--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Attic/CpsG.thy Tue Jun 14 15:06:16 2016 +0100
@@ -0,0 +1,4669 @@
+theory CpsG
+imports PIPDefs
+begin
+
+section {* Generic aulxiliary lemmas *}
+
+lemma f_image_eq:
+ assumes h: "\<And> a. a \<in> A \<Longrightarrow> f a = g a"
+ shows "f ` A = g ` A"
+proof
+ show "f ` A \<subseteq> g ` A"
+ by(rule image_subsetI, auto intro:h)
+next
+ show "g ` A \<subseteq> f ` A"
+ by (rule image_subsetI, auto intro:h[symmetric])
+qed
+
+lemma Max_fg_mono:
+ assumes "finite A"
+ and "\<forall> a \<in> A. f a \<le> g a"
+ shows "Max (f ` A) \<le> Max (g ` A)"
+proof(cases "A = {}")
+ case True
+ thus ?thesis by auto
+next
+ case False
+ show ?thesis
+ proof(rule Max.boundedI)
+ from assms show "finite (f ` A)" by auto
+ next
+ from False show "f ` A \<noteq> {}" by auto
+ next
+ fix fa
+ assume "fa \<in> f ` A"
+ then obtain a where h_fa: "a \<in> A" "fa = f a" by auto
+ show "fa \<le> Max (g ` A)"
+ proof(rule Max_ge_iff[THEN iffD2])
+ from assms show "finite (g ` A)" by auto
+ next
+ from False show "g ` A \<noteq> {}" by auto
+ next
+ from h_fa have "g a \<in> g ` A" by auto
+ moreover have "fa \<le> g a" using h_fa assms(2) by auto
+ ultimately show "\<exists>a\<in>g ` A. fa \<le> a" by auto
+ qed
+ qed
+qed
+
+lemma Max_f_mono:
+ assumes seq: "A \<subseteq> B"
+ and np: "A \<noteq> {}"
+ and fnt: "finite B"
+ shows "Max (f ` A) \<le> Max (f ` B)"
+proof(rule Max_mono)
+ from seq show "f ` A \<subseteq> f ` B" by auto
+next
+ from np show "f ` A \<noteq> {}" by auto
+next
+ from fnt and seq show "finite (f ` B)" by auto
+qed
+
+lemma Max_UNION:
+ assumes "finite A"
+ and "A \<noteq> {}"
+ and "\<forall> M \<in> f ` A. finite M"
+ and "\<forall> M \<in> f ` A. M \<noteq> {}"
+ shows "Max (\<Union>x\<in> A. f x) = Max (Max ` f ` A)" (is "?L = ?R")
+ using assms[simp]
+proof -
+ have "?L = Max (\<Union>(f ` A))"
+ by (fold Union_image_eq, simp)
+ also have "... = ?R"
+ by (subst Max_Union, simp+)
+ finally show ?thesis .
+qed
+
+lemma max_Max_eq:
+ assumes "finite A"
+ and "A \<noteq> {}"
+ and "x = y"
+ shows "max x (Max A) = Max ({y} \<union> A)" (is "?L = ?R")
+proof -
+ have "?R = Max (insert y A)" by simp
+ also from assms have "... = ?L"
+ by (subst Max.insert, simp+)
+ finally show ?thesis by simp
+qed
+
+lemma rel_eqI:
+ assumes "\<And> x y. (x,y) \<in> A \<Longrightarrow> (x,y) \<in> B"
+ and "\<And> x y. (x,y) \<in> B \<Longrightarrow> (x, y) \<in> A"
+ shows "A = B"
+ using assms by auto
+
+section {* Lemmas do not depend on trace validity *}
+
+lemma birth_time_lt:
+ assumes "s \<noteq> []"
+ shows "last_set th s < length s"
+ using assms
+proof(induct s)
+ case (Cons a s)
+ show ?case
+ proof(cases "s \<noteq> []")
+ case False
+ thus ?thesis
+ by (cases a, auto)
+ next
+ case True
+ show ?thesis using Cons(1)[OF True]
+ by (cases a, auto)
+ qed
+qed simp
+
+lemma th_in_ne: "th \<in> threads s \<Longrightarrow> s \<noteq> []"
+ by (induct s, auto)
+
+lemma preced_tm_lt: "th \<in> threads s \<Longrightarrow> preced th s = Prc x y \<Longrightarrow> y < length s"
+ by (drule_tac th_in_ne, unfold preced_def, auto intro: birth_time_lt)
+
+lemma eq_RAG:
+ "RAG (wq s) = RAG s"
+ by (unfold cs_RAG_def s_RAG_def, auto)
+
+lemma waiting_holding:
+ assumes "waiting (s::state) th cs"
+ obtains th' where "holding s th' cs"
+proof -
+ from assms[unfolded s_waiting_def, folded wq_def]
+ obtain th' where "th' \<in> set (wq s cs)" "th' = hd (wq s cs)"
+ by (metis empty_iff hd_in_set list.set(1))
+ hence "holding s th' cs"
+ by (unfold s_holding_def, fold wq_def, auto)
+ from that[OF this] show ?thesis .
+qed
+
+lemma cp_eq_cpreced: "cp s th = cpreced (wq s) s th"
+unfolding cp_def wq_def
+apply(induct s rule: schs.induct)
+apply(simp add: Let_def cpreced_initial)
+apply(simp add: Let_def)
+apply(simp add: Let_def)
+apply(simp add: Let_def)
+apply(subst (2) schs.simps)
+apply(simp add: Let_def)
+apply(subst (2) schs.simps)
+apply(simp add: Let_def)
+done
+
+lemma cp_alt_def:
+ "cp s th =
+ Max ((the_preced s) ` {th'. Th th' \<in> (subtree (RAG s) (Th th))})"
+proof -
+ have "Max (the_preced s ` ({th} \<union> dependants (wq s) th)) =
+ Max (the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th)})"
+ (is "Max (_ ` ?L) = Max (_ ` ?R)")
+ proof -
+ have "?L = ?R"
+ by (auto dest:rtranclD simp:cs_dependants_def cs_RAG_def s_RAG_def subtree_def)
+ thus ?thesis by simp
+ qed
+ thus ?thesis by (unfold cp_eq_cpreced cpreced_def, fold the_preced_def, simp)
+qed
+
+lemma RAG_target_th: "(Th th, x) \<in> RAG (s::state) \<Longrightarrow> \<exists> cs. x = Cs cs"
+ by (unfold s_RAG_def, auto)
+
+lemma waiting_eq: "waiting s th cs = waiting (wq s) th cs"
+ by (unfold s_waiting_def cs_waiting_def wq_def, auto)
+
+lemma holding_eq: "holding (s::state) th cs = holding (wq s) th cs"
+ by (unfold s_holding_def wq_def cs_holding_def, simp)
+
+lemma children_RAG_alt_def:
+ "children (RAG (s::state)) (Th th) = Cs ` {cs. holding s th cs}"
+ by (unfold s_RAG_def, auto simp:children_def holding_eq)
+
+lemma holdents_alt_def:
+ "holdents s th = the_cs ` (children (RAG (s::state)) (Th th))"
+ by (unfold children_RAG_alt_def holdents_def, simp add: image_image)
+
+lemma cntCS_alt_def:
+ "cntCS s th = card (children (RAG s) (Th th))"
+ apply (unfold children_RAG_alt_def cntCS_def holdents_def)
+ by (rule card_image[symmetric], auto simp:inj_on_def)
+
+lemma runing_ready:
+ shows "runing s \<subseteq> readys s"
+ unfolding runing_def readys_def
+ by auto
+
+lemma readys_threads:
+ shows "readys s \<subseteq> threads s"
+ unfolding readys_def
+ by auto
+
+lemma wq_v_neq [simp]:
+ "cs \<noteq> cs' \<Longrightarrow> wq (V thread cs#s) cs' = wq s cs'"
+ by (auto simp:wq_def Let_def cp_def split:list.splits)
+
+lemma runing_head:
+ assumes "th \<in> runing s"
+ and "th \<in> set (wq_fun (schs s) cs)"
+ shows "th = hd (wq_fun (schs s) cs)"
+ using assms
+ by (simp add:runing_def readys_def s_waiting_def wq_def)
+
+lemma runing_wqE:
+ assumes "th \<in> runing s"
+ and "th \<in> set (wq s cs)"
+ obtains rest where "wq s cs = th#rest"
+proof -
+ from assms(2) obtain th' rest where eq_wq: "wq s cs = th'#rest"
+ by (meson list.set_cases)
+ have "th' = th"
+ proof(rule ccontr)
+ assume "th' \<noteq> th"
+ hence "th \<noteq> hd (wq s cs)" using eq_wq by auto
+ with assms(2)
+ have "waiting s th cs"
+ by (unfold s_waiting_def, fold wq_def, auto)
+ with assms show False
+ by (unfold runing_def readys_def, auto)
+ qed
+ with eq_wq that show ?thesis by metis
+qed
+
+lemma isP_E:
+ assumes "isP e"
+ obtains cs where "e = P (actor e) cs"
+ using assms by (cases e, auto)
+
+lemma isV_E:
+ assumes "isV e"
+ obtains cs where "e = V (actor e) cs"
+ using assms by (cases e, auto)
+
+
+text {*
+ Every thread can only be blocked on one critical resource,
+ symmetrically, every critical resource can only be held by one thread.
+ This fact is much more easier according to our definition.
+*}
+lemma held_unique:
+ assumes "holding (s::event list) th1 cs"
+ and "holding s th2 cs"
+ shows "th1 = th2"
+ by (insert assms, unfold s_holding_def, auto)
+
+lemma last_set_lt: "th \<in> threads s \<Longrightarrow> last_set th s < length s"
+ apply (induct s, auto)
+ by (case_tac a, auto split:if_splits)
+
+lemma last_set_unique:
+ "\<lbrakk>last_set th1 s = last_set th2 s; th1 \<in> threads s; th2 \<in> threads s\<rbrakk>
+ \<Longrightarrow> th1 = th2"
+ apply (induct s, auto)
+ by (case_tac a, auto split:if_splits dest:last_set_lt)
+
+lemma preced_unique :
+ assumes pcd_eq: "preced th1 s = preced th2 s"
+ and th_in1: "th1 \<in> threads s"
+ and th_in2: " th2 \<in> threads s"
+ shows "th1 = th2"
+proof -
+ from pcd_eq have "last_set th1 s = last_set th2 s" by (simp add:preced_def)
+ from last_set_unique [OF this th_in1 th_in2]
+ show ?thesis .
+qed
+
+lemma preced_linorder:
+ assumes neq_12: "th1 \<noteq> th2"
+ and th_in1: "th1 \<in> threads s"
+ and th_in2: " th2 \<in> threads s"
+ shows "preced th1 s < preced th2 s \<or> preced th1 s > preced th2 s"
+proof -
+ from preced_unique [OF _ th_in1 th_in2] and neq_12
+ have "preced th1 s \<noteq> preced th2 s" by auto
+ thus ?thesis by auto
+qed
+
+lemma in_RAG_E:
+ assumes "(n1, n2) \<in> RAG (s::state)"
+ obtains (waiting) th cs where "n1 = Th th" "n2 = Cs cs" "waiting s th cs"
+ | (holding) th cs where "n1 = Cs cs" "n2 = Th th" "holding s th cs"
+ using assms[unfolded s_RAG_def, folded waiting_eq holding_eq]
+ by auto
+
+lemma count_rec1 [simp]:
+ assumes "Q e"
+ shows "count Q (e#es) = Suc (count Q es)"
+ using assms
+ by (unfold count_def, auto)
+
+lemma count_rec2 [simp]:
+ assumes "\<not>Q e"
+ shows "count Q (e#es) = (count Q es)"
+ using assms
+ by (unfold count_def, auto)
+
+lemma count_rec3 [simp]:
+ shows "count Q [] = 0"
+ by (unfold count_def, auto)
+
+lemma cntP_simp1[simp]:
+ "cntP (P th cs'#s) th = cntP s th + 1"
+ by (unfold cntP_def, simp)
+
+lemma cntP_simp2[simp]:
+ assumes "th' \<noteq> th"
+ shows "cntP (P th cs'#s) th' = cntP s th'"
+ using assms
+ by (unfold cntP_def, simp)
+
+lemma cntP_simp3[simp]:
+ assumes "\<not> isP e"
+ shows "cntP (e#s) th' = cntP s th'"
+ using assms
+ by (unfold cntP_def, cases e, simp+)
+
+lemma cntV_simp1[simp]:
+ "cntV (V th cs'#s) th = cntV s th + 1"
+ by (unfold cntV_def, simp)
+
+lemma cntV_simp2[simp]:
+ assumes "th' \<noteq> th"
+ shows "cntV (V th cs'#s) th' = cntV s th'"
+ using assms
+ by (unfold cntV_def, simp)
+
+lemma cntV_simp3[simp]:
+ assumes "\<not> isV e"
+ shows "cntV (e#s) th' = cntV s th'"
+ using assms
+ by (unfold cntV_def, cases e, simp+)
+
+lemma cntP_diff_inv:
+ assumes "cntP (e#s) th \<noteq> cntP s th"
+ shows "isP e \<and> actor e = th"
+proof(cases e)
+ case (P th' pty)
+ show ?thesis
+ by (cases "(\<lambda>e. \<exists>cs. e = P th cs) (P th' pty)",
+ insert assms P, auto simp:cntP_def)
+qed (insert assms, auto simp:cntP_def)
+
+lemma cntV_diff_inv:
+ assumes "cntV (e#s) th \<noteq> cntV s th"
+ shows "isV e \<and> actor e = th"
+proof(cases e)
+ case (V th' pty)
+ show ?thesis
+ by (cases "(\<lambda>e. \<exists>cs. e = V th cs) (V th' pty)",
+ insert assms V, auto simp:cntV_def)
+qed (insert assms, auto simp:cntV_def)
+
+lemma eq_dependants: "dependants (wq s) = dependants s"
+ by (simp add: s_dependants_abv wq_def)
+
+lemma inj_the_preced:
+ "inj_on (the_preced s) (threads s)"
+ by (metis inj_onI preced_unique the_preced_def)
+
+lemma holding_next_thI:
+ assumes "holding s th cs"
+ and "length (wq s cs) > 1"
+ obtains th' where "next_th s th cs th'"
+proof -
+ from assms(1)[folded holding_eq, unfolded cs_holding_def]
+ have " th \<in> set (wq s cs) \<and> th = hd (wq s cs)"
+ by (unfold s_holding_def, fold wq_def, auto)
+ then obtain rest where h1: "wq s cs = th#rest"
+ by (cases "wq s cs", auto)
+ with assms(2) have h2: "rest \<noteq> []" by auto
+ let ?th' = "hd (SOME q. distinct q \<and> set q = set rest)"
+ have "next_th s th cs ?th'" using h1(1) h2
+ by (unfold next_th_def, auto)
+ from that[OF this] show ?thesis .
+qed
+
+(* ccc *)
+
+section {* Locales used to investigate the execution of PIP *}
+
+text {*
+ The following locale @{text valid_trace} is used to constrain the
+ trace to be valid. All properties hold for valid traces are
+ derived under this locale.
+*}
+locale valid_trace =
+ fixes s
+ assumes vt : "vt s"
+
+text {*
+ The following locale @{text valid_trace_e} describes
+ the valid extension of a valid trace. The event @{text "e"}
+ represents an event in the system, which corresponds
+ to a one step operation of the PIP protocol.
+ It is required that @{text "e"} is an event eligible to happen
+ under state @{text "s"}, which is already required to be valid
+ by the parent locale @{text "valid_trace"}.
+
+ This locale is used to investigate one step execution of PIP,
+ properties concerning the effects of @{text "e"}'s execution,
+ for example, how the values of observation functions are changed,
+ or how desirable properties are kept invariant, are derived
+ under this locale. The state before execution is @{text "s"}, while
+ the state after execution is @{text "e#s"}. Therefore, the lemmas
+ derived usually relate observations on @{text "e#s"} to those
+ on @{text "s"}.
+*}
+
+locale valid_trace_e = valid_trace +
+ fixes e
+ assumes vt_e: "vt (e#s)"
+begin
+
+text {*
+ The following lemma shows that @{text "e"} must be a
+ eligible event (or a valid step) to be taken under
+ the state represented by @{text "s"}.
+*}
+lemma pip_e: "PIP s e"
+ using vt_e by (cases, simp)
+
+end
+
+text {*
+ Because @{term "e#s"} is also a valid trace, properties
+ derived for valid trace @{term s} also hold on @{term "e#s"}.
