--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal/activities/tphols09/IDW/Conversions.thy Wed Mar 30 17:27:34 2016 +0100
@@ -0,0 +1,580 @@
+theory Conversions
+imports Main
+begin
+
+section {* Basic conversions *}
+
+ML {* Conv.all_conv : cterm -> thm *}
+ML {* Conv.all_conv *}
+
+text {* Always succeeds *}
+
+ML {* Conv.all_conv @{cterm "42::int"} *}
+
+text {* Always fails *}
+
+(*
+ML {* Conv.no_conv @{cterm "42::int"} *}
+*)
+
+text {* Rewrite with a single rule *}
+
+ML {*
+val rev_Cons = mk_meta_eq @{thm rev.simps(2)}
+*}
+
+ML {*
+Conv.rewr_conv rev_Cons @{cterm "rev [1::int, 2]"}
+*}
+
+
+
+section {* Combining conversions (``conversionals'') *}
+
+text {* Sequencing *}
+
+ML {*
+val add_0_right = mk_meta_eq @{thm monoid_add_class.add_0_right}
+*}
+
+ML {*
+val mult_1_left = mk_meta_eq @{thm monoid_mult_class.mult_1_left}
+*}
+
+ML {*
+(Conv.rewr_conv add_0_right then_conv Conv.rewr_conv mult_1_left)
+@{cterm "((1::int) * x) + 0"}
+*}
+
+text {* Alternative *}
+
+ML {*
+val rev_Nil = mk_meta_eq @{thm rev.simps(1)}
+*}
+
+ML {*
+(Conv.rewr_conv rev_Nil else_conv Conv.rewr_conv rev_Cons)
+@{cterm "rev [1::int, 2, 3]"}
+*}
+
+text {* Try conversion (yields reflexivity instead of exception) *}
+
+ML {*
+Conv.try_conv (Conv.rewr_conv rev_Nil) @{cterm "[1::int, 2]"}
+*}
+
+text {* Descend into subterms *}
+
+ML {*
+Conv.combination_conv
+ (Conv.combination_conv
+ Conv.all_conv
+ (Conv.rewr_conv rev_Cons))
+ (Conv.rewr_conv rev_Cons)
+ @{cterm "rev [1::int, 2] @ rev [3, 4]"}
+*}
+
+ML {*
+Conv.combination_conv
+ (Conv.arg_conv
+ (Conv.rewr_conv rev_Cons))
+ (Conv.rewr_conv rev_Cons)
+ @{cterm "rev [1::int, 2] @ rev [3, 4]"}
+*}
+
+ML {*
+Conv.abs_conv (fn (v, ctxt) =>
+ Conv.abs_conv (fn (v', ctxt') =>
+ Conv.rewr_conv rev_Cons) ctxt)
+ @{context}
+ @{cterm "\<lambda>x y. rev [x, y]"}
+*}
+
+
+
+section {* Simple bottom-up rewriting, using Isabelle's conversion library *}
+
+text {* Descend into immediate subterms *}
+
+ML {*
+fun subc conv ctxt =
+ Conv.comb_conv (conv ctxt) else_conv
+ Conv.abs_conv (conv o snd) ctxt else_conv
+ Conv.all_conv;
+*}
+
+text {* The ct argument is necessary to avoid nontermination! *}
+
+ML {*
+fun botc conv ctxt ct =
+ (subc (botc conv) ctxt then_conv
+ Conv.try_conv (conv then_conv botc conv ctxt)) ct
+*}
+
+text {* Running example: reversing lists *}
+
+ML {*
+val eqns = map mk_meta_eq (@{thms "append.simps"} @ @{thms "rev.simps"});
+*}
+
+ML {*
+val rev_int = @{cterm "rev :: int list \<Rightarrow> int list"};
+*}
+
+text {* Produce lists of length i *}
+
+ML {*
+fun mk_upto thy i = Thm.cterm_of thy (HOLogic.mk_list HOLogic.intT
