theory Conversions
imports Main
begin
section {* Basic conversions *}
ML {* Conv.all_conv : cterm -> thm *}
ML {* Conv.all_conv *}
text {* Always succeeds *}
ML {* Conv.all_conv @{cterm "42::int"} *}
text {* Always fails *}
(*
ML {* Conv.no_conv @{cterm "42::int"} *}
*)
text {* Rewrite with a single rule *}
ML {*
val rev_Cons = mk_meta_eq @{thm rev.simps(2)}
*}
ML {*
Conv.rewr_conv rev_Cons @{cterm "rev [1::int, 2]"}
*}
section {* Combining conversions (``conversionals'') *}
text {* Sequencing *}
ML {*
val add_0_right = mk_meta_eq @{thm monoid_add_class.add_0_right}
*}
ML {*
val mult_1_left = mk_meta_eq @{thm monoid_mult_class.mult_1_left}
*}
ML {*
(Conv.rewr_conv add_0_right then_conv Conv.rewr_conv mult_1_left)
@{cterm "((1::int) * x) + 0"}
*}
text {* Alternative *}
ML {*
val rev_Nil = mk_meta_eq @{thm rev.simps(1)}
*}
ML {*
(Conv.rewr_conv rev_Nil else_conv Conv.rewr_conv rev_Cons)
@{cterm "rev [1::int, 2, 3]"}
*}
text {* Try conversion (yields reflexivity instead of exception) *}
ML {*
Conv.try_conv (Conv.rewr_conv rev_Nil) @{cterm "[1::int, 2]"}
*}
text {* Descend into subterms *}
ML {*
Conv.combination_conv
(Conv.combination_conv
Conv.all_conv
(Conv.rewr_conv rev_Cons))
(Conv.rewr_conv rev_Cons)
@{cterm "rev [1::int, 2] @ rev [3, 4]"}
*}
ML {*
Conv.combination_conv
(Conv.arg_conv
(Conv.rewr_conv rev_Cons))
(Conv.rewr_conv rev_Cons)
@{cterm "rev [1::int, 2] @ rev [3, 4]"}
*}
ML {*
Conv.abs_conv (fn (v, ctxt) =>
Conv.abs_conv (fn (v', ctxt') =>
Conv.rewr_conv rev_Cons) ctxt)
@{context}
@{cterm "\<lambda>x y. rev [x, y]"}
*}
section {* Simple bottom-up rewriting, using Isabelle's conversion library *}
text {* Descend into immediate subterms *}
ML {*
fun subc conv ctxt =
Conv.comb_conv (conv ctxt) else_conv
Conv.abs_conv (conv o snd) ctxt else_conv
Conv.all_conv;
*}
text {* The ct argument is necessary to avoid nontermination! *}
ML {*
fun botc conv ctxt ct =
(subc (botc conv) ctxt then_conv
Conv.try_conv (conv then_conv botc conv ctxt)) ct
*}
text {* Running example: reversing lists *}
ML {*
val eqns = map mk_meta_eq (@{thms "append.simps"} @ @{thms "rev.simps"});
*}
ML {*
val rev_int = @{cterm "rev :: int list \<Rightarrow> int list"};
*}
text {* Produce lists of length i *}
ML {*
fun mk_upto thy i = Thm.cterm_of thy (HOLogic.mk_list HOLogic.intT
(map (HOLogic.mk_number HOLogic.intT) (1 upto i)));
*}
ML {*
val ct = Thm.capply rev_int (mk_upto @{theory} 100)
*}
text {* Fully rewrite the term (slow, i.e. 40 secs on my laptop) *}
ML {*
timeit (fn () =>
botc (Conv.first_conv (map Conv.rewr_conv eqns)) @{context} ct)
*}
text {* Also rewrites inside quantifiers, thanks to abs_conv *}
ML {*
botc (Conv.first_conv (map Conv.rewr_conv eqns)) @{context}
@{cterm "\<forall>x y z. P (rev [x, y, z])"}
*}
section {* Using exceptions for signalling unchanged terms *}
text {*
Motivation: avoid unnecessary applications of reflexivity
*}
ML {*
infix 1 then_conv';
infix 0 else_conv';
exception Fail;
exception Unchanged;
fun (cv1 else_conv' cv2) ct =
cv1 ct handle Fail => cv2 ct;
fun all_conv' ct = raise Unchanged;
fun no_conv' ct = raise Fail;
fun try_conv' cv ct = cv ct handle Fail => raise Unchanged;
fun (cv1 then_conv' cv2) ct =
let val eq = cv1 ct
in Thm.transitive eq (cv2 (Thm.rhs_of eq)) handle Unchanged => eq
end handle Unchanged => cv2 ct;
fun first_conv' cvs = fold_rev (curry op else_conv') cvs no_conv';
fun comb_conv' cv ct =