+*}
+sublocale valid_trace_e < vat_es!: valid_trace "e#s"
+ using vt_e
+ by (unfold_locales, simp)
+
+text {*
+ For each specific event (or operation), there is a sublocale
+ further constraining that the event @{text e} to be that
+ particular event.
+
+ For example, the following
+ locale @{text "valid_trace_create"} is the sublocale for
+ event @{term "Create"}:
+*}
+locale valid_trace_create = valid_trace_e +
+ fixes th prio
+ assumes is_create: "e = Create th prio"
+
+locale valid_trace_exit = valid_trace_e +
+ fixes th
+ assumes is_exit: "e = Exit th"
+
+locale valid_trace_p = valid_trace_e +
+ fixes th cs
+ assumes is_p: "e = P th cs"
+
+text {*
+ locale @{text "valid_trace_p"} is divided further into two
+ sublocales, namely, @{text "valid_trace_p_h"}
+ and @{text "valid_trace_p_w"}.
+*}
+
+text {*
+ The following two sublocales @{text "valid_trace_p_h"}
+ and @{text "valid_trace_p_w"} represent two complementary
+ cases under @{text "valid_trace_p"}, where
+ @{text "valid_trace_p_h"} further constraints that
+ @{text "wq s cs = []"}, which means the waiting queue of
+ the requested resource @{text "cs"} is empty, in which
+ case, the requesting thread @{text "th"}
+ will take hold of @{text "cs"}.
+
+ Opposite to @{text "valid_trace_p_h"},
+ @{text "valid_trace_p_w"} constraints that
+ @{text "wq s cs \<noteq> []"}, which means the waiting queue of
+ the requested resource @{text "cs"} is nonempty, in which
+ case, the requesting thread @{text "th"} will be blocked
+ on @{text "cs"}:
+
+ Peculiar properties will be derived under respective
+ locales.
+*}
+
+locale valid_trace_p_h = valid_trace_p +
+ assumes we: "wq s cs = []"
+
+locale valid_trace_p_w = valid_trace_p +
+ assumes wne: "wq s cs \<noteq> []"
+begin
+
+text {*
+ The following @{text "holder"} designates
+ the holder of @{text "cs"} before the @{text "P"}-operation.
+*}
+definition "holder = hd (wq s cs)"
+
+text {*
+ The following @{text "waiters"} designates
+ the list of threads waiting for @{text "cs"}
+ before the @{text "P"}-operation.
+*}
+definition "waiters = tl (wq s cs)"
+end
+
+text {*
+ @{text "valid_trace_v"} is set for the @{term V}-operation.
+*}
+locale valid_trace_v = valid_trace_e +
+ fixes th cs
+ assumes is_v: "e = V th cs"
+begin
+ -- {* The following @{text "rest"} is the tail of
+ waiting queue of the resource @{text "cs"}
+ to be released by this @{text "V"}-operation.
+ *}
+ definition "rest = tl (wq s cs)"
+
+ text {*
+ The following @{text "wq'"} is the waiting
+ queue of @{term "cs"}
+ after the @{text "V"}-operation, which
+ is simply a reordering of @{term "rest"}.
+
+ The effect of this reordering needs to be
+ understood by two cases:
+ \begin{enumerate}
+ \item When @{text "rest = []"},
+ the reordering gives rise to an empty list as well,
+ which means there is no thread holding or waiting
+ for resource @{term "cs"}, therefore, it is free.
+
+ \item When @{text "rest \<noteq> []"}, the effect of
+ this reordering is to arbitrarily
+ switch one thread in @{term "rest"} to the
+ head, which, by definition take over the hold
+ of @{term "cs"} and is designated by @{text "taker"}
+ in the following sublocale @{text "valid_trace_v_n"}.
+ *}
+ definition "wq' = (SOME q. distinct q \<and> set q = set rest)"
+
+ text {*
+ The following @{text "rest'"} is the tail of the
+ waiting queue after the @{text "V"}-operation.
+ It plays only auxiliary role to ease reasoning.
+ *}
+ definition "rest' = tl wq'"
+
+end
+
+text {*
+ In the following, @{text "valid_trace_v"} is also
+ divided into two
+ sublocales: when @{text "rest"} is empty (represented
+ by @{text "valid_trace_v_e"}), which means, there is no thread waiting
+ for @{text "cs"}, therefore, after the @{text "V"}-operation,
+ it will become free; otherwise (represented
+ by @{text "valid_trace_v_n"}), one thread
+ will be picked from those in @{text "rest"} to take
+ over @{text "cs"}.
+*}
+
+locale valid_trace_v_e = valid_trace_v +
+ assumes rest_nil: "rest = []"
+
+locale valid_trace_v_n = valid_trace_v +
+ assumes rest_nnl: "rest \<noteq> []"
+begin
+
+text {*
+ The following @{text "taker"} is the thread to
+ take over @{text "cs"}.
+*}
+ definition "taker = hd wq'"
+
+end
+
+
+locale valid_trace_set = valid_trace_e +
+ fixes th prio
+ assumes is_set: "e = Set th prio"
+
+context valid_trace
+begin
+
+text {*
+ Induction rule introduced to easy the
+ derivation of properties for valid trace @{term "s"}.
+ One more premises, namely @{term "valid_trace_e s e"}
+ is added, so that an interpretation of
+ @{text "valid_trace_e"} can be instantiated
+ so that all properties derived so far becomes
+ available in the proof of induction step.
+
+ You will see its use in the proofs that follows.
+*}
+lemma ind [consumes 0, case_names Nil Cons, induct type]:
+ assumes "PP []"
+ and "(\<And>s e. valid_trace_e s e \<Longrightarrow>
+ PP s \<Longrightarrow> PIP s e \<Longrightarrow> PP (e # s))"
+ shows "PP s"
+proof(induct rule:vt.induct[OF vt, case_names Init Step])
+ case Init
+ from assms(1) show ?case .
+next
+ case (Step s e)
+ show ?case
+ proof(rule assms(2))
+ show "valid_trace_e s e" using Step by (unfold_locales, auto)
+ next
+ show "PP s" using Step by simp
+ next
+ show "PIP s e" using Step by simp
+ qed
+qed
+
+text {*
+ The following lemma says that if @{text "s"} is a valid state, so
+ is its any postfix. Where @{term "monent t s"} is the postfix of
+ @{term "s"} with length @{term "t"}.
+*}
+lemma vt_moment: "\<And> t. vt (moment t s)"
+proof(induct rule:ind)
+ case Nil
+ thus ?case by (simp add:vt_nil)
+next
+ case (Cons s e t)
+ show ?case
+ proof(cases "t \<ge> length (e#s)")
+ case True
+ from True have "moment t (e#s) = e#s" by simp
+ thus ?thesis using Cons
+ by (simp add:valid_trace_def valid_trace_e_def, auto)
+ next
+ case False
+ from Cons have "vt (moment t s)" by simp
+ moreover have "moment t (e#s) = moment t s"
+ proof -
+ from False have "t \<le> length s" by simp
+ from moment_app [OF this, of "[e]"]
+ show ?thesis by simp
+ qed
+ ultimately show ?thesis by simp
+ qed
+qed
+end
+
+text {*
+ The following locale @{text "valid_moment"} is to inherit the properties
+ derived on any valid state to the prefix of it, with length @{text "i"}.
+*}
+locale valid_moment = valid_trace +
+ fixes i :: nat
+
+sublocale valid_moment < vat_moment!: valid_trace "(moment i s)"
+ by (unfold_locales, insert vt_moment, auto)
+
+locale valid_moment_e = valid_moment +
+ assumes less_i: "i < length s"
+begin
+ definition "next_e = hd (moment (Suc i) s)"
+
+ lemma trace_e:
+ "moment (Suc i) s = next_e#moment i s"
+ proof -
+ from less_i have "Suc i \<le> length s" by auto
+ from moment_plus[OF this, folded next_e_def]
+ show ?thesis .
+ qed
+
+end
+
+sublocale valid_moment_e < vat_moment_e!: valid_trace_e "moment i s" "next_e"
+ using vt_moment[of "Suc i", unfolded trace_e]
+ by (unfold_locales, simp)
+
+section {* Distinctiveness of waiting queues *}
+
+context valid_trace_create
+begin
+
+lemma wq_kept [simp]:
+ shows "wq (e#s) cs' = wq s cs'"
+ using assms unfolding is_create wq_def
+ by (auto simp:Let_def)
+
+lemma wq_distinct_kept:
+ assumes "distinct (wq s cs')"
+ shows "distinct (wq (e#s) cs')"
+ using assms by simp
+end
+
+context valid_trace_exit
+begin
+
+lemma wq_kept [simp]:
+ shows "wq (e#s) cs' = wq s cs'"
+ using assms unfolding is_exit wq_def
+ by (auto simp:Let_def)
+
+lemma wq_distinct_kept:
+ assumes "distinct (wq s cs')"
+ shows "distinct (wq (e#s) cs')"
+ using assms by simp
+end
+
+context valid_trace_p
+begin
+
+lemma wq_neq_simp [simp]:
+ assumes "cs' \<noteq> cs"
+ shows "wq (e#s) cs' = wq s cs'"
+ using assms unfolding is_p wq_def
+ by (auto simp:Let_def)
+
+lemma runing_th_s:
+ shows "th \<in> runing s"
+proof -
+ from pip_e[unfolded is_p]
+ show ?thesis by (cases, simp)
+qed
+
+lemma th_not_in_wq:
+ shows "th \<notin> set (wq s cs)"
+proof
+ assume otherwise: "th \<in> set (wq s cs)"
+ from runing_wqE[OF runing_th_s this]
+ obtain rest where eq_wq: "wq s cs = th#rest" by blast
+ with otherwise
+ have "holding s th cs"
+ by (unfold s_holding_def, fold wq_def, simp)
+ hence cs_th_RAG: "(Cs cs, Th th) \<in> RAG s"
+ by (unfold s_RAG_def, fold holding_eq, auto)
+ from pip_e[unfolded is_p]
+ show False
+ proof(cases)
+ case (thread_P)
+ with cs_th_RAG show ?thesis by auto
+ qed
+qed
+
+lemma wq_es_cs:
+ "wq (e#s) cs = wq s cs @ [th]"
+ by (unfold is_p wq_def, auto simp:Let_def)
+
+lemma wq_distinct_kept:
+ assumes "distinct (wq s cs')"
+ shows "distinct (wq (e#s) cs')"
+proof(cases "cs' = cs")
+ case True
+ show ?thesis using True assms th_not_in_wq
+ by (unfold True wq_es_cs, auto)
+qed (insert assms, simp)
+
+end
+
+context valid_trace_v
+begin
+
+lemma wq_neq_simp [simp]:
+ assumes "cs' \<noteq> cs"
+ shows "wq (e#s) cs' = wq s cs'"
+ using assms unfolding is_v wq_def
+ by (auto simp:Let_def)
+
+lemma wq_s_cs:
+ "wq s cs = th#rest"
+proof -
+ from pip_e[unfolded is_v]
+ show ?thesis
+ proof(cases)
+ case (thread_V)
+ from this(2) show ?thesis
+ by (unfold rest_def s_holding_def, fold wq_def,
+ metis empty_iff list.collapse list.set(1))
+ qed
+qed
+
+lemma wq_es_cs:
+ "wq (e#s) cs = wq'"
+ using wq_s_cs[unfolded wq_def]
+ by (auto simp:Let_def wq_def rest_def wq'_def is_v, simp)
+
+lemma wq_distinct_kept:
+ assumes "distinct (wq s cs')"
+ shows "distinct (wq (e#s) cs')"
+proof(cases "cs' = cs")
+ case True
+ show ?thesis
+ proof(unfold True wq_es_cs wq'_def, rule someI2)
+ show "distinct rest \<and> set rest = set rest"
+ using assms[unfolded True wq_s_cs] by auto
+ qed simp
+qed (insert assms, simp)
+
+end
+
+context valid_trace_set
+begin
+
+lemma wq_kept [simp]:
+ shows "wq (e#s) cs' = wq s cs'"
+ using assms unfolding is_set wq_def
+ by (auto simp:Let_def)
+
+lemma wq_distinct_kept:
+ assumes "distinct (wq s cs')"
+ shows "distinct (wq (e#s) cs')"
+ using assms by simp
+end
+
+context valid_trace
+begin
+
+lemma finite_threads:
+ shows "finite (threads s)"
+ using vt by (induct) (auto elim: step.cases)
+
+lemma finite_readys [simp]: "finite (readys s)"
+ using finite_threads readys_threads rev_finite_subset by blast
+
+lemma wq_distinct: "distinct (wq s cs)"
+proof(induct rule:ind)
+ case (Cons s e)
+ interpret vt_e: valid_trace_e s e using Cons by simp
+ show ?case
+ proof(cases e)
+ case (Create th prio)
+ interpret vt_create: valid_trace_create s e th prio
+ using Create by (unfold_locales, simp)
+ show ?thesis using Cons by (simp add: vt_create.wq_distinct_kept)
+ next
+ case (Exit th)
+ interpret vt_exit: valid_trace_exit s e th
+ using Exit by (unfold_locales, simp)
+ show ?thesis using Cons by (simp add: vt_exit.wq_distinct_kept)
+ next
+ case (P th cs)
+ interpret vt_p: valid_trace_p s e th cs using P by (unfold_locales, simp)
+ show ?thesis using Cons by (simp add: vt_p.wq_distinct_kept)
+ next
+ case (V th cs)
+ interpret vt_v: valid_trace_v s e th cs using V by (unfold_locales, simp)
+ show ?thesis using Cons by (simp add: vt_v.wq_distinct_kept)
+ next
+ case (Set th prio)
+ interpret vt_set: valid_trace_set s e th prio
+ using Set by (unfold_locales, simp)
+ show ?thesis using Cons by (simp add: vt_set.wq_distinct_kept)
+ qed
+qed (unfold wq_def Let_def, simp)
+
+end
+
+section {* Waiting queues and threads *}
+
+context valid_trace_e
+begin
+
+lemma wq_out_inv:
+ assumes s_in: "thread \<in> set (wq s cs)"
+ and s_hd: "thread = hd (wq s cs)"
+ and s_i: "thread \<noteq> hd (wq (e#s) cs)"
+ shows "e = V thread cs"
+proof(cases e)
+-- {* There are only two non-trivial cases: *}
+ case (V th cs1)
+ show ?thesis
+ proof(cases "cs1 = cs")
+ case True
+ have "PIP s (V th cs)" using pip_e[unfolded V[unfolded True]] .