+ (map (HOLogic.mk_number HOLogic.intT) (1 upto i)));
+*}
+
+ML {*
+val ct = Thm.capply rev_int (mk_upto @{theory} 100)
+*}
+
+text {* Fully rewrite the term (slow, i.e. 40 secs on my laptop) *}
+
+ML {*
+timeit (fn () =>
+ botc (Conv.first_conv (map Conv.rewr_conv eqns)) @{context} ct)
+*}
+
+text {* Also rewrites inside quantifiers, thanks to abs_conv *}
+
+ML {*
+botc (Conv.first_conv (map Conv.rewr_conv eqns)) @{context}
+ @{cterm "\<forall>x y z. P (rev [x, y, z])"}
+*}
+
+
+
+section {* Using exceptions for signalling unchanged terms *}
+
+text {*
+ Motivation: avoid unnecessary applications of reflexivity
+*}
+
+ML {*
+infix 1 then_conv';
+infix 0 else_conv';
+
+exception Fail;
+exception Unchanged;
+
+fun (cv1 else_conv' cv2) ct =
+ cv1 ct handle Fail => cv2 ct;
+
+fun all_conv' ct = raise Unchanged;
+
+fun no_conv' ct = raise Fail;
+
+fun try_conv' cv ct = cv ct handle Fail => raise Unchanged;
+
+fun (cv1 then_conv' cv2) ct =
+ let val eq = cv1 ct
+ in Thm.transitive eq (cv2 (Thm.rhs_of eq)) handle Unchanged => eq
+ end handle Unchanged => cv2 ct;
+
+fun first_conv' cvs = fold_rev (curry op else_conv') cvs no_conv';
+
+fun comb_conv' cv ct =
+ let val (ct1, ct2) = Thm.dest_comb ct
+ in
+ let val eq1 = cv ct1
+ in Thm.combination eq1 (cv ct2) handle Unchanged =>
+ Thm.combination eq1 (Thm.reflexive ct2)
+ end handle Unchanged =>
+ let val eq2 = cv ct2
+ in Thm.combination (Thm.reflexive ct1) eq2 end
+ end handle CTERM _ => raise Fail;
+
+fun abs_conv' cv ctxt ct =
+ (case Thm.term_of ct of
+ Abs (x, _, _) =>
+ let
+ val ([u], ctxt') = Variable.variant_fixes ["u"] ctxt;
+ val (v, ct') = Thm.dest_abs (SOME u) ct;
+ val eq = cv (v, ctxt') ct';
+ in Thm.abstract_rule x v eq end
+ | _ => raise Fail);
+
+fun subc' conv ctxt =
+ comb_conv' (conv ctxt) else_conv'
+ abs_conv' (conv o snd) ctxt else_conv'
+ all_conv';
+
+fun botc' conv ctxt ct =
+ (subc' (botc' conv) ctxt then_conv'
+ try_conv' (conv then_conv' botc' conv ctxt)) ct
+
+fun rewr_conv' rule ct =
+ Conv.rewr_conv rule ct handle CTERM _ => raise Fail;
+*}
+
+text {* Fully rewrite the term (32 secs on my laptop) *}
+
+ML {*
+timeit (fn () =>
+ botc' (first_conv' (map rewr_conv' eqns)) @{context} ct)
+*}
+
+ML {*
+botc' (first_conv' (map rewr_conv' eqns)) @{context}
+ @{cterm "\<forall>x y z. P (rev [x, y, z])"}
+*}
+
+
+
+section {* Bottom-up writing using skeletons *}
+
+text {*
+ Motivation: avoid re-inspecting terms that are already
+ in normal form
+ Skeleton = rhs of last rewrite rule applied
+ decomposed in parallel with the term to be normalized
+ if skeleton is a variable, then the corresponding
+ term must already be in normal form.