let val (ct1, ct2) = Thm.dest_comb ct
in
let val eq1 = cv ct1
in Thm.combination eq1 (cv ct2) handle Unchanged =>
Thm.combination eq1 (Thm.reflexive ct2)
end handle Unchanged =>
let val eq2 = cv ct2
in Thm.combination (Thm.reflexive ct1) eq2 end
end handle CTERM _ => raise Fail;
fun abs_conv' cv ctxt ct =
(case Thm.term_of ct of
Abs (x, _, _) =>
let
val ([u], ctxt') = Variable.variant_fixes ["u"] ctxt;
val (v, ct') = Thm.dest_abs (SOME u) ct;
val eq = cv (v, ctxt') ct';
in Thm.abstract_rule x v eq end
| _ => raise Fail);
fun subc' conv ctxt =
comb_conv' (conv ctxt) else_conv'
abs_conv' (conv o snd) ctxt else_conv'
all_conv';
fun botc' conv ctxt ct =
(subc' (botc' conv) ctxt then_conv'
try_conv' (conv then_conv' botc' conv ctxt)) ct
fun rewr_conv' rule ct =
Conv.rewr_conv rule ct handle CTERM _ => raise Fail;
*}
text {* Fully rewrite the term (32 secs on my laptop) *}
ML {*
timeit (fn () =>
botc' (first_conv' (map rewr_conv' eqns)) @{context} ct)
*}
ML {*
botc' (first_conv' (map rewr_conv' eqns)) @{context}
@{cterm "\<forall>x y z. P (rev [x, y, z])"}
*}
section {* Bottom-up writing using skeletons *}
text {*
Motivation: avoid re-inspecting terms that are already
in normal form
Skeleton = rhs of last rewrite rule applied
decomposed in parallel with the term to be normalized
if skeleton is a variable, then the corresponding
term must already be in normal form.
*}
ML {*
infix 1 then_conv'';
fun (cv1 then_conv'' cv2) cts =
let val (eq1, skel1) = cv1 cts
in
let val (eq2, skel2) = cv2 (Thm.rhs_of eq1, skel1)
in (Thm.transitive eq1 eq2, skel2) end handle Unchanged => (eq1, skel1)
end handle Unchanged => cv2 cts;
val dummy_skel = Bound 0;
fun comb_conv'' cv (ct, skel) =
let
val (ct1, ct2) = Thm.dest_comb ct
val (skel1, skel2) = (case skel of
skel1 $ skel2 => (skel1, skel2)
| _ => (dummy_skel, dummy_skel));
in
let val (eq1, skel1') = cv (ct1, skel1)
in
let val (eq2, skel2') = cv (ct2, skel2)
in (Thm.combination eq1 eq2, skel1' $ skel2') end
handle Unchanged =>
(Thm.combination eq1 (Thm.reflexive ct2), skel1' $ skel2)
end handle Unchanged =>
let val (eq2, skel2') = cv (ct2, skel2)
in (Thm.combination (Thm.reflexive ct1) eq2, skel1 $ skel2') end
end handle CTERM _ => raise Fail;
fun abs_conv'' cv ctxt (ct, skel) =
(case Thm.term_of ct of
Abs (x, T, _) =>
let
val ([u], ctxt') = Variable.variant_fixes ["u"] ctxt;
val (v, ct') = Thm.dest_abs (SOME u) ct;
val skel' = (case skel of
Abs (_, _, skel') => skel'
| _ => dummy_skel)
val (eq, skel'') = cv (v, ctxt') (ct', skel');
in (Thm.abstract_rule x v eq, Abs (x, T, skel'')) end
| _ => raise Fail);
fun subc'' conv ctxt =
comb_conv'' (conv ctxt) else_conv'
abs_conv'' (conv o snd) ctxt else_conv'
all_conv';
fun botc'' conv ctxt (_, Var _) = raise Unchanged
| botc'' conv ctxt cts =
(subc'' (botc'' conv) ctxt then_conv''
try_conv' (conv then_conv'' botc'' conv ctxt)) cts
fun rewr_conv'' rule (ct, _) =
(Conv.rewr_conv rule ct, term_of (Thm.rhs_of rule))
handle CTERM _ => raise Fail;
*}
text {* Fully rewrite the term (1.5 secs on my laptop) *}
ML {*
timeit (fn () =>
fst (botc'' (first_conv' (map rewr_conv'' eqns)) @{context} (ct, dummy_skel)))
*}
ML {*
fst (botc'' (first_conv' (map rewr_conv'' eqns)) @{context}
(@{cterm "\<forall>x y z. P (rev [x, y, z])"}, dummy_skel))
*}
section {* The simplifier *}
text {*
The simplifier is a conversion itself, using many of
the techniques just described.