+ thus ?thesis
+ proof(cases)
+ case (thread_V)
+ moreover have "th = thread" using thread_V(2) s_hd
+ by (unfold s_holding_def wq_def, simp)
+ ultimately show ?thesis using V True by simp
+ qed
+ qed (insert assms V, auto simp:wq_def Let_def split:if_splits)
+next
+ case (P th cs1)
+ show ?thesis
+ proof(cases "cs1 = cs")
+ case True
+ with P have "wq (e#s) cs = wq_fun (schs s) cs @ [th]"
+ by (auto simp:wq_def Let_def split:if_splits)
+ with s_i s_hd s_in have False
+ by (metis empty_iff hd_append2 list.set(1) wq_def)
+ thus ?thesis by simp
+ qed (insert assms P, auto simp:wq_def Let_def split:if_splits)
+qed (insert assms, auto simp:wq_def Let_def split:if_splits)
+
+lemma wq_in_inv:
+ assumes s_ni: "thread \<notin> set (wq s cs)"
+ and s_i: "thread \<in> set (wq (e#s) cs)"
+ shows "e = P thread cs"
+proof(cases e)
+ -- {* This is the only non-trivial case: *}
+ case (V th cs1)
+ have False
+ proof(cases "cs1 = cs")
+ case True
+ show ?thesis
+ proof(cases "(wq s cs1)")
+ case (Cons w_hd w_tl)
+ have "set (wq (e#s) cs) \<subseteq> set (wq s cs)"
+ proof -
+ have "(wq (e#s) cs) = (SOME q. distinct q \<and> set q = set w_tl)"
+ using Cons V by (auto simp:wq_def Let_def True split:if_splits)
+ moreover have "set ... \<subseteq> set (wq s cs)"
+ proof(rule someI2)
+ show "distinct w_tl \<and> set w_tl = set w_tl"
+ by (metis distinct.simps(2) local.Cons wq_distinct)
+ qed (insert Cons True, auto)
+ ultimately show ?thesis by simp
+ qed
+ with assms show ?thesis by auto
+ qed (insert assms V True, auto simp:wq_def Let_def split:if_splits)
+ qed (insert assms V, auto simp:wq_def Let_def split:if_splits)
+ thus ?thesis by auto
+qed (insert assms, auto simp:wq_def Let_def split:if_splits)
+
+end
+
+lemma (in valid_trace_create)
+ th_not_in_threads: "th \<notin> threads s"
+proof -
+ from pip_e[unfolded is_create]
+ show ?thesis by (cases, simp)
+qed
+
+lemma (in valid_trace_create)
+ threads_es [simp]: "threads (e#s) = threads s \<union> {th}"
+ by (unfold is_create, simp)
+
+lemma (in valid_trace_exit)
+ threads_es [simp]: "threads (e#s) = threads s - {th}"
+ by (unfold is_exit, simp)
+
+lemma (in valid_trace_p)
+ threads_es [simp]: "threads (e#s) = threads s"
+ by (unfold is_p, simp)
+
+lemma (in valid_trace_v)
+ threads_es [simp]: "threads (e#s) = threads s"
+ by (unfold is_v, simp)
+
+lemma (in valid_trace_v)
+ th_not_in_rest[simp]: "th \<notin> set rest"
+proof
+ assume otherwise: "th \<in> set rest"
+ have "distinct (wq s cs)" by (simp add: wq_distinct)
+ from this[unfolded wq_s_cs] and otherwise
+ show False by auto
+qed
+
+lemma (in valid_trace_v) distinct_rest: "distinct rest"
+ by (simp add: distinct_tl rest_def wq_distinct)
+
+lemma (in valid_trace_v)
+ set_wq_es_cs [simp]: "set (wq (e#s) cs) = set (wq s cs) - {th}"
+proof(unfold wq_es_cs wq'_def, rule someI2)
+ show "distinct rest \<and> set rest = set rest"
+ by (simp add: distinct_rest)
+next
+ fix x
+ assume "distinct x \<and> set x = set rest"
+ thus "set x = set (wq s cs) - {th}"
+ by (unfold wq_s_cs, simp)
+qed
+
+lemma (in valid_trace_exit)
+ th_not_in_wq: "th \<notin> set (wq s cs)"
+proof -
+ from pip_e[unfolded is_exit]
+ show ?thesis
+ by (cases, unfold holdents_def s_holding_def, fold wq_def,
+ auto elim!:runing_wqE)
+qed
+
+lemma (in valid_trace) wq_threads:
+ assumes "th \<in> set (wq s cs)"
+ shows "th \<in> threads s"
+ using assms
+proof(induct rule:ind)
+ case (Nil)
+ thus ?case by (auto simp:wq_def)
+next
+ case (Cons s e)
+ interpret vt_e: valid_trace_e s e using Cons by simp
+ show ?case
+ proof(cases e)
+ case (Create th' prio')
+ interpret vt: valid_trace_create s e th' prio'
+ using Create by (unfold_locales, simp)
+ show ?thesis
+ using Cons.hyps(2) Cons.prems by auto
+ next
+ case (Exit th')
+ interpret vt: valid_trace_exit s e th'
+ using Exit by (unfold_locales, simp)
+ show ?thesis
+ using Cons.hyps(2) Cons.prems vt.th_not_in_wq by auto
+ next
+ case (P th' cs')
+ interpret vt: valid_trace_p s e th' cs'
+ using P by (unfold_locales, simp)
+ show ?thesis
+ using Cons.hyps(2) Cons.prems readys_threads
+ runing_ready vt.is_p vt.runing_th_s vt_e.wq_in_inv
+ by fastforce
+ next
+ case (V th' cs')
+ interpret vt: valid_trace_v s e th' cs'
+ using V by (unfold_locales, simp)
+ show ?thesis using Cons
+ using vt.is_v vt.threads_es vt_e.wq_in_inv by blast
+ next
+ case (Set th' prio)
+ interpret vt: valid_trace_set s e th' prio
+ using Set by (unfold_locales, simp)
+ show ?thesis using Cons.hyps(2) Cons.prems vt.is_set
+ by (auto simp:wq_def Let_def)
+ qed
+qed
+
+section {* RAG and threads *}
+
+context valid_trace
+begin
+
+lemma dm_RAG_threads:
+ assumes in_dom: "(Th th) \<in> Domain (RAG s)"
+ shows "th \<in> threads s"
+proof -
+ from in_dom obtain n where "(Th th, n) \<in> RAG s" by auto
+ moreover from RAG_target_th[OF this] obtain cs where "n = Cs cs" by auto
+ ultimately have "(Th th, Cs cs) \<in> RAG s" by simp
+ hence "th \<in> set (wq s cs)"
+ by (unfold s_RAG_def, auto simp:cs_waiting_def)
+ from wq_threads [OF this] show ?thesis .
+qed
+
+lemma rg_RAG_threads:
+ assumes "(Th th) \<in> Range (RAG s)"
+ shows "th \<in> threads s"
+ using assms
+ by (unfold s_RAG_def cs_waiting_def cs_holding_def,
+ auto intro:wq_threads)
+
+lemma RAG_threads:
+ assumes "(Th th) \<in> Field (RAG s)"
+ shows "th \<in> threads s"
+ using assms
+ by (metis Field_def UnE dm_RAG_threads rg_RAG_threads)
+
+end
+
+section {* The change of @{term RAG} *}
+
+text {*
+ The following three lemmas show that @{text "RAG"} does not change
+ by the happening of @{text "Set"}, @{text "Create"} and @{text "Exit"}
+ events, respectively.
+*}
+
+lemma (in valid_trace_set) RAG_unchanged [simp]: "(RAG (e # s)) = RAG s"
+ by (unfold is_set s_RAG_def s_waiting_def wq_def, simp add:Let_def)
+
+lemma (in valid_trace_create) RAG_unchanged [simp]: "(RAG (e # s)) = RAG s"
+ by (unfold is_create s_RAG_def s_waiting_def wq_def, simp add:Let_def)
+
+lemma (in valid_trace_exit) RAG_unchanged[simp]: "(RAG (e # s)) = RAG s"
+ by (unfold is_exit s_RAG_def s_waiting_def wq_def, simp add:Let_def)
+
+context valid_trace_v
+begin
+
+lemma holding_cs_eq_th:
+ assumes "holding s t cs"
+ shows "t = th"
+proof -
+ from pip_e[unfolded is_v]
+ show ?thesis
+ proof(cases)
+ case (thread_V)
+ from held_unique[OF this(2) assms]
+ show ?thesis by simp
+ qed
+qed
+
+lemma distinct_wq': "distinct wq'"
+ by (metis (mono_tags, lifting) distinct_rest some_eq_ex wq'_def)
+
+lemma set_wq': "set wq' = set rest"
+ by (metis (mono_tags, lifting) distinct_rest some_eq_ex wq'_def)
+
+lemma th'_in_inv:
+ assumes "th' \<in> set wq'"
+ shows "th' \<in> set rest"
+ using assms set_wq' by simp
+
+lemma runing_th_s:
+ shows "th \<in> runing s"
+proof -
+ from pip_e[unfolded is_v]
+ show ?thesis by (cases, simp)
+qed
+
+lemma neq_t_th:
+ assumes "waiting (e#s) t c"
+ shows "t \<noteq> th"
+proof
+ assume otherwise: "t = th"
+ show False
+ proof(cases "c = cs")
+ case True
+ have "t \<in> set wq'"
+ using assms[unfolded True s_waiting_def, folded wq_def, unfolded wq_es_cs]
+ by simp
+ from th'_in_inv[OF this] have "t \<in> set rest" .
+ with wq_s_cs[folded otherwise] wq_distinct[of cs]
+ show ?thesis by simp
+ next
+ case False
+ have "wq (e#s) c = wq s c" using False
+ by (unfold is_v, simp)
+ hence "waiting s t c" using assms
+ by (simp add: cs_waiting_def waiting_eq)
+ hence "t \<notin> readys s" by (unfold readys_def, auto)
+ hence "t \<notin> runing s" using runing_ready by auto
+ with runing_th_s[folded otherwise] show ?thesis by auto
+ qed
+qed
+
+lemma waiting_esI1:
+ assumes "waiting s t c"
+ and "c \<noteq> cs"
+ shows "waiting (e#s) t c"
+proof -
+ have "wq (e#s) c = wq s c"
+ using assms(2) is_v by auto
+ with assms(1) show ?thesis
+ using cs_waiting_def waiting_eq by auto
+qed
+
+lemma holding_esI2:
+ assumes "c \<noteq> cs"
+ and "holding s t c"
+ shows "holding (e#s) t c"
+proof -
+ from assms(1) have "wq (e#s) c = wq s c" using is_v by auto
+ from assms(2)[unfolded s_holding_def, folded wq_def,
+ folded this, unfolded wq_def, folded s_holding_def]
+ show ?thesis .
+qed
+
+lemma holding_esI1:
+ assumes "holding s t c"
+ and "t \<noteq> th"
+ shows "holding (e#s) t c"
+proof -
+ have "c \<noteq> cs" using assms using holding_cs_eq_th by blast
+ from holding_esI2[OF this assms(1)]
+ show ?thesis .
+qed
+
+end
+
+context valid_trace_v_n
+begin
+
+lemma neq_wq': "wq' \<noteq> []"
+proof (unfold wq'_def, rule someI2)
+ show "distinct rest \<and> set rest = set rest"
+ by (simp add: distinct_rest)
+next
+ fix x
+ assume " distinct x \<and> set x = set rest"
+ thus "x \<noteq> []" using rest_nnl by auto
+qed
+
+lemma eq_wq': "wq' = taker # rest'"
+ by (simp add: neq_wq' rest'_def taker_def)
+
+lemma next_th_taker:
+ shows "next_th s th cs taker"
+ using rest_nnl taker_def wq'_def wq_s_cs
+ by (auto simp:next_th_def)
+
+lemma taker_unique:
+ assumes "next_th s th cs taker'"
+ shows "taker' = taker"
+proof -
+ from assms
+ obtain rest' where
+ h: "wq s cs = th # rest'"
+ "taker' = hd (SOME q. distinct q \<and> set q = set rest')"
+ by (unfold next_th_def, auto)
+ with wq_s_cs have "rest' = rest" by auto
+ thus ?thesis using h(2) taker_def wq'_def by auto
+qed
+
+lemma waiting_set_eq:
+ "{(Th th', Cs cs) |th'. next_th s th cs th'} = {(Th taker, Cs cs)}"
+ by (smt all_not_in_conv bot.extremum insertI1 insert_subset
+ mem_Collect_eq next_th_taker subsetI subset_antisym taker_def taker_unique)
+
+lemma holding_set_eq:
+ "{(Cs cs, Th th') |th'. next_th s th cs th'} = {(Cs cs, Th taker)}"
+ using next_th_taker taker_def waiting_set_eq
+ by fastforce
+
+lemma holding_taker:
+ shows "holding (e#s) taker cs"
+ by (unfold s_holding_def, fold wq_def, unfold wq_es_cs,
+ auto simp:neq_wq' taker_def)
+
+lemma waiting_esI2:
+ assumes "waiting s t cs"
+ and "t \<noteq> taker"
+ shows "waiting (e#s) t cs"
+proof -
+ have "t \<in> set wq'"
+ proof(unfold wq'_def, rule someI2)
+ show "distinct rest \<and> set rest = set rest"
+ by (simp add: distinct_rest)
+ next
+ fix x
+ assume "distinct x \<and> set x = set rest"
+ moreover have "t \<in> set rest"
+ using assms(1) cs_waiting_def waiting_eq wq_s_cs by auto
+ ultimately show "t \<in> set x" by simp
+ qed
+ moreover have "t \<noteq> hd wq'"
+ using assms(2) taker_def by auto
+ ultimately show ?thesis
+ by (unfold s_waiting_def, fold wq_def, unfold wq_es_cs, simp)
+qed
+
+lemma waiting_esE:
+ assumes "waiting (e#s) t c"
+ obtains "c \<noteq> cs" "waiting s t c"
+ | "c = cs" "t \<noteq> taker" "waiting s t cs" "t \<in> set rest'"
+proof(cases "c = cs")
+ case False
+ hence "wq (e#s) c = wq s c" using is_v by auto
+ with assms have "waiting s t c" using cs_waiting_def waiting_eq by auto
+ from that(1)[OF False this] show ?thesis .
+next
+ case True
+ from assms[unfolded s_waiting_def True, folded wq_def, unfolded wq_es_cs]
+ have "t \<noteq> hd wq'" "t \<in> set wq'" by auto
+ hence "t \<noteq> taker" by (simp add: taker_def)
+ moreover hence "t \<noteq> th" using assms neq_t_th by blast
+ moreover have "t \<in> set rest" by (simp add: `t \<in> set wq'` th'_in_inv)
+ ultimately have "waiting s t cs"
+ by (metis cs_waiting_def list.distinct(2) list.sel(1)
+ list.set_sel(2) rest_def waiting_eq wq_s_cs)
+ show ?thesis using that(2)
+ using True `t \<in> set wq'` `t \<noteq> taker` `waiting s t cs` eq_wq' by auto
+qed
+
+lemma holding_esI1:
+ assumes "c = cs"
+ and "t = taker"
+ shows "holding (e#s) t c"
+ by (unfold assms, simp add: holding_taker)
+
+lemma holding_esE:
+ assumes "holding (e#s) t c"
+ obtains "c = cs" "t = taker"
+ | "c \<noteq> cs" "holding s t c"
+proof(cases "c = cs")
+ case True
+ from assms[unfolded True, unfolded s_holding_def,
+ folded wq_def, unfolded wq_es_cs]
+ have "t = taker" by (simp add: taker_def)
+ from that(1)[OF True this] show ?thesis .
+next
+ case False
+ hence "wq (e#s) c = wq s c" using is_v by auto
+ from assms[unfolded s_holding_def, folded wq_def,
+ unfolded this, unfolded wq_def, folded s_holding_def]
+ have "holding s t c" .
+ from that(2)[OF False this] show ?thesis .
+qed
+
+end
+
+
+context valid_trace_v_e
+begin
+
+lemma nil_wq': "wq' = []"
+proof (unfold wq'_def, rule someI2)
+ show "distinct rest \<and> set rest = set rest"
+ by (simp add: distinct_rest)
+next
+ fix x
+ assume " distinct x \<and> set x = set rest"
+ thus "x = []" using rest_nil by auto
+qed
+
+lemma no_taker:
+ assumes "next_th s th cs taker"
+ shows "False"
+proof -
+ from assms[unfolded next_th_def]
+ obtain rest' where "wq s cs = th # rest'" "rest' \<noteq> []"
+ by auto
+ thus ?thesis using rest_def rest_nil by auto
+qed
+
+lemma waiting_set_eq:
+ "{(Th th', Cs cs) |th'. next_th s th cs th'} = {}"
+ using no_taker by auto
+
+lemma holding_set_eq:
+ "{(Cs cs, Th th') |th'. next_th s th cs th'} = {}"
+ using no_taker by auto
+
+lemma no_holding:
+ assumes "holding (e#s) taker cs"
+ shows False
+proof -
+ from wq_es_cs[unfolded nil_wq']
+ have " wq (e # s) cs = []" .
+ from assms[unfolded s_holding_def, folded wq_def, unfolded this]
+ show ?thesis by auto
+qed
+
+lemma no_waiting:
+ assumes "waiting (e#s) t cs"
+ shows False
+proof -
+ from wq_es_cs[unfolded nil_wq']
+ have " wq (e # s) cs = []" .
+ from assms[unfolded s_waiting_def, folded wq_def, unfolded this]
+ show ?thesis by auto
+qed
+
+lemma waiting_esI2:
+ assumes "waiting s t c"
+ shows "waiting (e#s) t c"
+proof -
+ have "c \<noteq> cs" using assms
+ using cs_waiting_def rest_nil waiting_eq wq_s_cs by auto
+ from waiting_esI1[OF assms this]
+ show ?thesis .
+qed
+
+lemma waiting_esE:
+ assumes "waiting (e#s) t c"
+ obtains "c \<noteq> cs" "waiting s t c"
+proof(cases "c = cs")
+ case False
+ hence "wq (e#s) c = wq s c" using is_v by auto
+ with assms have "waiting s t c" using cs_waiting_def waiting_eq by auto
+ from that(1)[OF False this] show ?thesis .
