author | urbanc |
Mon, 25 Jul 2011 18:00:52 +0000 | |
changeset 172 | 21ee3a852a02 |
parent 167 | 61d0a412a3ae |
child 174 | 2b414a8a7132 |
permissions | -rw-r--r-- |
167 | 1 |
\documentclass{ita} |
24 | 2 |
\usepackage{isabelle} |
3 |
\usepackage{isabellesym} |
|
4 |
\usepackage{amsmath} |
|
5 |
\usepackage{amssymb} |
|
6 |
\usepackage{tikz} |
|
7 |
\usepackage{pgf} |
|
125 | 8 |
\usetikzlibrary{arrows,automata,decorations,fit,calc} |
9 |
\usetikzlibrary{shapes,shapes.arrows,snakes,positioning} |
|
10 |
\usepgflibrary{shapes.misc} % LATEX and plain TEX and pure pgf |
|
11 |
\usetikzlibrary{matrix} |
|
24 | 12 |
\usepackage{pdfsetup} |
13 |
\usepackage{ot1patch} |
|
14 |
\usepackage{times} |
|
161 | 15 |
%%\usepackage{proof} |
90 | 16 |
%%\usepackage{mathabx} |
52
4a517c6ac07d
tuning of the syntax; needs the stmaryrd latex package
urbanc
parents:
24
diff
changeset
|
17 |
\usepackage{stmaryrd} |
24 | 18 |
|
123 | 19 |
|
24 | 20 |
\urlstyle{rm} |
21 |
\isabellestyle{it} |
|
22 |
\renewcommand{\isastyleminor}{\it}% |
|
23 |
\renewcommand{\isastyle}{\normalsize\it}% |
|
24 |
||
25 |
||
26 |
\def\dn{\,\stackrel{\mbox{\scriptsize def}}{=}\,} |
|
27 |
\renewcommand{\isasymequiv}{$\dn$} |
|
28 |
\renewcommand{\isasymemptyset}{$\varnothing$} |
|
29 |
\renewcommand{\isacharunderscore}{\mbox{$\_\!\_$}} |
|
30 |
||
83 | 31 |
\newcommand{\isasymcalL}{\ensuremath{\cal{L}}} |
90 | 32 |
\newcommand{\isasymbigplus}{\ensuremath{\bigplus}} |
33 |
||
94 | 34 |
\newcommand{\bigplus}{\mbox{\Large\bf$+$}} |
24 | 35 |
\begin{document} |
36 |
||
172 | 37 |
\title{A Formalisation of the Myhill-Nerode Theorem\\ based on Regular |
167 | 38 |
Expressions} |
39 |
\author{Chunhan Wu}\address{PLA University of Science and Technology, China} |
|
40 |
\author{Xingyuan Zhang}\sameaddress{1} |
|
41 |
\author{Christian Urban}\address{TU Munich, |
|
42 |
Germany}\secondaddress{corresponding author} |
|
24 | 43 |
|
44 |
\begin{abstract} |
|
88 | 45 |
There are numerous textbooks on regular languages. Nearly all of them |
46 |
introduce the subject by describing finite automata and only mentioning on the |
|
115 | 47 |
side a connection with regular expressions. Unfortunately, automata are difficult |
48 |
to formalise in HOL-based theorem provers. The reason is that |
|
88 | 49 |
they need to be represented as graphs, matrices or functions, none of which |
50 |
are inductive datatypes. Also convenient operations for disjoint unions of |
|
51 |
graphs and functions are not easily formalisiable in HOL. In contrast, regular |
|
154 | 52 |
expressions can be defined conveniently as a datatype and a corresponding |
88 | 53 |
reasoning infrastructure comes for free. We show in this paper that a central |
54 |
result from formal language theory---the Myhill-Nerode theorem---can be |
|
55 |
recreated using only regular expressions. |
|
24 | 56 |
\end{abstract} |
167 | 57 |
\maketitle |
75 | 58 |
|
24 | 59 |
\input{session} |
60 |
||
154 | 61 |
%%\mbox{}\\[-10mm] |
24 | 62 |
\bibliographystyle{plain} |
63 |
\bibliography{root} |
|
64 |
||
65 |
\end{document} |
|
66 |
||
67 |
%%% Local Variables: |
|
68 |
%%% mode: latex |
|
69 |
%%% TeX-master: t |
|
70 |
%%% End: |