*}
ML {*
Simplifier.rewrite (HOL_basic_ss addsimps eqns) ct
*}
ML {*
Simplifier.rewrite @{simpset}
@{cterm "\<And>(x::int) (y::int). P x \<Longrightarrow> x = 42 \<Longrightarrow> Q x \<Longrightarrow> R (y + 0) \<Longrightarrow> S (1 * x)"}
*}
ML {*
Simplifier.asm_rewrite @{simpset}
@{cterm "\<And>(x::int) (y::int). P x \<Longrightarrow> x = 42 \<Longrightarrow> Q x \<Longrightarrow> R (y + 0) \<Longrightarrow> S (1 * x)"}
*}
ML {*
Simplifier.full_rewrite @{simpset}
@{cterm "\<And>(x::int) (y::int). P x \<Longrightarrow> x = 42 \<Longrightarrow> Q x \<Longrightarrow> R (y + 0) \<Longrightarrow> S (1 * x)"}
*}
ML {*
Simplifier.asm_full_rewrite @{simpset}
@{cterm "\<And>(x::int) (y::int). P x \<Longrightarrow> x = 42 \<Longrightarrow> Q x \<Longrightarrow> R (y + 0) \<Longrightarrow> S (1 * x)"}
*}
ML {*
Simplifier.asm_lr_rewrite @{simpset}
@{cterm "\<And>(x::int) (y::int). P x \<Longrightarrow> x = 42 \<Longrightarrow> Q x \<Longrightarrow> R (y + 0) \<Longrightarrow> S (1 * x)"}
*}
section {* Simplification procedures *}
text {*
A simplification procedure is a function of type
@{ML_type "cterm -> thm option"}
It can be used to prove rewrite rules on-the-fly.
*}
text {* Example 1: One-point rules *}
text {*
Problem: how to rewrite
@{term "\<And>x y z. P y \<Longrightarrow> y = t \<Longrightarrow> Q y"}
to
@{term "\<And>x z. P t \<Longrightarrow> Q t"}
*}
lemma meta_onepoint1: "(\<And>x. x = t \<Longrightarrow> PROP P x) \<equiv> PROP P t"
proof
assume R: "\<And>x. x = t \<Longrightarrow> PROP P x"
show "PROP P t" by (rule R [OF refl])
next
fix x assume "PROP P t" "x = t"
then show "PROP P x" by simp
qed
lemma meta_onepoint2: "(\<And>x. t = x \<Longrightarrow> PROP P x) \<equiv> PROP P t"
proof
assume R: "\<And>x. t = x \<Longrightarrow> PROP P x"
show "PROP P t" by (rule R [OF refl])
next
fix x assume "PROP P t" "t = x"
then show "PROP P x" by simp
qed
lemmas meta_onepoint = meta_onepoint1 meta_onepoint2
text {*
Note: only works with formulae like
@{term "\<And>x z y. y = t \<Longrightarrow> P y \<Longrightarrow> Q y"}
but not
@{term "\<And>x y z. P y \<Longrightarrow> y = t \<Longrightarrow> Q y"}
Solution: reorder quantifiers and premises
*}
ML {*
Simplifier.rewrite
(HOL_basic_ss addsimps @{thms meta_onepoint})
@{cterm "\<And>x z y. y = t \<Longrightarrow> P y \<Longrightarrow> Q y"}
*}
ML {*
Simplifier.rewrite
(HOL_basic_ss addsimps @{thms meta_onepoint})
@{cterm "\<And>x y z. P y \<Longrightarrow> y = t \<Longrightarrow> Q y"}
*}
text {* Move parameters to the right *}
ML {*
fun swap_params_conv ctxt i j cv =
let
fun conv1 0 ctxt = Conv.forall_conv (cv o snd) ctxt
| conv1 k ctxt =
Conv.rewr_conv @{thm swap_params} then_conv
Conv.forall_conv (conv1 (k-1) o snd) ctxt
fun conv2 0 ctxt = conv1 j ctxt
| conv2 k ctxt = Conv.forall_conv (conv2 (k-1) o snd) ctxt
in conv2 i ctxt end;
*}
ML {*
swap_params_conv @{context} 2 3 (K Conv.all_conv)
@{cterm "\<And>a b c d e f. P a b c d e f"}
*}
text {* Move premises to the left *}
ML {*
fun swap_prems_conv 0 = Conv.all_conv
| swap_prems_conv i =
Conv.implies_concl_conv (swap_prems_conv (i-1)) then_conv
Conv.rewr_conv Drule.swap_prems_eq
*}
ML {*
swap_prems_conv 3
@{cterm "A \<Longrightarrow> B \<Longrightarrow> C \<Longrightarrow> D \<Longrightarrow> E \<Longrightarrow> F"}