+next
+ case True
+ from no_waiting[OF assms[unfolded True]]
+ show ?thesis by auto
+qed
+
+lemma holding_esE:
+ assumes "holding (e#s) t c"
+ obtains "c \<noteq> cs" "holding s t c"
+proof(cases "c = cs")
+ case True
+ from no_holding[OF assms[unfolded True]]
+ show ?thesis by auto
+next
+ case False
+ hence "wq (e#s) c = wq s c" using is_v by auto
+ from assms[unfolded s_holding_def, folded wq_def,
+ unfolded this, unfolded wq_def, folded s_holding_def]
+ have "holding s t c" .
+ from that[OF False this] show ?thesis .
+qed
+
+end
+
+
+context valid_trace_v
+begin
+
+lemma RAG_es:
+ "RAG (e # s) =
+ RAG s - {(Cs cs, Th th)} -
+ {(Th th', Cs cs) |th'. next_th s th cs th'} \<union>
+ {(Cs cs, Th th') |th'. next_th s th cs th'}" (is "?L = ?R")
+proof(rule rel_eqI)
+ fix n1 n2
+ assume "(n1, n2) \<in> ?L"
+ thus "(n1, n2) \<in> ?R"
+ proof(cases rule:in_RAG_E)
+ case (waiting th' cs')
+ show ?thesis
+ proof(cases "rest = []")
+ case False
+ interpret h_n: valid_trace_v_n s e th cs
+ by (unfold_locales, insert False, simp)
+ from waiting(3)
+ show ?thesis
+ proof(cases rule:h_n.waiting_esE)
+ case 1
+ with waiting(1,2)
+ show ?thesis
+ by (unfold h_n.waiting_set_eq h_n.holding_set_eq s_RAG_def,
+ fold waiting_eq, auto)
+ next
+ case 2
+ with waiting(1,2)
+ show ?thesis
+ by (unfold h_n.waiting_set_eq h_n.holding_set_eq s_RAG_def,
+ fold waiting_eq, auto)
+ qed
+ next
+ case True
+ interpret h_e: valid_trace_v_e s e th cs
+ by (unfold_locales, insert True, simp)
+ from waiting(3)
+ show ?thesis
+ proof(cases rule:h_e.waiting_esE)
+ case 1
+ with waiting(1,2)
+ show ?thesis
+ by (unfold h_e.waiting_set_eq h_e.holding_set_eq s_RAG_def,
+ fold waiting_eq, auto)
+ qed
+ qed
+ next
+ case (holding th' cs')
+ show ?thesis
+ proof(cases "rest = []")
+ case False
+ interpret h_n: valid_trace_v_n s e th cs
+ by (unfold_locales, insert False, simp)
+ from holding(3)
+ show ?thesis
+ proof(cases rule:h_n.holding_esE)
+ case 1
+ with holding(1,2)
+ show ?thesis
+ by (unfold h_n.waiting_set_eq h_n.holding_set_eq s_RAG_def,
+ fold waiting_eq, auto)
+ next
+ case 2
+ with holding(1,2)
+ show ?thesis
+ by (unfold h_n.waiting_set_eq h_n.holding_set_eq s_RAG_def,
+ fold holding_eq, auto)
+ qed
+ next
+ case True
+ interpret h_e: valid_trace_v_e s e th cs
+ by (unfold_locales, insert True, simp)
+ from holding(3)
+ show ?thesis
+ proof(cases rule:h_e.holding_esE)
+ case 1
+ with holding(1,2)
+ show ?thesis
+ by (unfold h_e.waiting_set_eq h_e.holding_set_eq s_RAG_def,
+ fold holding_eq, auto)
+ qed
+ qed
+ qed
+next
+ fix n1 n2
+ assume h: "(n1, n2) \<in> ?R"
+ show "(n1, n2) \<in> ?L"
+ proof(cases "rest = []")
+ case False
+ interpret h_n: valid_trace_v_n s e th cs
+ by (unfold_locales, insert False, simp)
+ from h[unfolded h_n.waiting_set_eq h_n.holding_set_eq]
+ have "((n1, n2) \<in> RAG s \<and> (n1 \<noteq> Cs cs \<or> n2 \<noteq> Th th)
+ \<and> (n1 \<noteq> Th h_n.taker \<or> n2 \<noteq> Cs cs)) \<or>
+ (n2 = Th h_n.taker \<and> n1 = Cs cs)"
+ by auto
+ thus ?thesis
+ proof
+ assume "n2 = Th h_n.taker \<and> n1 = Cs cs"
+ with h_n.holding_taker
+ show ?thesis
+ by (unfold s_RAG_def, fold holding_eq, auto)
+ next
+ assume h: "(n1, n2) \<in> RAG s \<and>
+ (n1 \<noteq> Cs cs \<or> n2 \<noteq> Th th) \<and> (n1 \<noteq> Th h_n.taker \<or> n2 \<noteq> Cs cs)"
+ hence "(n1, n2) \<in> RAG s" by simp
+ thus ?thesis
+ proof(cases rule:in_RAG_E)
+ case (waiting th' cs')
+ from h and this(1,2)
+ have "th' \<noteq> h_n.taker \<or> cs' \<noteq> cs" by auto
+ hence "waiting (e#s) th' cs'"
+ proof
+ assume "cs' \<noteq> cs"
+ from waiting_esI1[OF waiting(3) this]
+ show ?thesis .
+ next
+ assume neq_th': "th' \<noteq> h_n.taker"
+ show ?thesis
+ proof(cases "cs' = cs")
+ case False
+ from waiting_esI1[OF waiting(3) this]
+ show ?thesis .
+ next
+ case True
+ from h_n.waiting_esI2[OF waiting(3)[unfolded True] neq_th', folded True]
+ show ?thesis .
+ qed
+ qed
+ thus ?thesis using waiting(1,2)
+ by (unfold s_RAG_def, fold waiting_eq, auto)
+ next
+ case (holding th' cs')
+ from h this(1,2)
+ have "cs' \<noteq> cs \<or> th' \<noteq> th" by auto
+ hence "holding (e#s) th' cs'"
+ proof
+ assume "cs' \<noteq> cs"
+ from holding_esI2[OF this holding(3)]
+ show ?thesis .
+ next
+ assume "th' \<noteq> th"
+ from holding_esI1[OF holding(3) this]
+ show ?thesis .
+ qed
+ thus ?thesis using holding(1,2)
+ by (unfold s_RAG_def, fold holding_eq, auto)
+ qed
+ qed
+ next
+ case True
+ interpret h_e: valid_trace_v_e s e th cs
+ by (unfold_locales, insert True, simp)
+ from h[unfolded h_e.waiting_set_eq h_e.holding_set_eq]
+ have h_s: "(n1, n2) \<in> RAG s" "(n1, n2) \<noteq> (Cs cs, Th th)"
+ by auto
+ from h_s(1)
+ show ?thesis
+ proof(cases rule:in_RAG_E)
+ case (waiting th' cs')
+ from h_e.waiting_esI2[OF this(3)]
+ show ?thesis using waiting(1,2)
+ by (unfold s_RAG_def, fold waiting_eq, auto)
+ next
+ case (holding th' cs')
+ with h_s(2)
+ have "cs' \<noteq> cs \<or> th' \<noteq> th" by auto
+ thus ?thesis
+ proof
+ assume neq_cs: "cs' \<noteq> cs"
+ from holding_esI2[OF this holding(3)]
+ show ?thesis using holding(1,2)
+ by (unfold s_RAG_def, fold holding_eq, auto)
+ next
+ assume "th' \<noteq> th"
+ from holding_esI1[OF holding(3) this]
+ show ?thesis using holding(1,2)
+ by (unfold s_RAG_def, fold holding_eq, auto)
+ qed
+ qed
+ qed
+qed
+
+lemma
+ finite_RAG_kept:
+ assumes "finite (RAG s)"
+ shows "finite (RAG (e#s))"
+proof(cases "rest = []")
+ case True
+ interpret vt: valid_trace_v_e using True
+ by (unfold_locales, simp)
+ show ?thesis using assms
+ by (unfold RAG_es vt.waiting_set_eq vt.holding_set_eq, simp)
+next
+ case False
+ interpret vt: valid_trace_v_n using False
+ by (unfold_locales, simp)
+ show ?thesis using assms
+ by (unfold RAG_es vt.waiting_set_eq vt.holding_set_eq, simp)
+qed
+
+end
+
+context valid_trace_p
+begin
+
+lemma waiting_kept:
+ assumes "waiting s th' cs'"
+ shows "waiting (e#s) th' cs'"
+ using assms
+ by (metis cs_waiting_def hd_append2 list.sel(1) list.set_intros(2)
+ rotate1.simps(2) self_append_conv2 set_rotate1
+ th_not_in_wq waiting_eq wq_es_cs wq_neq_simp)
+
+lemma holding_kept:
+ assumes "holding s th' cs'"
+ shows "holding (e#s) th' cs'"
+proof(cases "cs' = cs")
+ case False
+ hence "wq (e#s) cs' = wq s cs'" by simp
+ with assms show ?thesis using cs_holding_def holding_eq by auto
+next
+ case True
+ from assms[unfolded s_holding_def, folded wq_def]
+ obtain rest where eq_wq: "wq s cs' = th'#rest"
+ by (metis empty_iff list.collapse list.set(1))
+ hence "wq (e#s) cs' = th'#(rest@[th])"
+ by (simp add: True wq_es_cs)
+ thus ?thesis
+ by (simp add: cs_holding_def holding_eq)
+qed
+end
+
+lemma (in valid_trace_p) th_not_waiting: "\<not> waiting s th c"
+proof -
+ have "th \<in> readys s"
+ using runing_ready runing_th_s by blast
+ thus ?thesis
+ by (unfold readys_def, auto)
+qed
+
+context valid_trace_p_h
+begin
+
+lemma wq_es_cs': "wq (e#s) cs = [th]"
+ using wq_es_cs[unfolded we] by simp
+
+lemma holding_es_th_cs:
+ shows "holding (e#s) th cs"
+proof -
+ from wq_es_cs'
+ have "th \<in> set (wq (e#s) cs)" "th = hd (wq (e#s) cs)" by auto
+ thus ?thesis using cs_holding_def holding_eq by blast
+qed
+
+lemma RAG_edge: "(Cs cs, Th th) \<in> RAG (e#s)"
+ by (unfold s_RAG_def, fold holding_eq, insert holding_es_th_cs, auto)
+
+lemma waiting_esE:
+ assumes "waiting (e#s) th' cs'"
+ obtains "waiting s th' cs'"
+ using assms
+ by (metis cs_waiting_def event.distinct(15) is_p list.sel(1)
+ set_ConsD waiting_eq we wq_es_cs' wq_neq_simp wq_out_inv)
+
+lemma holding_esE:
+ assumes "holding (e#s) th' cs'"
+ obtains "cs' \<noteq> cs" "holding s th' cs'"
+ | "cs' = cs" "th' = th"
+proof(cases "cs' = cs")
+ case True
+ from held_unique[OF holding_es_th_cs assms[unfolded True]]
+ have "th' = th" by simp
+ from that(2)[OF True this] show ?thesis .
+next
+ case False
+ have "holding s th' cs'" using assms
+ using False cs_holding_def holding_eq by auto
+ from that(1)[OF False this] show ?thesis .
+qed
+
+lemma RAG_es: "RAG (e # s) = RAG s \<union> {(Cs cs, Th th)}" (is "?L = ?R")
+proof(rule rel_eqI)
+ fix n1 n2
+ assume "(n1, n2) \<in> ?L"
+ thus "(n1, n2) \<in> ?R"
+ proof(cases rule:in_RAG_E)
+ case (waiting th' cs')
+ from this(3)
+ show ?thesis
+ proof(cases rule:waiting_esE)
+ case 1
+ thus ?thesis using waiting(1,2)
+ by (unfold s_RAG_def, fold waiting_eq, auto)
+ qed
+ next
+ case (holding th' cs')
+ from this(3)
+ show ?thesis
+ proof(cases rule:holding_esE)
+ case 1
+ with holding(1,2)
+ show ?thesis by (unfold s_RAG_def, fold holding_eq, auto)
+ next
+ case 2
+ with holding(1,2) show ?thesis by auto
+ qed
+ qed
+next
+ fix n1 n2
+ assume "(n1, n2) \<in> ?R"
+ hence "(n1, n2) \<in> RAG s \<or> (n1 = Cs cs \<and> n2 = Th th)" by auto
+ thus "(n1, n2) \<in> ?L"
+ proof
+ assume "(n1, n2) \<in> RAG s"
+ thus ?thesis
+ proof(cases rule:in_RAG_E)
+ case (waiting th' cs')
+ from waiting_kept[OF this(3)]
+ show ?thesis using waiting(1,2)
+ by (unfold s_RAG_def, fold waiting_eq, auto)
+ next
+ case (holding th' cs')
+ from holding_kept[OF this(3)]
+ show ?thesis using holding(1,2)
+ by (unfold s_RAG_def, fold holding_eq, auto)
+ qed
+ next
+ assume "n1 = Cs cs \<and> n2 = Th th"
+ with holding_es_th_cs
+ show ?thesis
+ by (unfold s_RAG_def, fold holding_eq, auto)
+ qed
+qed
+
+end
+
+context valid_trace_p_w
+begin
+
+lemma wq_s_cs: "wq s cs = holder#waiters"
+ by (simp add: holder_def waiters_def wne)
+
+lemma wq_es_cs': "wq (e#s) cs = holder#waiters@[th]"
+ by (simp add: wq_es_cs wq_s_cs)
+
+lemma waiting_es_th_cs: "waiting (e#s) th cs"
+ using cs_waiting_def th_not_in_wq waiting_eq wq_es_cs' wq_s_cs by auto
+
+lemma RAG_edge: "(Th th, Cs cs) \<in> RAG (e#s)"
+ by (unfold s_RAG_def, fold waiting_eq, insert waiting_es_th_cs, auto)
+
+lemma holding_esE:
+ assumes "holding (e#s) th' cs'"
+ obtains "holding s th' cs'"
+ using assms
+proof(cases "cs' = cs")
+ case False
+ hence "wq (e#s) cs' = wq s cs'" by simp
+ with assms show ?thesis
+ using cs_holding_def holding_eq that by auto
+next
+ case True
+ with assms show ?thesis
+ by (metis cs_holding_def holding_eq list.sel(1) list.set_intros(1) that
+ wq_es_cs' wq_s_cs)
+qed
+
+lemma waiting_esE:
+ assumes "waiting (e#s) th' cs'"
+ obtains "th' \<noteq> th" "waiting s th' cs'"
+ | "th' = th" "cs' = cs"
+proof(cases "waiting s th' cs'")
+ case True
+ have "th' \<noteq> th"
+ proof
+ assume otherwise: "th' = th"
+ from True[unfolded this]
+ show False by (simp add: th_not_waiting)
+ qed
+ from that(1)[OF this True] show ?thesis .