+*}
+
+ML {*
+infix 1 then_conv'';
+
+fun (cv1 then_conv'' cv2) cts =
+ let val (eq1, skel1) = cv1 cts
+ in
+ let val (eq2, skel2) = cv2 (Thm.rhs_of eq1, skel1)
+ in (Thm.transitive eq1 eq2, skel2) end handle Unchanged => (eq1, skel1)
+ end handle Unchanged => cv2 cts;
+
+val dummy_skel = Bound 0;
+
+fun comb_conv'' cv (ct, skel) =
+ let
+ val (ct1, ct2) = Thm.dest_comb ct
+ val (skel1, skel2) = (case skel of
+ skel1 $ skel2 => (skel1, skel2)
+ | _ => (dummy_skel, dummy_skel));
+ in
+ let val (eq1, skel1') = cv (ct1, skel1)
+ in
+ let val (eq2, skel2') = cv (ct2, skel2)
+ in (Thm.combination eq1 eq2, skel1' $ skel2') end
+ handle Unchanged =>
+ (Thm.combination eq1 (Thm.reflexive ct2), skel1' $ skel2)
+ end handle Unchanged =>
+ let val (eq2, skel2') = cv (ct2, skel2)
+ in (Thm.combination (Thm.reflexive ct1) eq2, skel1 $ skel2') end
+ end handle CTERM _ => raise Fail;
+
+fun abs_conv'' cv ctxt (ct, skel) =
+ (case Thm.term_of ct of
+ Abs (x, T, _) =>
+ let
+ val ([u], ctxt') = Variable.variant_fixes ["u"] ctxt;
+ val (v, ct') = Thm.dest_abs (SOME u) ct;
+ val skel' = (case skel of
+ Abs (_, _, skel') => skel'
+ | _ => dummy_skel)
+ val (eq, skel'') = cv (v, ctxt') (ct', skel');
+ in (Thm.abstract_rule x v eq, Abs (x, T, skel'')) end
+ | _ => raise Fail);
+
+fun subc'' conv ctxt =
+ comb_conv'' (conv ctxt) else_conv'
+ abs_conv'' (conv o snd) ctxt else_conv'
+ all_conv';
+
+fun botc'' conv ctxt (_, Var _) = raise Unchanged
+ | botc'' conv ctxt cts =
+ (subc'' (botc'' conv) ctxt then_conv''
+ try_conv' (conv then_conv'' botc'' conv ctxt)) cts
+
+fun rewr_conv'' rule (ct, _) =
+ (Conv.rewr_conv rule ct, term_of (Thm.rhs_of rule))
+ handle CTERM _ => raise Fail;
+*}
+
+text {* Fully rewrite the term (1.5 secs on my laptop) *}
+
+ML {*
+timeit (fn () =>
+ fst (botc'' (first_conv' (map rewr_conv'' eqns)) @{context} (ct, dummy_skel)))
+*}
+
+ML {*
+fst (botc'' (first_conv' (map rewr_conv'' eqns)) @{context}
+ (@{cterm "\<forall>x y z. P (rev [x, y, z])"}, dummy_skel))
+*}
+
+
+
+section {* The simplifier *}
+
+text {*
+ The simplifier is a conversion itself, using many of
+ the techniques just described.
+*}
+
+ML {*
+Simplifier.rewrite (HOL_basic_ss addsimps eqns) ct
+*}
+
+ML {*
+Simplifier.rewrite @{simpset}
+ @{cterm "\<And>(x::int) (y::int). P x \<Longrightarrow> x = 42 \<Longrightarrow> Q x \<Longrightarrow> R (y + 0) \<Longrightarrow> S (1 * x)"}
+*}
+
+ML {*
+Simplifier.asm_rewrite @{simpset}
+ @{cterm "\<And>(x::int) (y::int). P x \<Longrightarrow> x = 42 \<Longrightarrow> Q x \<Longrightarrow> R (y + 0) \<Longrightarrow> S (1 * x)"}
+*}
+
+ML {*
+Simplifier.full_rewrite @{simpset}
+ @{cterm "\<And>(x::int) (y::int). P x \<Longrightarrow> x = 42 \<Longrightarrow> Q x \<Longrightarrow> R (y + 0) \<Longrightarrow> S (1 * x)"}
+*}
+
+ML {*
+Simplifier.asm_full_rewrite @{simpset}
+ @{cterm "\<And>(x::int) (y::int). P x \<Longrightarrow> x = 42 \<Longrightarrow> Q x \<Longrightarrow> R (y + 0) \<Longrightarrow> S (1 * x)"}
+*}
+
+ML {*
+Simplifier.asm_lr_rewrite @{simpset}
+ @{cterm "\<And>(x::int) (y::int). P x \<Longrightarrow> x = 42 \<Longrightarrow> Q x \<Longrightarrow> R (y + 0) \<Longrightarrow> S (1 * x)"}
+*}
+
+section {* Simplification procedures *}
+
+text {*
+ A simplification procedure is a function of type
+ @{ML_type "cterm -> thm option"}
+ It can be used to prove rewrite rules on-the-fly.