*}
text {* Find out which equation to move *}
ML {*
fun find_eq t =
let
val l = length (Logic.strip_params t);
val Hs = Logic.strip_assums_hyp t;
fun find (i, (_ $ (Const ("op =", _) $ Bound j $ _))) = SOME (i, j)
| find (i, (_ $ (Const ("op =", _) $ _ $ Bound j))) = SOME (i, j)
| find _ = NONE
in
case get_first find (map_index I Hs) of
NONE => NONE
| SOME (0, 0) => NONE
| SOME (i, j) => SOME (i, l - j - 1, j)
end;
*}
ML {*
find_eq @{term "\<And>x y z. P y \<Longrightarrow> y = t \<Longrightarrow> Q y"}
*}
text {* Turn it into a simproc *}
ML {*
fun mk_rrule ctxt ct = case find_eq (term_of ct) of
NONE => NONE
| SOME (i, k, j) => SOME (swap_params_conv ctxt k j (K (swap_prems_conv i)) ct);
*}
ML {*
val rearrange_eqs_simproc =
Simplifier.simproc @{theory} "rearrange_eqs" ["all t"] (fn thy => fn ss => fn t =>
mk_rrule (Simplifier.the_context ss) (cterm_of thy t))
*}
ML {*
Simplifier.rewrite
(HOL_basic_ss addsimps @{thms meta_onepoint}
addsimprocs [rearrange_eqs_simproc])
@{cterm "\<And>x y z. P y \<Longrightarrow> y = t \<Longrightarrow> Q y"}
*}
subsection {* Example 2: Simplifying set comprehensions *}
text {*
Problem: How to simplify
@{term "{(x, y, z). (x, y, z) \<in> S}"}
to
@{term S}
*}
ML {* @{thm Collect_mem_eq} *}
text {*
Note: does not work with pairs
*}
ML {*
Simplifier.rewrite
(HOL_basic_ss addsimps @{thms Collect_mem_eq})
@{cterm "P {x. x \<in> S}"}
*}
ML {*
Simplifier.rewrite
(HOL_basic_ss addsimps @{thms Collect_mem_eq})
@{cterm "P {(x, y). (x, y) \<in> S}"}
*}
text {*
Write a simproc to prove
@{term "{(x, y). (x, y) \<in> S} \<equiv> S"}
*}
lemma test: "{(x, y). (x, y) \<in> S} \<equiv> S"
apply (rule eq_reflection)
apply (rule subset_antisym)
apply (rule subsetI)
apply (drule CollectD)
apply (simp only: split_paired_all split_conv)
apply (rule subsetI)
apply (rule CollectI)
apply (simp only: split_paired_all split_conv)
done
text {* The same in ML *}
ML {*
let
val simp = full_simp_tac
(HOL_basic_ss addsimps [split_paired_all, split_conv]) 1
in
Goal.prove @{context} [] []
@{term "{(x, y). (x, y) \<in> S} \<equiv> S"}
(K (EVERY
[rtac eq_reflection 1, rtac @{thm subset_antisym} 1,
rtac subsetI 1, dtac CollectD 1, simp,
rtac subsetI 1, rtac CollectI 1, simp]))
end
*}
ML {*
val (u, Ts, ps) = HOLogic.strip_split
@{term "\<lambda>(x, y). (x, y) \<in> S"}
*}
ML {*
val collect_mem_simproc =
Simplifier.simproc (theory "Set") "Collect_mem" ["Collect t"] (fn thy => fn ss =>
fn S as Const ("Collect", Type ("fun", [_, T])) $ t =>
let val (u, Ts, ps) = HOLogic.strip_split t
in case u of
(c as Const ("op :", _)) $ q $ S' =>
(case try (HOLogic.dest_tuple' ps) q of
NONE => NONE
| SOME ts =>
if not (loose_bvar (S', 0)) andalso
ts = map Bound (length ps downto 0)
then
let val simp = full_simp_tac (Simplifier.inherit_context ss
(HOL_basic_ss addsimps [split_paired_all, split_conv])) 1
in
SOME (Goal.prove (Simplifier.the_context ss) [] []
(Const ("==", T --> T --> propT) $ S $ S')
(K (EVERY
[rtac eq_reflection 1, rtac @{thm subset_antisym} 1,
rtac subsetI 1, dtac CollectD 1, simp,
rtac subsetI 1, rtac CollectI 1, simp])))
end
else NONE)
| _ => NONE
end
| _ => NONE);
*}
ML {*
Simplifier.rewrite
(HOL_basic_ss addsimps @{thms Collect_mem_eq}
addsimprocs [collect_mem_simproc])
@{cterm "P {(x, y). (x, y) \<in> S}"}
*}
end