+next
+ case False
+ hence "th' = th \<and> cs' = cs"
+ by (metis assms cs_waiting_def holder_def list.sel(1) rotate1.simps(2)
+ set_ConsD set_rotate1 waiting_eq wq_es_cs wq_es_cs' wq_neq_simp)
+ with that(2) show ?thesis by metis
+qed
+
+lemma RAG_es: "RAG (e # s) = RAG s \<union> {(Th th, Cs cs)}" (is "?L = ?R")
+proof(rule rel_eqI)
+ fix n1 n2
+ assume "(n1, n2) \<in> ?L"
+ thus "(n1, n2) \<in> ?R"
+ proof(cases rule:in_RAG_E)
+ case (waiting th' cs')
+ from this(3)
+ show ?thesis
+ proof(cases rule:waiting_esE)
+ case 1
+ thus ?thesis using waiting(1,2)
+ by (unfold s_RAG_def, fold waiting_eq, auto)
+ next
+ case 2
+ thus ?thesis using waiting(1,2) by auto
+ qed
+ next
+ case (holding th' cs')
+ from this(3)
+ show ?thesis
+ proof(cases rule:holding_esE)
+ case 1
+ with holding(1,2)
+ show ?thesis by (unfold s_RAG_def, fold holding_eq, auto)
+ qed
+ qed
+next
+ fix n1 n2
+ assume "(n1, n2) \<in> ?R"
+ hence "(n1, n2) \<in> RAG s \<or> (n1 = Th th \<and> n2 = Cs cs)" by auto
+ thus "(n1, n2) \<in> ?L"
+ proof
+ assume "(n1, n2) \<in> RAG s"
+ thus ?thesis
+ proof(cases rule:in_RAG_E)
+ case (waiting th' cs')
+ from waiting_kept[OF this(3)]
+ show ?thesis using waiting(1,2)
+ by (unfold s_RAG_def, fold waiting_eq, auto)
+ next
+ case (holding th' cs')
+ from holding_kept[OF this(3)]
+ show ?thesis using holding(1,2)
+ by (unfold s_RAG_def, fold holding_eq, auto)
+ qed
+ next
+ assume "n1 = Th th \<and> n2 = Cs cs"
+ thus ?thesis using RAG_edge by auto
+ qed
+qed
+
+end
+
+context valid_trace_p
+begin
+
+lemma RAG_es: "RAG (e # s) = (if (wq s cs = []) then RAG s \<union> {(Cs cs, Th th)}
+ else RAG s \<union> {(Th th, Cs cs)})"
+proof(cases "wq s cs = []")
+ case True
+ interpret vt_p: valid_trace_p_h using True
+ by (unfold_locales, simp)
+ show ?thesis by (simp add: vt_p.RAG_es vt_p.we)
+next
+ case False
+ interpret vt_p: valid_trace_p_w using False
+ by (unfold_locales, simp)
+ show ?thesis by (simp add: vt_p.RAG_es vt_p.wne)
+qed
+
+end
+
+section {* Finiteness of RAG *}
+
+context valid_trace
+begin
+
+lemma finite_RAG:
+ shows "finite (RAG s)"
+proof(induct rule:ind)
+ case Nil
+ show ?case
+ by (auto simp: s_RAG_def cs_waiting_def
+ cs_holding_def wq_def acyclic_def)
+next
+ case (Cons s e)
+ interpret vt_e: valid_trace_e s e using Cons by simp
+ show ?case
+ proof(cases e)
+ case (Create th prio)
+ interpret vt: valid_trace_create s e th prio using Create
+ by (unfold_locales, simp)
+ show ?thesis using Cons by simp
+ next
+ case (Exit th)
+ interpret vt: valid_trace_exit s e th using Exit
+ by (unfold_locales, simp)
+ show ?thesis using Cons by simp
+ next
+ case (P th cs)
+ interpret vt: valid_trace_p s e th cs using P
+ by (unfold_locales, simp)
+ show ?thesis using Cons using vt.RAG_es by auto
+ next
+ case (V th cs)
+ interpret vt: valid_trace_v s e th cs using V
+ by (unfold_locales, simp)
+ show ?thesis using Cons by (simp add: vt.finite_RAG_kept)
+ next
+ case (Set th prio)
+ interpret vt: valid_trace_set s e th prio using Set
+ by (unfold_locales, simp)
+ show ?thesis using Cons by simp
+ qed
+qed
+end
+
+section {* RAG is acyclic *}
+
+text {* (* ddd *)
+ The nature of the work is like this: since it starts from a very simple and basic
+ model, even intuitively very `basic` and `obvious` properties need to derived from scratch.
+ For instance, the fact
+ that one thread can not be blocked by two critical resources at the same time
+ is obvious, because only running threads can make new requests, if one is waiting for
+ a critical resource and get blocked, it can not make another resource request and get
+ blocked the second time (because it is not running).
+
+ To derive this fact, one needs to prove by contraction and
+ reason about time (or @{text "moement"}). The reasoning is based on a generic theorem
+ named @{text "p_split"}, which is about status changing along the time axis. It says if
+ a condition @{text "Q"} is @{text "True"} at a state @{text "s"},
+ but it was @{text "False"} at the very beginning, then there must exits a moment @{text "t"}
+ in the history of @{text "s"} (notice that @{text "s"} itself is essentially the history
+ of events leading to it), such that @{text "Q"} switched
+ from being @{text "False"} to @{text "True"} and kept being @{text "True"}
+ till the last moment of @{text "s"}.
+
+ Suppose a thread @{text "th"} is blocked
+ on @{text "cs1"} and @{text "cs2"} in some state @{text "s"},
+ since no thread is blocked at the very beginning, by applying
+ @{text "p_split"} to these two blocking facts, there exist
+ two moments @{text "t1"} and @{text "t2"} in @{text "s"}, such that
+ @{text "th"} got blocked on @{text "cs1"} and @{text "cs2"}
+ and kept on blocked on them respectively ever since.
+
+ Without lost of generality, we assume @{text "t1"} is earlier than @{text "t2"}.
+ However, since @{text "th"} was blocked ever since memonent @{text "t1"}, so it was still
+ in blocked state at moment @{text "t2"} and could not
+ make any request and get blocked the second time: Contradiction.
+*}
+
+
+context valid_trace
+begin
+
+lemma waiting_unique_pre: (* ddd *)
+ assumes h11: "thread \<in> set (wq s cs1)"
+ and h12: "thread \<noteq> hd (wq s cs1)"
+ assumes h21: "thread \<in> set (wq s cs2)"
+ and h22: "thread \<noteq> hd (wq s cs2)"
+ and neq12: "cs1 \<noteq> cs2"
+ shows "False"
+proof -
+ let "?Q" = "\<lambda> cs s. thread \<in> set (wq s cs) \<and> thread \<noteq> hd (wq s cs)"
+ from h11 and h12 have q1: "?Q cs1 s" by simp
+ from h21 and h22 have q2: "?Q cs2 s" by simp
+ have nq1: "\<not> ?Q cs1 []" by (simp add:wq_def)
+ have nq2: "\<not> ?Q cs2 []" by (simp add:wq_def)
+ from p_split [of "?Q cs1", OF q1 nq1]
+ obtain t1 where lt1: "t1 < length s"
+ and np1: "\<not> ?Q cs1 (moment t1 s)"
+ and nn1: "(\<forall>i'>t1. ?Q cs1 (moment i' s))" by auto
+ from p_split [of "?Q cs2", OF q2 nq2]
+ obtain t2 where lt2: "t2 < length s"
+ and np2: "\<not> ?Q cs2 (moment t2 s)"
+ and nn2: "(\<forall>i'>t2. ?Q cs2 (moment i' s))" by auto
+ { fix s cs
+ assume q: "?Q cs s"
+ have "thread \<notin> runing s"
+ proof
+ assume "thread \<in> runing s"
+ hence " \<forall>cs. \<not> (thread \<in> set (wq_fun (schs s) cs) \<and>
+ thread \<noteq> hd (wq_fun (schs s) cs))"
+ by (unfold runing_def s_waiting_def readys_def, auto)
+ from this[rule_format, of cs] q
+ show False by (simp add: wq_def)
+ qed
+ } note q_not_runing = this
+ { fix t1 t2 cs1 cs2
+ assume lt1: "t1 < length s"
+ and np1: "\<not> ?Q cs1 (moment t1 s)"
+ and nn1: "(\<forall>i'>t1. ?Q cs1 (moment i' s))"
+ and lt2: "t2 < length s"
+ and np2: "\<not> ?Q cs2 (moment t2 s)"
+ and nn2: "(\<forall>i'>t2. ?Q cs2 (moment i' s))"
+ and lt12: "t1 < t2"
+ let ?t3 = "Suc t2"
+ interpret ve2: valid_moment_e _ t2 using lt2
+ by (unfold_locales, simp)
+ let ?e = ve2.next_e
+ have "t2 < ?t3" by simp
+ from nn2 [rule_format, OF this] and ve2.trace_e
+ have h1: "thread \<in> set (wq (?e#moment t2 s) cs2)" and
+ h2: "thread \<noteq> hd (wq (?e#moment t2 s) cs2)" by auto
+ have ?thesis
+ proof -
+ have "thread \<in> runing (moment t2 s)"
+ proof(cases "thread \<in> set (wq (moment t2 s) cs2)")
+ case True
+ have "?e = V thread cs2"
+ proof -
+ have eq_th: "thread = hd (wq (moment t2 s) cs2)"
+ using True and np2 by auto
+ thus ?thesis
+ using True h2 ve2.vat_moment_e.wq_out_inv by blast
+ qed
+ thus ?thesis
+ using step.cases ve2.vat_moment_e.pip_e by auto
+ next
+ case False
+ hence "?e = P thread cs2"
+ using h1 ve2.vat_moment_e.wq_in_inv by blast
+ thus ?thesis
+ using step.cases ve2.vat_moment_e.pip_e by auto
+ qed
+ moreover have "thread \<notin> runing (moment t2 s)"
+ by (rule q_not_runing[OF nn1[rule_format, OF lt12]])
+ ultimately show ?thesis by simp
+ qed
+ } note lt_case = this
+ show ?thesis
+ proof -
+ { assume "t1 < t2"
+ from lt_case[OF lt1 np1 nn1 lt2 np2 nn2 this]
+ have ?thesis .
+ } moreover {
+ assume "t2 < t1"
+ from lt_case[OF lt2 np2 nn2 lt1 np1 nn1 this]
+ have ?thesis .
+ } moreover {
+ assume eq_12: "t1 = t2"
+ let ?t3 = "Suc t2"
+ interpret ve2: valid_moment_e _ t2 using lt2
+ by (unfold_locales, simp)
+ let ?e = ve2.next_e
+ have "t2 < ?t3" by simp
+ from nn2 [rule_format, OF this] and ve2.trace_e
+ have h1: "thread \<in> set (wq (?e#moment t2 s) cs2)" by auto
+ have lt_2: "t2 < ?t3" by simp
+ from nn2 [rule_format, OF this] and ve2.trace_e
+ have h1: "thread \<in> set (wq (?e#moment t2 s) cs2)" and
+ h2: "thread \<noteq> hd (wq (?e#moment t2 s) cs2)" by auto
+ from nn1[rule_format, OF lt_2[folded eq_12], unfolded ve2.trace_e[folded eq_12]]
+ eq_12[symmetric]
+ have g1: "thread \<in> set (wq (?e#moment t1 s) cs1)" and
+ g2: "thread \<noteq> hd (wq (?e#moment t1 s) cs1)" by auto
+ have "?e = V thread cs2 \<or> ?e = P thread cs2"
+ using h1 h2 np2 ve2.vat_moment_e.wq_in_inv
+ ve2.vat_moment_e.wq_out_inv by blast
+ moreover have "?e = V thread cs1 \<or> ?e = P thread cs1"
+ using eq_12 g1 g2 np1 ve2.vat_moment_e.wq_in_inv
+ ve2.vat_moment_e.wq_out_inv by blast
+ ultimately have ?thesis using neq12 by auto
+ } ultimately show ?thesis using nat_neq_iff by blast
+ qed
+qed
+
+text {*
+ This lemma is a simple corrolary of @{text "waiting_unique_pre"}.
+*}
+
+lemma waiting_unique:
+ assumes "waiting s th cs1"
+ and "waiting s th cs2"
+ shows "cs1 = cs2"
+ using waiting_unique_pre assms
+ unfolding wq_def s_waiting_def
+ by auto
+
+end
+
+lemma (in valid_trace_v)
+ preced_es [simp]: "preced th (e#s) = preced th s"
+ by (unfold is_v preced_def, simp)
+
+lemma the_preced_v[simp]: "the_preced (V th cs#s) = the_preced s"
+proof
+ fix th'
+ show "the_preced (V th cs # s) th' = the_preced s th'"
+ by (unfold the_preced_def preced_def, simp)
+qed
+
+
+lemma (in valid_trace_v)
+ the_preced_es: "the_preced (e#s) = the_preced s"
+ by (unfold is_v preced_def, simp)
+
+context valid_trace_p
+begin
+
+lemma not_holding_s_th_cs: "\<not> holding s th cs"
+proof
+ assume otherwise: "holding s th cs"
+ from pip_e[unfolded is_p]
+ show False
+ proof(cases)
+ case (thread_P)
+ moreover have "(Cs cs, Th th) \<in> RAG s"
+ using otherwise cs_holding_def
+ holding_eq th_not_in_wq by auto
+ ultimately show ?thesis by auto
+ qed
+qed
+
+end
+
+
+lemma (in valid_trace_v_n) finite_waiting_set:
+ "finite {(Th th', Cs cs) |th'. next_th s th cs th'}"
+ by (simp add: waiting_set_eq)
+
+lemma (in valid_trace_v_n) finite_holding_set:
+ "finite {(Cs cs, Th th') |th'. next_th s th cs th'}"
+ by (simp add: holding_set_eq)
+
+lemma (in valid_trace_v_e) finite_waiting_set:
+ "finite {(Th th', Cs cs) |th'. next_th s th cs th'}"
+ by (simp add: waiting_set_eq)
+
+lemma (in valid_trace_v_e) finite_holding_set:
+ "finite {(Cs cs, Th th') |th'. next_th s th cs th'}"
+ by (simp add: holding_set_eq)
+
+
+context valid_trace_v_e
+begin
+
+lemma
+ acylic_RAG_kept:
+ assumes "acyclic (RAG s)"
+ shows "acyclic (RAG (e#s))"
+proof(rule acyclic_subset[OF assms])
+ show "RAG (e # s) \<subseteq> RAG s"
+ by (unfold RAG_es waiting_set_eq holding_set_eq, auto)
+qed
+
+end
+
+context valid_trace_v_n
+begin
+
+lemma waiting_taker: "waiting s taker cs"
+ apply (unfold s_waiting_def, fold wq_def, unfold wq_s_cs taker_def)
+ using eq_wq' th'_in_inv wq'_def by fastforce
+
+lemma
+ acylic_RAG_kept:
+ assumes "acyclic (RAG s)"
+ shows "acyclic (RAG (e#s))"
+proof -
+ have "acyclic ((RAG s - {(Cs cs, Th th)} - {(Th taker, Cs cs)}) \<union>
+ {(Cs cs, Th taker)})" (is "acyclic (?A \<union> _)")
+ proof -
+ from assms
+ have "acyclic ?A"
+ by (rule acyclic_subset, auto)
+ moreover have "(Th taker, Cs cs) \<notin> ?A^*"
+ proof
+ assume otherwise: "(Th taker, Cs cs) \<in> ?A^*"
+ hence "(Th taker, Cs cs) \<in> ?A^+"
+ by (unfold rtrancl_eq_or_trancl, auto)
+ from tranclD[OF this]
+ obtain cs' where h: "(Th taker, Cs cs') \<in> ?A"
+ "(Th taker, Cs cs') \<in> RAG s"
+ by (unfold s_RAG_def, auto)
+ from this(2) have "waiting s taker cs'"
+ by (unfold s_RAG_def, fold waiting_eq, auto)
+ from waiting_unique[OF this waiting_taker]
+ have "cs' = cs" .