+*}
+
+text {* Example 1: One-point rules *}
+
+text {*
+ Problem: how to rewrite
+ @{term "\<And>x y z. P y \<Longrightarrow> y = t \<Longrightarrow> Q y"}
+ to
+ @{term "\<And>x z. P t \<Longrightarrow> Q t"}
+*}
+
+lemma meta_onepoint1: "(\<And>x. x = t \<Longrightarrow> PROP P x) \<equiv> PROP P t"
+proof
+ assume R: "\<And>x. x = t \<Longrightarrow> PROP P x"
+ show "PROP P t" by (rule R [OF refl])
+next
+ fix x assume "PROP P t" "x = t"
+ then show "PROP P x" by simp
+qed
+
+lemma meta_onepoint2: "(\<And>x. t = x \<Longrightarrow> PROP P x) \<equiv> PROP P t"
+proof
+ assume R: "\<And>x. t = x \<Longrightarrow> PROP P x"
+ show "PROP P t" by (rule R [OF refl])
+next
+ fix x assume "PROP P t" "t = x"
+ then show "PROP P x" by simp
+qed
+
+lemmas meta_onepoint = meta_onepoint1 meta_onepoint2
+
+text {*
+ Note: only works with formulae like
+ @{term "\<And>x z y. y = t \<Longrightarrow> P y \<Longrightarrow> Q y"}
+ but not
+ @{term "\<And>x y z. P y \<Longrightarrow> y = t \<Longrightarrow> Q y"}
+ Solution: reorder quantifiers and premises
+*}
+
+ML {*
+Simplifier.rewrite
+ (HOL_basic_ss addsimps @{thms meta_onepoint})
+ @{cterm "\<And>x z y. y = t \<Longrightarrow> P y \<Longrightarrow> Q y"}
+*}
+
+ML {*
+Simplifier.rewrite
+ (HOL_basic_ss addsimps @{thms meta_onepoint})
+ @{cterm "\<And>x y z. P y \<Longrightarrow> y = t \<Longrightarrow> Q y"}
+*}
+
+text {* Move parameters to the right *}
+
+ML {*
+fun swap_params_conv ctxt i j cv =
+ let
+ fun conv1 0 ctxt = Conv.forall_conv (cv o snd) ctxt
+ | conv1 k ctxt =
+ Conv.rewr_conv @{thm swap_params} then_conv
+ Conv.forall_conv (conv1 (k-1) o snd) ctxt
+ fun conv2 0 ctxt = conv1 j ctxt
+ | conv2 k ctxt = Conv.forall_conv (conv2 (k-1) o snd) ctxt
+ in conv2 i ctxt end;
+*}
+
+ML {*
+swap_params_conv @{context} 2 3 (K Conv.all_conv)
+ @{cterm "\<And>a b c d e f. P a b c d e f"}
+*}
+
+text {* Move premises to the left *}
+
+ML {*
+fun swap_prems_conv 0 = Conv.all_conv
+ | swap_prems_conv i =
+ Conv.implies_concl_conv (swap_prems_conv (i-1)) then_conv
+ Conv.rewr_conv Drule.swap_prems_eq
+*}
+
+ML {*
+swap_prems_conv 3
+ @{cterm "A \<Longrightarrow> B \<Longrightarrow> C \<Longrightarrow> D \<Longrightarrow> E \<Longrightarrow> F"}
+*}
+
+text {* Find out which equation to move *}
+
+ML {*
+fun find_eq t =
+ let
+ val l = length (Logic.strip_params t);
+ val Hs = Logic.strip_assums_hyp t;
+ fun find (i, (_ $ (Const ("op =", _) $ Bound j $ _))) = SOME (i, j)
+ | find (i, (_ $ (Const ("op =", _) $ _ $ Bound j))) = SOME (i, j)
+ | find _ = NONE
+ in
+ case get_first find (map_index I Hs) of
+ NONE => NONE
+ | SOME (0, 0) => NONE
+ | SOME (i, j) => SOME (i, l - j - 1, j)
+ end;
+*}
+
+ML {*
+find_eq @{term "\<And>x y z. P y \<Longrightarrow> y = t \<Longrightarrow> Q y"}
+*}
+
+text {* Turn it into a simproc *}
+
+ML {*
+fun mk_rrule ctxt ct = case find_eq (term_of ct) of
