackage{pgf}
|
125
|
8 |
\usetikzlibrary{arrows,automata,decorations,fit,calc}
|
|
9 |
\usetikzlibrary{shapes,shapes.arrows,snakes,positioning}
|
|
10 |
\usepgflibrary{shapes.misc} % LATEX and plain TEX and pure pgf
|
|
11 |
\usetikzlibrary{matrix}
|
24
|
12 |
\usepackage{pdfsetup}
|
|
13 |
\usepackage{ot1patch}
|
|
14 |
\usepackage{times}
|
161
|
15 |
%%\usepackage{proof}
|
90
|
16 |
%%\usepackage{mathabx}
|
52
|
17 |
\usepackage{stmaryrd}
|
233
|
18 |
\usepackage{mathpartir}
|
123
|
19 |
|
24
|
20 |
\urlstyle{rm}
|
|
21 |
\isabellestyle{it}
|
|
22 |
\renewcommand{\isastyleminor}{\it}%
|
|
23 |
\renewcommand{\isastyle}{\normalsize\it}%
|
|
24 |
|
174
|
25 |
\newcommand*{\threesim}{%
|
|
26 |
\mathrel{\vcenter{\offinterlineskip
|
|
27 |
\hbox{$\sim$}\vskip-.35ex\hbox{$\sim$}\vskip-.35ex\hbox{$\sim$}}}}
|
24
|
28 |
|
|
29 |
\def\dn{\,\stackrel{\mbox{\scriptsize def}}{=}\,}
|
|
30 |
\renewcommand{\isasymequiv}{$\dn$}
|
|
31 |
\renewcommand{\isasymemptyset}{$\varnothing$}
|
|
32 |
\renewcommand{\isacharunderscore}{\mbox{$\_\!\_$}}
|
|
33 |
|
83
|
34 |
\newcommand{\isasymcalL}{\ensuremath{\cal{L}}}
|
90
|
35 |
\newcommand{\isasymbigplus}{\ensuremath{\bigplus}}
|
|
36 |
|
94
|
37 |
\newcommand{\bigplus}{\mbox{\Large\bf$+$}}
|
24
|
38 |
\begin{document}
|
|
39 |
|
172
|
40 |
\title{A Formalisation of the Myhill-Nerode Theorem\\ based on Regular
|
167
|
41 |
Expressions}
|
175
|
42 |
\thanks{This is a revised and expanded version of \cite{WuZhangUrban11}.}
|
167
|
43 |
\author{Chunhan Wu}\address{PLA University of Science and Technology, China}
|
|
44 |
\author{Xingyuan Zhang}\sameaddress{1}
|
334
|
45 |
\author{Christian Urban}\address{King's College London, United Kingdom}\secondaddress{corresponding author}
|
174
|
46 |
\subjclass{68Q45}
|
|
47 |
\keywords{Myhill-Nerode theorem, regular expressions, Isabelle theorem prover}
|
24
|
48 |
|
|
49 |
\begin{abstract}
|
88
|
50 |
There are numerous textbooks on regular languages. Nearly all of them
|
|
51 |
introduce the subject by describing finite automata and only mentioning on the
|
115
|
52 |
side a connection with regular expressions. Unfortunately, automata are difficult
|
|
53 |
to formalise in HOL-based theorem provers. The reason is that
|
88
|
54 |
they need to be represented as graphs, matrices or functions, none of which
|
|
55 |
are inductive datatypes. Also convenient operations for disjoint unions of
|
187
|
56 |
graphs, matrices and functions are not easily formalisiable in HOL. In contrast, regular
|
154
|
57 |
expressions can be defined conveniently as a datatype and a corresponding
|
88
|
58 |
reasoning infrastructure comes for free. We show in this paper that a central
|
248
|
59 |
result from formal language theory---the Myhill-Nerode Theorem---can be
|
245
|
60 |
recreated using only regular expressions. From this theorem many closure
|
|
61 |
properties of regular languages follow.
|
24
|
62 |
\end{abstract}
|
167
|
63 |
\maketitle
|
75
|
64 |
|
24
|
65 |
\input{session}
|
|
66 |
|
154
|
67 |
%%\mbox{}\\[-10mm]
|
24
|
68 |
\bibliographystyle{plain}
|
|
69 |
\bibliography{root}
|
|
70 |
|
|
71 |
\end{document}
|
|
72 |
|
|
73 |
%%% Local Variables:
|
|
74 |
%%% mode: latex
|
|
75 |
%%% TeX-master: t
|
|
76 |
%%% End:
|