+ from h(1)[unfolded this] show False by auto
+ qed
+ ultimately show ?thesis by auto
+ qed
+ thus ?thesis
+ by (unfold RAG_es waiting_set_eq holding_set_eq, simp)
+qed
+
+end
+
+context valid_trace_p_h
+begin
+
+lemma
+ acylic_RAG_kept:
+ assumes "acyclic (RAG s)"
+ shows "acyclic (RAG (e#s))"
+proof -
+ have "acyclic (RAG s \<union> {(Cs cs, Th th)})" (is "acyclic (?A \<union> _)")
+ proof -
+ from assms
+ have "acyclic ?A"
+ by (rule acyclic_subset, auto)
+ moreover have "(Th th, Cs cs) \<notin> ?A^*"
+ proof
+ assume otherwise: "(Th th, Cs cs) \<in> ?A^*"
+ hence "(Th th, Cs cs) \<in> ?A^+"
+ by (unfold rtrancl_eq_or_trancl, auto)
+ from tranclD[OF this]
+ obtain cs' where h: "(Th th, Cs cs') \<in> RAG s"
+ by (unfold s_RAG_def, auto)
+ hence "waiting s th cs'"
+ by (unfold s_RAG_def, fold waiting_eq, auto)
+ with th_not_waiting show False by auto
+ qed
+ ultimately show ?thesis by auto
+ qed
+ thus ?thesis by (unfold RAG_es, simp)
+qed
+
+end
+
+context valid_trace_p_w
+begin
+
+lemma
+ acylic_RAG_kept:
+ assumes "acyclic (RAG s)"
+ shows "acyclic (RAG (e#s))"
+proof -
+ have "acyclic (RAG s \<union> {(Th th, Cs cs)})" (is "acyclic (?A \<union> _)")
+ proof -
+ from assms
+ have "acyclic ?A"
+ by (rule acyclic_subset, auto)
+ moreover have "(Cs cs, Th th) \<notin> ?A^*"
+ proof
+ assume otherwise: "(Cs cs, Th th) \<in> ?A^*"
+ from pip_e[unfolded is_p]
+ show False
+ proof(cases)
+ case (thread_P)
+ moreover from otherwise have "(Cs cs, Th th) \<in> ?A^+"
+ by (unfold rtrancl_eq_or_trancl, auto)
+ ultimately show ?thesis by auto
+ qed
+ qed
+ ultimately show ?thesis by auto
+ qed
+ thus ?thesis by (unfold RAG_es, simp)
+qed
+
+end
+
+context valid_trace
+begin
+
+lemma acyclic_RAG:
+ shows "acyclic (RAG s)"
+proof(induct rule:ind)
+ case Nil
+ show ?case
+ by (auto simp: s_RAG_def cs_waiting_def
+ cs_holding_def wq_def acyclic_def)
+next
+ case (Cons s e)
+ interpret vt_e: valid_trace_e s e using Cons by simp
+ show ?case
+ proof(cases e)
+ case (Create th prio)
+ interpret vt: valid_trace_create s e th prio using Create
+ by (unfold_locales, simp)
+ show ?thesis using Cons by simp
+ next
+ case (Exit th)
+ interpret vt: valid_trace_exit s e th using Exit
+ by (unfold_locales, simp)
+ show ?thesis using Cons by simp
+ next
+ case (P th cs)
+ interpret vt: valid_trace_p s e th cs using P
+ by (unfold_locales, simp)
+ show ?thesis
+ proof(cases "wq s cs = []")
+ case True
+ then interpret vt_h: valid_trace_p_h s e th cs
+ by (unfold_locales, simp)
+ show ?thesis using Cons by (simp add: vt_h.acylic_RAG_kept)
+ next
+ case False
+ then interpret vt_w: valid_trace_p_w s e th cs
+ by (unfold_locales, simp)
+ show ?thesis using Cons by (simp add: vt_w.acylic_RAG_kept)
+ qed
+ next
+ case (V th cs)
+ interpret vt: valid_trace_v s e th cs using V
+ by (unfold_locales, simp)
+ show ?thesis
+ proof(cases "vt.rest = []")
+ case True
+ then interpret vt_e: valid_trace_v_e s e th cs
+ by (unfold_locales, simp)
+ show ?thesis by (simp add: Cons.hyps(2) vt_e.acylic_RAG_kept)
+ next
+ case False
+ then interpret vt_n: valid_trace_v_n s e th cs
+ by (unfold_locales, simp)
+ show ?thesis by (simp add: Cons.hyps(2) vt_n.acylic_RAG_kept)
+ qed
+ next
+ case (Set th prio)
+ interpret vt: valid_trace_set s e th prio using Set
+ by (unfold_locales, simp)
+ show ?thesis using Cons by simp
+ qed
+qed
+
+end
+
+section {* RAG is single-valued *}
+
+context valid_trace
+begin
+
+lemma unique_RAG: "\<lbrakk>(n, n1) \<in> RAG s; (n, n2) \<in> RAG s\<rbrakk> \<Longrightarrow> n1 = n2"
+ apply(unfold s_RAG_def, auto, fold waiting_eq holding_eq)
+ by(auto elim:waiting_unique held_unique)
+
+lemma sgv_RAG: "single_valued (RAG s)"
+ using unique_RAG by (auto simp:single_valued_def)
+
+end
+
+section {* RAG is well-founded *}
+
+context valid_trace
+begin
+
+lemma wf_RAG: "wf (RAG s)"
+proof(rule finite_acyclic_wf)
+ from finite_RAG show "finite (RAG s)" .
+next
+ from acyclic_RAG show "acyclic (RAG s)" .
+qed
+
+lemma wf_RAG_converse:
+ shows "wf ((RAG s)^-1)"
+proof(rule finite_acyclic_wf_converse)
+ from finite_RAG
+ show "finite (RAG s)" .
+next
+ from acyclic_RAG
+ show "acyclic (RAG s)" .
+qed
+
+end
+
+section {* RAG forms a forest (or tree) *}
+
+context valid_trace
+begin
+
+lemma rtree_RAG: "rtree (RAG s)"
+ using sgv_RAG acyclic_RAG
+ by (unfold rtree_def rtree_axioms_def sgv_def, auto)
+
+end
+
+sublocale valid_trace < rtree_RAG: rtree "RAG s"
+ using rtree_RAG .
+
+sublocale valid_trace < fsbtRAGs : fsubtree "RAG s"
+proof -
+ show "fsubtree (RAG s)"
+ proof(intro_locales)
+ show "fbranch (RAG s)" using finite_fbranchI[OF finite_RAG] .
+ next
+ show "fsubtree_axioms (RAG s)"
+ proof(unfold fsubtree_axioms_def)
+ from wf_RAG show "wf (RAG s)" .
+ qed
+ qed
+qed
+
+
+section {* Derived properties for parts of RAG *}
+
+context valid_trace
+begin
+
+lemma acyclic_tRAG: "acyclic (tRAG s)"
+proof(unfold tRAG_def, rule acyclic_compose)
+ show "acyclic (RAG s)" using acyclic_RAG .
+next
+ show "wRAG s \<subseteq> RAG s" unfolding RAG_split by auto
+next
+ show "hRAG s \<subseteq> RAG s" unfolding RAG_split by auto
+qed
+
+lemma sgv_wRAG: "single_valued (wRAG s)"
+ using waiting_unique
+ by (unfold single_valued_def wRAG_def, auto)
+
+lemma sgv_hRAG: "single_valued (hRAG s)"
+ using held_unique
+ by (unfold single_valued_def hRAG_def, auto)
+
+lemma sgv_tRAG: "single_valued (tRAG s)"
+ by (unfold tRAG_def, rule single_valued_relcomp,
+ insert sgv_wRAG sgv_hRAG, auto)
+
+end
+
+sublocale valid_trace < rtree_s: rtree "tRAG s"
+proof(unfold_locales)
+ from sgv_tRAG show "single_valued (tRAG s)" .
+next
+ from acyclic_tRAG show "acyclic (tRAG s)" .
+qed
+
+sublocale valid_trace < fsbttRAGs: fsubtree "tRAG s"
+proof -
+ have "fsubtree (tRAG s)"
+ proof -
+ have "fbranch (tRAG s)"
+ proof(unfold tRAG_def, rule fbranch_compose)
+ show "fbranch (wRAG s)"
+ proof(rule finite_fbranchI)
+ from finite_RAG show "finite (wRAG s)"
+ by (unfold RAG_split, auto)
+ qed
+ next
+ show "fbranch (hRAG s)"
+ proof(rule finite_fbranchI)
+ from finite_RAG
+ show "finite (hRAG s)" by (unfold RAG_split, auto)
+ qed
+ qed
+ moreover have "wf (tRAG s)"
+ proof(rule wf_subset)
+ show "wf (RAG s O RAG s)" using wf_RAG
+ by (fold wf_comp_self, simp)
+ next
+ show "tRAG s \<subseteq> (RAG s O RAG s)"
+ by (unfold tRAG_alt_def, auto)
+ qed
+ ultimately show ?thesis
+ by (unfold fsubtree_def fsubtree_axioms_def,auto)
+ qed
+ from this[folded tRAG_def] show "fsubtree (tRAG s)" .
+qed
+
+lemma tRAG_nodeE:
+ assumes "(n1, n2) \<in> tRAG s"
+ obtains th1 th2 where "n1 = Th th1" "n2 = Th th2"
+ using assms
+ by (auto simp: tRAG_def wRAG_def hRAG_def)
+
+lemma tRAG_ancestorsE:
+ assumes "x \<in> ancestors (tRAG s) u"
+ obtains th where "x = Th th"
+proof -
+ from assms have "(u, x) \<in> (tRAG s)^+"
+ by (unfold ancestors_def, auto)
+ from tranclE[OF this] obtain c where "(c, x) \<in> tRAG s" by auto
+ then obtain th where "x = Th th"
+ by (unfold tRAG_alt_def, auto)
+ from that[OF this] show ?thesis .
+qed
+
+lemma subtree_nodeE:
+ assumes "n \<in> subtree (tRAG s) (Th th)"
+ obtains th1 where "n = Th th1"
+proof -
+ show ?thesis
+ proof(rule subtreeE[OF assms])
+ assume "n = Th th"
+ from that[OF this] show ?thesis .
+ next
+ assume "Th th \<in> ancestors (tRAG s) n"
+ hence "(n, Th th) \<in> (tRAG s)^+" by (auto simp:ancestors_def)
+ hence "\<exists> th1. n = Th th1"
+ proof(induct)
+ case (base y)
+ from tRAG_nodeE[OF this] show ?case by metis
+ next
+ case (step y z)
+ thus ?case by auto
+ qed
+ with that show ?thesis by auto
+ qed
+qed
+
+lemma tRAG_star_RAG: "(tRAG s)^* \<subseteq> (RAG s)^*"
+proof -
+ have "(wRAG s O hRAG s)^* \<subseteq> (RAG s O RAG s)^*"
+ by (rule rtrancl_mono, auto simp:RAG_split)
+ also have "... \<subseteq> ((RAG s)^*)^*"
+ by (rule rtrancl_mono, auto)
+ also have "... = (RAG s)^*" by simp
+ finally show ?thesis by (unfold tRAG_def, simp)
+qed
+
+lemma tRAG_subtree_RAG: "subtree (tRAG s) x \<subseteq> subtree (RAG s) x"
+proof -
+ { fix a
+ assume "a \<in> subtree (tRAG s) x"
+ hence "(a, x) \<in> (tRAG s)^*" by (auto simp:subtree_def)
+ with tRAG_star_RAG
+ have "(a, x) \<in> (RAG s)^*" by auto
+ hence "a \<in> subtree (RAG s) x" by (auto simp:subtree_def)
+ } thus ?thesis by auto
+qed
+
+lemma tRAG_trancl_eq:
+ "{th'. (Th th', Th th) \<in> (tRAG s)^+} =
+ {th'. (Th th', Th th) \<in> (RAG s)^+}"
+ (is "?L = ?R")
+proof -
+ { fix th'
+ assume "th' \<in> ?L"
+ hence "(Th th', Th th) \<in> (tRAG s)^+" by auto
+ from tranclD[OF this]
+ obtain z where h: "(Th th', z) \<in> tRAG s" "(z, Th th) \<in> (tRAG s)\<^sup>*" by auto
+ from tRAG_subtree_RAG and this(2)
+ have "(z, Th th) \<in> (RAG s)^*" by (meson subsetCE tRAG_star_RAG)
+ moreover from h(1) have "(Th th', z) \<in> (RAG s)^+" using tRAG_alt_def by auto
+ ultimately have "th' \<in> ?R" by auto
+ } moreover
+ { fix th'
+ assume "th' \<in> ?R"
+ hence "(Th th', Th th) \<in> (RAG s)^+" by (auto)
+ from plus_rpath[OF this]
+ obtain xs where rp: "rpath (RAG s) (Th th') xs (Th th)" "xs \<noteq> []" by auto
+ hence "(Th th', Th th) \<in> (tRAG s)^+"
+ proof(induct xs arbitrary:th' th rule:length_induct)
+ case (1 xs th' th)
+ then obtain x1 xs1 where Cons1: "xs = x1#xs1" by (cases xs, auto)
+ show ?case
+ proof(cases "xs1")
+ case Nil
+ from 1(2)[unfolded Cons1 Nil]
+ have rp: "rpath (RAG s) (Th th') [x1] (Th th)" .
+ hence "(Th th', x1) \<in> (RAG s)"
+ by (cases, auto)
+ then obtain cs where "x1 = Cs cs"
+ by (unfold s_RAG_def, auto)
+ from rpath_nnl_lastE[OF rp[unfolded this]]
+ show ?thesis by auto
+ next
+ case (Cons x2 xs2)
+ from 1(2)[unfolded Cons1[unfolded this]]
+ have rp: "rpath (RAG s) (Th th') (x1 # x2 # xs2) (Th th)" .
+ from rpath_edges_on[OF this]
+ have eds: "edges_on (Th th' # x1 # x2 # xs2) \<subseteq> RAG s" .
+ have "(Th th', x1) \<in> edges_on (Th th' # x1 # x2 # xs2)"
+ by (simp add: edges_on_unfold)
+ with eds have rg1: "(Th th', x1) \<in> RAG s" by auto
+ then obtain cs1 where eq_x1: "x1 = Cs cs1" by (unfold s_RAG_def, auto)
+ have "(x1, x2) \<in> edges_on (Th th' # x1 # x2 # xs2)"
+ by (simp add: edges_on_unfold)
+ from this eds
+ have rg2: "(x1, x2) \<in> RAG s" by auto
+ from this[unfolded eq_x1]
+ obtain th1 where eq_x2: "x2 = Th th1" by (unfold s_RAG_def, auto)
+ from rg1[unfolded eq_x1] rg2[unfolded eq_x1 eq_x2]
+ have rt1: "(Th th', Th th1) \<in> tRAG s" by (unfold tRAG_alt_def, auto)
+ from rp have "rpath (RAG s) x2 xs2 (Th th)"
+ by (elim rpath_ConsE, simp)
+ from this[unfolded eq_x2] have rp': "rpath (RAG s) (Th th1) xs2 (Th th)" .
+ show ?thesis
+ proof(cases "xs2 = []")
+ case True
+ from rpath_nilE[OF rp'[unfolded this]]
+ have "th1 = th" by auto
+ from rt1[unfolded this] show ?thesis by auto
+ next
+ case False
+ from 1(1)[rule_format, OF _ rp' this, unfolded Cons1 Cons]
+ have "(Th th1, Th th) \<in> (tRAG s)\<^sup>+" by simp
+ with rt1 show ?thesis by auto
+ qed
+ qed
+ qed
+ hence "th' \<in> ?L" by auto
+ } ultimately show ?thesis by blast
+qed
+
+lemma tRAG_trancl_eq_Th:
+ "{Th th' | th'. (Th th', Th th) \<in> (tRAG s)^+} =
+ {Th th' | th'. (Th th', Th th) \<in> (RAG s)^+}"
+ using tRAG_trancl_eq by auto
+
+
+lemma tRAG_Field:
+ "Field (tRAG s) \<subseteq> Field (RAG s)"
+ by (unfold tRAG_alt_def Field_def, auto)
+
+lemma tRAG_mono:
+ assumes "RAG s' \<subseteq> RAG s"
+ shows "tRAG s' \<subseteq> tRAG s"
+ using assms
+ by (unfold tRAG_alt_def, auto)
+
+lemma tRAG_subtree_eq:
+ "(subtree (tRAG s) (Th th)) = {Th th' | th'. Th th' \<in> (subtree (RAG s) (Th th))}"
+ (is "?L = ?R")
+proof -
+ { fix n
+ assume h: "n \<in> ?L"
+ hence "n \<in> ?R"
+ by (smt mem_Collect_eq subsetCE subtree_def subtree_nodeE tRAG_subtree_RAG)
+ } moreover {
+ fix n
+ assume "n \<in> ?R"
+ then obtain th' where h: "n = Th th'" "(Th th', Th th) \<in> (RAG s)^*"
+ by (auto simp:subtree_def)
+ from rtranclD[OF this(2)]
+ have "n \<in> ?L"
+ proof
+ assume "Th th' \<noteq> Th th \<and> (Th th', Th th) \<in> (RAG s)\<^sup>+"
+ with h have "n \<in> {Th th' | th'. (Th th', Th th) \<in> (RAG s)^+}" by auto
+ thus ?thesis using subtree_def tRAG_trancl_eq by fastforce
+ qed (insert h, auto simp:subtree_def)
+ } ultimately show ?thesis by auto
+qed
+
+lemma threads_set_eq:
+ "the_thread ` (subtree (tRAG s) (Th th)) =
+ {th'. Th th' \<in> (subtree (RAG s) (Th th))}" (is "?L = ?R")
+ by (auto intro:rev_image_eqI simp:tRAG_subtree_eq)
+
+context valid_trace
+begin
+
+lemma RAG_tRAG_transfer:
+ assumes "RAG s' = RAG s \<union> {(Th th, Cs cs)}"
+ and "(Cs cs, Th th'') \<in> RAG s"
+ shows "tRAG s' = tRAG s \<union> {(Th th, Th th'')}" (is "?L = ?R")
+proof -
+ { fix n1 n2
+ assume "(n1, n2) \<in> ?L"
+ from this[unfolded tRAG_alt_def]
+ obtain th1 th2 cs' where
+ h: "n1 = Th th1" "n2 = Th th2"
+ "(Th th1, Cs cs') \<in> RAG s'"
+ "(Cs cs', Th th2) \<in> RAG s'" by auto
+ from h(4) and assms(1) have cs_in: "(Cs cs', Th th2) \<in> RAG s" by auto
+ from h(3) and assms(1)
+ have "(Th th1, Cs cs') = (Th th, Cs cs) \<or>
+ (Th th1, Cs cs') \<in> RAG s" by auto
+ hence "(n1, n2) \<in> ?R"
+ proof
+ assume h1: "(Th th1, Cs cs') = (Th th, Cs cs)"
+ hence eq_th1: "th1 = th" by simp
+ moreover have "th2 = th''"
+ proof -
+ from h1 have "cs' = cs" by simp
+ from assms(2) cs_in[unfolded this]
+ show ?thesis using unique_RAG by auto
+ qed
+ ultimately show ?thesis using h(1,2) by auto
+ next
+ assume "(Th th1, Cs cs') \<in> RAG s"
+ with cs_in have "(Th th1, Th th2) \<in> tRAG s"
+ by (unfold tRAG_alt_def, auto)
+ from this[folded h(1, 2)] show ?thesis by auto
+ qed
+ } moreover {
+ fix n1 n2
+ assume "(n1, n2) \<in> ?R"
+ hence "(n1, n2) \<in>tRAG s \<or> (n1, n2) = (Th th, Th th'')" by auto
+ hence "(n1, n2) \<in> ?L"
+ proof
+ assume "(n1, n2) \<in> tRAG s"
+ moreover have "... \<subseteq> ?L"
+ proof(rule tRAG_mono)
+ show "RAG s \<subseteq> RAG s'" by (unfold assms(1), auto)
+ qed
+ ultimately show ?thesis by auto
+ next
+ assume eq_n: "(n1, n2) = (Th th, Th th'')"
+ from assms(1, 2) have "(Cs cs, Th th'') \<in> RAG s'" by auto
+ moreover have "(Th th, Cs cs) \<in> RAG s'" using assms(1) by auto
+ ultimately show ?thesis
+ by (unfold eq_n tRAG_alt_def, auto)
+ qed
+ } ultimately show ?thesis by auto
+qed
+
+lemma subtree_tRAG_thread:
+ assumes "th \<in> threads s"
+ shows "subtree (tRAG s) (Th th) \<subseteq> Th ` threads s" (is "?L \<subseteq> ?R")
+proof -
+ have "?L = {Th th' |th'. Th th' \<in> subtree (RAG s) (Th th)}"
+ by (unfold tRAG_subtree_eq, simp)
+ also have "... \<subseteq> ?R"
+ proof
+ fix x
+ assume "x \<in> {Th th' |th'. Th th' \<in> subtree (RAG s) (Th th)}"
+ then obtain th' where h: "x = Th th'" "Th th' \<in> subtree (RAG s) (Th th)" by auto
+ from this(2)
+ show "x \<in> ?R"
+ proof(cases rule:subtreeE)
+ case 1
+ thus ?thesis by (simp add: assms h(1))
+ next
+ case 2
+ thus ?thesis by (metis ancestors_Field dm_RAG_threads h(1) image_eqI)
+ qed
+ qed
+ finally show ?thesis .