+ NONE => NONE
+ | SOME (i, k, j) => SOME (swap_params_conv ctxt k j (K (swap_prems_conv i)) ct);
+*}
+
+ML {*
+val rearrange_eqs_simproc =
+ Simplifier.simproc @{theory} "rearrange_eqs" ["all t"] (fn thy => fn ss => fn t =>
+ mk_rrule (Simplifier.the_context ss) (cterm_of thy t))
+*}
+
+ML {*
+Simplifier.rewrite
+ (HOL_basic_ss addsimps @{thms meta_onepoint}
+ addsimprocs [rearrange_eqs_simproc])
+ @{cterm "\<And>x y z. P y \<Longrightarrow> y = t \<Longrightarrow> Q y"}
+*}
+
+subsection {* Example 2: Simplifying set comprehensions *}
+
+text {*
+ Problem: How to simplify
+ @{term "{(x, y, z). (x, y, z) \<in> S}"}
+ to
+ @{term S}
+*}
+
+ML {* @{thm Collect_mem_eq} *}
+
+text {*
+ Note: does not work with pairs
+*}
+
+ML {*
+Simplifier.rewrite
+ (HOL_basic_ss addsimps @{thms Collect_mem_eq})
+ @{cterm "P {x. x \<in> S}"}
+*}
+
+ML {*
+Simplifier.rewrite
+ (HOL_basic_ss addsimps @{thms Collect_mem_eq})
+ @{cterm "P {(x, y). (x, y) \<in> S}"}
+*}
+
+text {*
+ Write a simproc to prove
+ @{term "{(x, y). (x, y) \<in> S} \<equiv> S"}
+*}
+
+lemma test: "{(x, y). (x, y) \<in> S} \<equiv> S"
+ apply (rule eq_reflection)
+ apply (rule subset_antisym)
+ apply (rule subsetI)
+ apply (drule CollectD)
+ apply (simp only: split_paired_all split_conv)
+ apply (rule subsetI)
+ apply (rule CollectI)
+ apply (simp only: split_paired_all split_conv)
+ done
+
+text {* The same in ML *}
+
+ML {*
+let
+ val simp = full_simp_tac
+ (HOL_basic_ss addsimps [split_paired_all, split_conv]) 1
+in
+ Goal.prove @{context} [] []
+ @{term "{(x, y). (x, y) \<in> S} \<equiv> S"}
+ (K (EVERY
+ [rtac eq_reflection 1, rtac @{thm subset_antisym} 1,
+ rtac subsetI 1, dtac CollectD 1, simp,
+ rtac subsetI 1, rtac CollectI 1, simp]))
+end
+*}
+
+ML {*
+val (u, Ts, ps) = HOLogic.strip_split
+ @{term "\<lambda>(x, y). (x, y) \<in> S"}
+*}
+
+ML {*
+val collect_mem_simproc =
+ Simplifier.simproc (theory "Set") "Collect_mem" ["Collect t"] (fn thy => fn ss =>
+ fn S as Const ("Collect", Type ("fun", [_, T])) $ t =>
+ let val (u, Ts, ps) = HOLogic.strip_split t
+ in case u of
+ (c as Const ("op :", _)) $ q $ S' =>
+ (case try (HOLogic.dest_tuple' ps) q of
+ NONE => NONE
+ | SOME ts =>
+ if not (loose_bvar (S', 0)) andalso
+ ts = map Bound (length ps downto 0)
+ then
+ let val simp = full_simp_tac (Simplifier.inherit_context ss
+ (HOL_basic_ss addsimps [split_paired_all, split_conv])) 1
+ in
+ SOME (Goal.prove (Simplifier.the_context ss) [] []
+ (Const ("==", T --> T --> propT) $ S $ S')
+ (K (EVERY
+ [rtac eq_reflection 1, rtac @{thm subset_antisym} 1,
+ rtac subsetI 1, dtac CollectD 1, simp,
+ rtac subsetI 1, rtac CollectI 1, simp])))
+ end
+ else NONE)
+ | _ => NONE
+ end
+ | _ => NONE);
+*}
+
+ML {*
+Simplifier.rewrite
+ (HOL_basic_ss addsimps @{thms Collect_mem_eq}
+ addsimprocs [collect_mem_simproc])
+ @{cterm "P {(x, y). (x, y) \<in> S}"}
+*}
+
+end