+qed
+
+lemma dependants_alt_def:
+ "dependants s th = {th'. (Th th', Th th) \<in> (tRAG s)^+}"
+ by (metis eq_RAG s_dependants_def tRAG_trancl_eq)
+
+lemma dependants_alt_def1:
+ "dependants (s::state) th = {th'. (Th th', Th th) \<in> (RAG s)^+}"
+ using dependants_alt_def tRAG_trancl_eq by auto
+
+end
+
+section {* Chain to readys *}
+
+context valid_trace
+begin
+
+lemma chain_building:
+ assumes "node \<in> Domain (RAG s)"
+ obtains th' where "th' \<in> readys s" "(node, Th th') \<in> (RAG s)^+"
+proof -
+ from assms have "node \<in> Range ((RAG s)^-1)" by auto
+ from wf_base[OF wf_RAG_converse this]
+ obtain b where h_b: "(b, node) \<in> ((RAG s)\<inverse>)\<^sup>+" "\<forall>c. (c, b) \<notin> (RAG s)\<inverse>" by auto
+ obtain th' where eq_b: "b = Th th'"
+ proof(cases b)
+ case (Cs cs)
+ from h_b(1)[unfolded trancl_converse]
+ have "(node, b) \<in> ((RAG s)\<^sup>+)" by auto
+ from tranclE[OF this]
+ obtain n where "(n, b) \<in> RAG s" by auto
+ from this[unfolded Cs]
+ obtain th1 where "waiting s th1 cs"
+ by (unfold s_RAG_def, fold waiting_eq, auto)
+ from waiting_holding[OF this]
+ obtain th2 where "holding s th2 cs" .
+ hence "(Cs cs, Th th2) \<in> RAG s"
+ by (unfold s_RAG_def, fold holding_eq, auto)
+ with h_b(2)[unfolded Cs, rule_format]
+ have False by auto
+ thus ?thesis by auto
+ qed auto
+ have "th' \<in> readys s"
+ proof -
+ from h_b(2)[unfolded eq_b]
+ have "\<forall>cs. \<not> waiting s th' cs"
+ by (unfold s_RAG_def, fold waiting_eq, auto)
+ moreover have "th' \<in> threads s"
+ proof(rule rg_RAG_threads)
+ from tranclD[OF h_b(1), unfolded eq_b]
+ obtain z where "(z, Th th') \<in> (RAG s)" by auto
+ thus "Th th' \<in> Range (RAG s)" by auto
+ qed
+ ultimately show ?thesis by (auto simp:readys_def)
+ qed
+ moreover have "(node, Th th') \<in> (RAG s)^+"
+ using h_b(1)[unfolded trancl_converse] eq_b by auto
+ ultimately show ?thesis using that by metis
+qed
+
+text {* \noindent
+ The following is just an instance of @{text "chain_building"}.
+*}
+lemma th_chain_to_ready:
+ assumes th_in: "th \<in> threads s"
+ shows "th \<in> readys s \<or> (\<exists> th'. th' \<in> readys s \<and> (Th th, Th th') \<in> (RAG s)^+)"
+proof(cases "th \<in> readys s")
+ case True
+ thus ?thesis by auto
+next
+ case False
+ from False and th_in have "Th th \<in> Domain (RAG s)"
+ by (auto simp:readys_def s_waiting_def s_RAG_def wq_def cs_waiting_def Domain_def)
+ from chain_building [rule_format, OF this]
+ show ?thesis by auto
+qed
+
+lemma finite_subtree_threads:
+ "finite {th'. Th th' \<in> subtree (RAG s) (Th th)}" (is "finite ?A")
+proof -
+ have "?A = the_thread ` {Th th' | th' . Th th' \<in> subtree (RAG s) (Th th)}"
+ by (auto, insert image_iff, fastforce)
+ moreover have "finite {Th th' | th' . Th th' \<in> subtree (RAG s) (Th th)}"
+ (is "finite ?B")
+ proof -
+ have "?B = (subtree (RAG s) (Th th)) \<inter> {Th th' | th'. True}"
+ by auto
+ moreover have "... \<subseteq> (subtree (RAG s) (Th th))" by auto
+ moreover have "finite ..." by (simp add: fsbtRAGs.finite_subtree)
+ ultimately show ?thesis by auto
+ qed
+ ultimately show ?thesis by auto
+qed
+
+lemma runing_unique:
+ assumes runing_1: "th1 \<in> runing s"
+ and runing_2: "th2 \<in> runing s"
+ shows "th1 = th2"
+proof -
+ from runing_1 and runing_2 have "cp s th1 = cp s th2"
+ unfolding runing_def by auto
+ from this[unfolded cp_alt_def]
+ have eq_max:
+ "Max (the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th1)}) =
+ Max (the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th2)})"
+ (is "Max ?L = Max ?R") .
+ have "Max ?L \<in> ?L"
+ proof(rule Max_in)
+ show "finite ?L" by (simp add: finite_subtree_threads)
+ next
+ show "?L \<noteq> {}" using subtree_def by fastforce
+ qed
+ then obtain th1' where
+ h_1: "Th th1' \<in> subtree (RAG s) (Th th1)" "the_preced s th1' = Max ?L"
+ by auto
+ have "Max ?R \<in> ?R"
+ proof(rule Max_in)
+ show "finite ?R" by (simp add: finite_subtree_threads)
+ next
+ show "?R \<noteq> {}" using subtree_def by fastforce
+ qed
+ then obtain th2' where
+ h_2: "Th th2' \<in> subtree (RAG s) (Th th2)" "the_preced s th2' = Max ?R"
+ by auto
+ have "th1' = th2'"
+ proof(rule preced_unique)
+ from h_1(1)
+ show "th1' \<in> threads s"
+ proof(cases rule:subtreeE)
+ case 1
+ hence "th1' = th1" by simp
+ with runing_1 show ?thesis by (auto simp:runing_def readys_def)
+ next
+ case 2
+ from this(2)
+ have "(Th th1', Th th1) \<in> (RAG s)^+" by (auto simp:ancestors_def)
+ from tranclD[OF this]
+ have "(Th th1') \<in> Domain (RAG s)" by auto
+ from dm_RAG_threads[OF this] show ?thesis .
+ qed
+ next
+ from h_2(1)
+ show "th2' \<in> threads s"
+ proof(cases rule:subtreeE)
+ case 1
+ hence "th2' = th2" by simp
+ with runing_2 show ?thesis by (auto simp:runing_def readys_def)
+ next
+ case 2
+ from this(2)
+ have "(Th th2', Th th2) \<in> (RAG s)^+" by (auto simp:ancestors_def)
+ from tranclD[OF this]
+ have "(Th th2') \<in> Domain (RAG s)" by auto
+ from dm_RAG_threads[OF this] show ?thesis .
+ qed
+ next
+ have "the_preced s th1' = the_preced s th2'"
+ using eq_max h_1(2) h_2(2) by metis
+ thus "preced th1' s = preced th2' s" by (simp add:the_preced_def)
+ qed
+ from h_1(1)[unfolded this]
+ have star1: "(Th th2', Th th1) \<in> (RAG s)^*" by (auto simp:subtree_def)
+ from h_2(1)[unfolded this]
+ have star2: "(Th th2', Th th2) \<in> (RAG s)^*" by (auto simp:subtree_def)
+ from star_rpath[OF star1] obtain xs1
+ where rp1: "rpath (RAG s) (Th th2') xs1 (Th th1)"
+ by auto
+ from star_rpath[OF star2] obtain xs2
+ where rp2: "rpath (RAG s) (Th th2') xs2 (Th th2)"
+ by auto
+ from rp1 rp2
+ show ?thesis
+ proof(cases)
+ case (less_1 xs')
+ moreover have "xs' = []"
+ proof(rule ccontr)
+ assume otherwise: "xs' \<noteq> []"
+ from rpath_plus[OF less_1(3) this]
+ have "(Th th1, Th th2) \<in> (RAG s)\<^sup>+" .
+ from tranclD[OF this]
+ obtain cs where "waiting s th1 cs"
+ by (unfold s_RAG_def, fold waiting_eq, auto)
+ with runing_1 show False
+ by (unfold runing_def readys_def, auto)
+ qed
+ ultimately have "xs2 = xs1" by simp
+ from rpath_dest_eq[OF rp1 rp2[unfolded this]]
+ show ?thesis by simp
+ next
+ case (less_2 xs')
+ moreover have "xs' = []"
+ proof(rule ccontr)
+ assume otherwise: "xs' \<noteq> []"
+ from rpath_plus[OF less_2(3) this]
+ have "(Th th2, Th th1) \<in> (RAG s)\<^sup>+" .
+ from tranclD[OF this]
+ obtain cs where "waiting s th2 cs"
+ by (unfold s_RAG_def, fold waiting_eq, auto)
+ with runing_2 show False
+ by (unfold runing_def readys_def, auto)
+ qed
+ ultimately have "xs2 = xs1" by simp
+ from rpath_dest_eq[OF rp1 rp2[unfolded this]]
+ show ?thesis by simp
+ qed
+qed
+
+lemma card_runing: "card (runing s) \<le> 1"
+proof(cases "runing s = {}")
+ case True
+ thus ?thesis by auto
+next
+ case False
+ then obtain th where [simp]: "th \<in> runing s" by auto
+ from runing_unique[OF this]
+ have "runing s = {th}" by auto
+ thus ?thesis by auto
+qed
+
+end
+
+
+section {* Relating @{term cp} and @{term the_preced} and @{term preced} *}
+
+context valid_trace
+begin
+
+lemma le_cp:
+ shows "preced th s \<le> cp s th"
+ proof(unfold cp_alt_def, rule Max_ge)
+ show "finite (the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th)})"
+ by (simp add: finite_subtree_threads)
+ next
+ show "preced th s \<in> the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th)}"
+ by (simp add: subtree_def the_preced_def)
+ qed
+
+
+lemma cp_le:
+ assumes th_in: "th \<in> threads s"
+ shows "cp s th \<le> Max (the_preced s ` threads s)"
+proof(unfold cp_alt_def, rule Max_f_mono)
+ show "finite (threads s)" by (simp add: finite_threads)
+next
+ show " {th'. Th th' \<in> subtree (RAG s) (Th th)} \<noteq> {}"
+ using subtree_def by fastforce
+next
+ show "{th'. Th th' \<in> subtree (RAG s) (Th th)} \<subseteq> threads s"
+ using assms
+ by (smt Domain.DomainI dm_RAG_threads mem_Collect_eq
+ node.inject(1) rtranclD subsetI subtree_def trancl_domain)
+qed
+
+lemma max_cp_eq:
+ shows "Max ((cp s) ` threads s) = Max (the_preced s ` threads s)"
+ (is "?L = ?R")
+proof -
+ have "?L \<le> ?R"
+ proof(cases "threads s = {}")
+ case False
+ show ?thesis
+ by (rule Max.boundedI,
+ insert cp_le,
+ auto simp:finite_threads False)
+ qed auto
+ moreover have "?R \<le> ?L"
+ by (rule Max_fg_mono,
+ simp add: finite_threads,
+ simp add: le_cp the_preced_def)
+ ultimately show ?thesis by auto
+qed
+
+lemma threads_alt_def:
+ "(threads s) = (\<Union> th \<in> readys s. {th'. Th th' \<in> subtree (RAG s) (Th th)})"
+ (is "?L = ?R")
+proof -
+ { fix th1
+ assume "th1 \<in> ?L"
+ from th_chain_to_ready[OF this]
+ have "th1 \<in> readys s \<or> (\<exists>th'. th' \<in> readys s \<and> (Th th1, Th th') \<in> (RAG s)\<^sup>+)" .
+ hence "th1 \<in> ?R" by (auto simp:subtree_def)
+ } moreover
+ { fix th'
+ assume "th' \<in> ?R"
+ then obtain th where h: "th \<in> readys s" " Th th' \<in> subtree (RAG s) (Th th)"
+ by auto
+ from this(2)
+ have "th' \<in> ?L"
+ proof(cases rule:subtreeE)
+ case 1
+ with h(1) show ?thesis by (auto simp:readys_def)
+ next
+ case 2
+ from tranclD[OF this(2)[unfolded ancestors_def, simplified]]
+ have "Th th' \<in> Domain (RAG s)" by auto
+ from dm_RAG_threads[OF this]
+ show ?thesis .
+ qed
+ } ultimately show ?thesis by auto
+qed
+
+
+text {* (* ccc *) \noindent
+ Since the current precedence of the threads in ready queue will always be boosted,
+ there must be one inside it has the maximum precedence of the whole system.
+*}
+lemma max_cp_readys_threads:
+ shows "Max (cp s ` readys s) = Max (cp s ` threads s)" (is "?L = ?R")
+proof(cases "readys s = {}")
+ case False
+ have "?R = Max (the_preced s ` threads s)" by (unfold max_cp_eq, simp)
+ also have "... =
+ Max (the_preced s ` (\<Union>th\<in>readys s. {th'. Th th' \<in> subtree (RAG s) (Th th)}))"
+ by (unfold threads_alt_def, simp)
+ also have "... =
+ Max ((\<Union>th\<in>readys s. the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th)}))"
+ by (unfold image_UN, simp)
+ also have "... =
+ Max (Max ` (\<lambda>th. the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th)}) ` readys s)"
+ proof(rule Max_UNION)
+ show "\<forall>M\<in>(\<lambda>x. the_preced s `
+ {th'. Th th' \<in> subtree (RAG s) (Th x)}) ` readys s. finite M"
+ using finite_subtree_threads by auto
+ qed (auto simp:False subtree_def)
+ also have "... =
+ Max ((Max \<circ> (\<lambda>th. the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th)})) ` readys s)"
+ by (unfold image_comp, simp)
+ also have "... = ?L" (is "Max (?f ` ?A) = Max (?g ` ?A)")
+ proof -
+ have "(?f ` ?A) = (?g ` ?A)"
+ proof(rule f_image_eq)
+ fix th1
+ assume "th1 \<in> ?A"
+ thus "?f th1 = ?g th1"
+ by (unfold cp_alt_def, simp)
+ qed
+ thus ?thesis by simp
+ qed
+ finally show ?thesis by simp
+qed (auto simp:threads_alt_def)
+
+end
+
+section {* Relating @{term cntP}, @{term cntV}, @{term cntCS} and @{term pvD} *}
+
+context valid_trace_p_w
+begin
+
+lemma holding_s_holder: "holding s holder cs"
+ by (unfold s_holding_def, fold wq_def, unfold wq_s_cs, auto)
+
+lemma holding_es_holder: "holding (e#s) holder cs"
+ by (unfold s_holding_def, fold wq_def, unfold wq_es_cs wq_s_cs, auto)
+
+lemma holdents_es:
+ shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R")
+proof -
+ { fix cs'
+ assume "cs' \<in> ?L"
+ hence h: "holding (e#s) th' cs'" by (auto simp:holdents_def)
+ have "holding s th' cs'"
+ proof(cases "cs' = cs")
+ case True
+ from held_unique[OF h[unfolded True] holding_es_holder]
+ have "th' = holder" .
+ thus ?thesis
+ by (unfold True holdents_def, insert holding_s_holder, simp)
+ next
+ case False
+ hence "wq (e#s) cs' = wq s cs'" by simp
+ from h[unfolded s_holding_def, folded wq_def, unfolded this]
+ show ?thesis
+ by (unfold s_holding_def, fold wq_def, auto)
+ qed
+ hence "cs' \<in> ?R" by (auto simp:holdents_def)
+ } moreover {
+ fix cs'
+ assume "cs' \<in> ?R"
+ hence h: "holding s th' cs'" by (auto simp:holdents_def)
+ have "holding (e#s) th' cs'"
+ proof(cases "cs' = cs")
+ case True
+ from held_unique[OF h[unfolded True] holding_s_holder]
+ have "th' = holder" .
+ thus ?thesis
+ by (unfold True holdents_def, insert holding_es_holder, simp)
+ next
+ case False
+ hence "wq s cs' = wq (e#s) cs'" by simp
+ from h[unfolded s_holding_def, folded wq_def, unfolded this]
+ show ?thesis
+ by (unfold s_holding_def, fold wq_def, auto)
+ qed
+ hence "cs' \<in> ?L" by (auto simp:holdents_def)
+ } ultimately show ?thesis by auto
+qed
+
+lemma cntCS_es_th[simp]: "cntCS (e#s) th' = cntCS s th'"
+ by (unfold cntCS_def holdents_es, simp)
+
+lemma th_not_ready_es:
+ shows "th \<notin> readys (e#s)"
+ using waiting_es_th_cs
+ by (unfold readys_def, auto)
+
+end
+
+lemma (in valid_trace) finite_holdents: "finite (holdents s th)"
+ by (unfold holdents_alt_def, insert fsbtRAGs.finite_children, auto)
+
+context valid_trace_p
+begin
+
+lemma ready_th_s: "th \<in> readys s"
+ using runing_th_s
+ by (unfold runing_def, auto)
+
+lemma live_th_s: "th \<in> threads s"
+ using readys_threads ready_th_s by auto
+
+lemma live_th_es: "th \<in> threads (e#s)"
+ using live_th_s
+ by (unfold is_p, simp)
+
+lemma waiting_neq_th:
+ assumes "waiting s t c"
+ shows "t \<noteq> th"
+ using assms using th_not_waiting by blast
+
+end
+
+context valid_trace_p_h
+begin
+
+lemma th_not_waiting':
+ "\<not> waiting (e#s) th cs'"
+proof(cases "cs' = cs")
+ case True
+ show ?thesis
+ by (unfold True s_waiting_def, fold wq_def, unfold wq_es_cs', auto)
+next
+ case False
+ from th_not_waiting[of cs', unfolded s_waiting_def, folded wq_def]
+ show ?thesis
+ by (unfold s_waiting_def, fold wq_def, insert False, simp)
+qed
+
+lemma ready_th_es:
+ shows "th \<in> readys (e#s)"
+ using th_not_waiting'
+ by (unfold readys_def, insert live_th_es, auto)
+
+lemma holdents_es_th:
+ "holdents (e#s) th = (holdents s th) \<union> {cs}" (is "?L = ?R")
+proof -
+ { fix cs'
+ assume "cs' \<in> ?L"
+ hence "holding (e#s) th cs'"
+ by (unfold holdents_def, auto)
+ hence "cs' \<in> ?R"
+ by (cases rule:holding_esE, auto simp:holdents_def)
+ } moreover {
+ fix cs'
+ assume "cs' \<in> ?R"
+ hence "holding s th cs' \<or> cs' = cs"
+ by (auto simp:holdents_def)
+ hence "cs' \<in> ?L"
+ proof
+ assume "holding s th cs'"
+ from holding_kept[OF this]
+ show ?thesis by (auto simp:holdents_def)
+ next
+ assume "cs' = cs"
+ thus ?thesis using holding_es_th_cs
+ by (unfold holdents_def, auto)
+ qed
+ } ultimately show ?thesis by auto
+qed
+
+lemma cntCS_es_th: "cntCS (e#s) th = cntCS s th + 1"
+proof -
+ have "card (holdents s th \<union> {cs}) = card (holdents s th) + 1"
+ proof(subst card_Un_disjoint)
+ show "holdents s th \<inter> {cs} = {}"
+ using not_holding_s_th_cs by (auto simp:holdents_def)
+ qed (auto simp:finite_holdents)
+ thus ?thesis
+ by (unfold cntCS_def holdents_es_th, simp)
+qed
+
+lemma no_holder:
+ "\<not> holding s th' cs"
+proof
+ assume otherwise: "holding s th' cs"
+ from this[unfolded s_holding_def, folded wq_def, unfolded we]
+ show False by auto
+qed
+
+lemma holdents_es_th':
+ assumes "th' \<noteq> th"
+ shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R")
+proof -
+ { fix cs'
+ assume "cs' \<in> ?L"
+ hence h_e: "holding (e#s) th' cs'" by (auto simp:holdents_def)
+ have "cs' \<noteq> cs"
+ proof
+ assume "cs' = cs"
+ from held_unique[OF h_e[unfolded this] holding_es_th_cs]
+ have "th' = th" .
+ with assms show False by simp
+ qed
+ from h_e[unfolded s_holding_def, folded wq_def, unfolded wq_neq_simp[OF this]]
+ have "th' \<in> set (wq s cs') \<and> th' = hd (wq s cs')" .
+ hence "cs' \<in> ?R"
+ by (unfold holdents_def s_holding_def, fold wq_def, auto)
+ } moreover {
+ fix cs'
+ assume "cs' \<in> ?R"
+ hence "holding s th' cs'" by (auto simp:holdents_def)
+ from holding_kept[OF this]
+ have "holding (e # s) th' cs'" .
+ hence "cs' \<in> ?L"
+ by (unfold holdents_def, auto)
+ } ultimately show ?thesis by auto
+qed
+
+lemma cntCS_es_th'[simp]:
+ assumes "th' \<noteq> th"
+ shows "cntCS (e#s) th' = cntCS s th'"
+ by (unfold cntCS_def holdents_es_th'[OF assms], simp)
+
+end
+
+context valid_trace_p
+begin
+
+lemma readys_kept1:
+ assumes "th' \<noteq> th"
+ and "th' \<in> readys (e#s)"
+ shows "th' \<in> readys s"
+proof -
+ { fix cs'
+ assume wait: "waiting s th' cs'"
+ have n_wait: "\<not> waiting (e#s) th' cs'"
+ using assms(2)[unfolded readys_def] by auto
+ have False
+ proof(cases "cs' = cs")
+ case False
+ with n_wait wait
+ show ?thesis
+ by (unfold s_waiting_def, fold wq_def, auto)
+ next
+ case True
+ show ?thesis
+ proof(cases "wq s cs = []")
+ case True
+ then interpret vt: valid_trace_p_h
+ by (unfold_locales, simp)
+ show ?thesis using n_wait wait waiting_kept by auto
+ next
+ case False
+ then interpret vt: valid_trace_p_w by (unfold_locales, simp)
+ show ?thesis using n_wait wait waiting_kept by blast
+ qed
+ qed
+ } with assms(2) show ?thesis
+ by (unfold readys_def, auto)
+qed
+
+lemma readys_kept2:
+ assumes "th' \<noteq> th"
+ and "th' \<in> readys s"
+ shows "th' \<in> readys (e#s)"
+proof -
+ { fix cs'
+ assume wait: "waiting (e#s) th' cs'"
+ have n_wait: "\<not> waiting s th' cs'"
+ using assms(2)[unfolded readys_def] by auto
+ have False
+ proof(cases "cs' = cs")
+ case False
+ with n_wait wait
+ show ?thesis
+ by (unfold s_waiting_def, fold wq_def, auto)
+ next
+ case True
+ show ?thesis
+ proof(cases "wq s cs = []")
+ case True
+ then interpret vt: valid_trace_p_h
+ by (unfold_locales, simp)
+ show ?thesis using n_wait vt.waiting_esE wait by blast
+ next
+ case False
+ then interpret vt: valid_trace_p_w by (unfold_locales, simp)
+ show ?thesis using assms(1) n_wait vt.waiting_esE wait by auto
+ qed
+ qed
+ } with assms(2) show ?thesis
+ by (unfold readys_def, auto)
+qed
+
+lemma readys_simp [simp]:
+ assumes "th' \<noteq> th"
+ shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)"
+ using readys_kept1[OF assms] readys_kept2[OF assms]
+ by metis
+
+lemma cnp_cnv_cncs_kept: (* ddd *)
+ assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'"
+ shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'"
+proof(cases "th' = th")
+ case True
+ note eq_th' = this
+ show ?thesis
+ proof(cases "wq s cs = []")
+ case True
+ then interpret vt: valid_trace_p_h by (unfold_locales, simp)
+ show ?thesis
+ using assms eq_th' is_p ready_th_s vt.cntCS_es_th vt.ready_th_es pvD_def by auto
+ next
+ case False
+ then interpret vt: valid_trace_p_w by (unfold_locales, simp)
+ show ?thesis
+ using add.commute add.left_commute assms eq_th' is_p live_th_s
+ ready_th_s vt.th_not_ready_es pvD_def
+ apply (auto)
+ by (fold is_p, simp)
+ qed
+next
+ case False
+ note h_False = False
+ thus ?thesis
+ proof(cases "wq s cs = []")
+ case True
+ then interpret vt: valid_trace_p_h by (unfold_locales, simp)
+ show ?thesis using assms
+ by (insert True h_False pvD_def, auto split:if_splits,unfold is_p, auto)
+ next
+ case False
+ then interpret vt: valid_trace_p_w by (unfold_locales, simp)
+ show ?thesis using assms
+ by (insert False h_False pvD_def, auto split:if_splits,unfold is_p, auto)
+ qed
+qed
+
+end
+
+
+context valid_trace_v
+begin
+
+lemma holding_th_cs_s:
+ "holding s th cs"
+ by (unfold s_holding_def, fold wq_def, unfold wq_s_cs, auto)
+
+lemma th_ready_s [simp]: "th \<in> readys s"
+ using runing_th_s
+ by (unfold runing_def readys_def, auto)
+
+lemma th_live_s [simp]: "th \<in> threads s"
+ using th_ready_s by (unfold readys_def, auto)
+
+lemma th_ready_es [simp]: "th \<in> readys (e#s)"
+ using runing_th_s neq_t_th
+ by (unfold is_v runing_def readys_def, auto)
+
+lemma th_live_es [simp]: "th \<in> threads (e#s)"
+ using th_ready_es by (unfold readys_def, auto)
+
+lemma pvD_th_s[simp]: "pvD s th = 0"
+ by (unfold pvD_def, simp)
+
+lemma pvD_th_es[simp]: "pvD (e#s) th = 0"
+ by (unfold pvD_def, simp)
+
+lemma cntCS_s_th [simp]: "cntCS s th > 0"
+proof -
+ have "cs \<in> holdents s th" using holding_th_cs_s
+ by (unfold holdents_def, simp)
+ moreover have "finite (holdents s th)" using finite_holdents
+ by simp
+ ultimately show ?thesis
+ by (unfold cntCS_def,
+ auto intro!:card_gt_0_iff[symmetric, THEN iffD1])
+qed
+
+end
+
+context valid_trace_v
+begin
+
+lemma th_not_waiting:
+ "\<not> waiting s th c"
+proof -
+ have "th \<in> readys s"
+ using runing_ready runing_th_s by blast
+ thus ?thesis
+ by (unfold readys_def, auto)
+qed
+
+lemma waiting_neq_th:
+ assumes "waiting s t c"
+ shows "t \<noteq> th"
+ using assms using th_not_waiting by blast
+
+end
+
+context valid_trace_v_n
+begin
+
+lemma not_ready_taker_s[simp]:
+ "taker \<notin> readys s"
+ using waiting_taker
+ by (unfold readys_def, auto)
+
+lemma taker_live_s [simp]: "taker \<in> threads s"
+proof -
+ have "taker \<in> set wq'" by (simp add: eq_wq')
+ from th'_in_inv[OF this]
+ have "taker \<in> set rest" .
+ hence "taker \<in> set (wq s cs)" by (simp add: wq_s_cs)
+ thus ?thesis using wq_threads by auto
+qed
+
+lemma taker_live_es [simp]: "taker \<in> threads (e#s)"
+ using taker_live_s threads_es by blast
+
+lemma taker_ready_es [simp]:
+ shows "taker \<in> readys (e#s)"
+proof -
+ { fix cs'
+ assume "waiting (e#s) taker cs'"
+ hence False
+ proof(cases rule:waiting_esE)
+ case 1
+ thus ?thesis using waiting_taker waiting_unique by auto
+ qed simp
+ } thus ?thesis by (unfold readys_def, auto)
+qed
+
+lemma neq_taker_th: "taker \<noteq> th"
+ using th_not_waiting waiting_taker by blast
+
+lemma not_holding_taker_s_cs:
+ shows "\<not> holding s taker cs"
+ using holding_cs_eq_th neq_taker_th by auto
+
+lemma holdents_es_taker:
+ "holdents (e#s) taker = holdents s taker \<union> {cs}" (is "?L = ?R")
+proof -
+ { fix cs'
+ assume "cs' \<in> ?L"
+ hence "holding (e#s) taker cs'" by (auto simp:holdents_def)
+ hence "cs' \<in> ?R"
+ proof(cases rule:holding_esE)
+ case 2
+ thus ?thesis by (auto simp:holdents_def)
+ qed auto
+ } moreover {
+ fix cs'
+ assume "cs' \<in> ?R"
+ hence "holding s taker cs' \<or> cs' = cs" by (auto simp:holdents_def)
+ hence "cs' \<in> ?L"
+ proof
+ assume "holding s taker cs'"
+ hence "holding (e#s) taker cs'"
+ using holding_esI2 holding_taker by fastforce
+ thus ?thesis by (auto simp:holdents_def)
+ next
+ assume "cs' = cs"
+ with holding_taker
+ show ?thesis by (auto simp:holdents_def)
+ qed
+ } ultimately show ?thesis by auto
+qed
+
+lemma cntCS_es_taker [simp]: "cntCS (e#s) taker = cntCS s taker + 1"
+proof -
+ have "card (holdents s taker \<union> {cs}) = card (holdents s taker) + 1"
+ proof(subst card_Un_disjoint)
+ show "holdents s taker \<inter> {cs} = {}"
+ using not_holding_taker_s_cs by (auto simp:holdents_def)
+ qed (auto simp:finite_holdents)
+ thus ?thesis
+ by (unfold cntCS_def, insert holdents_es_taker, simp)
+qed
+
+lemma pvD_taker_s[simp]: "pvD s taker = 1"
+ by (unfold pvD_def, simp)
+
+lemma pvD_taker_es[simp]: "pvD (e#s) taker = 0"
+ by (unfold pvD_def, simp)
+
+lemma pvD_th_s[simp]: "pvD s th = 0"
+ by (unfold pvD_def, simp)
+
+lemma pvD_th_es[simp]: "pvD (e#s) th = 0"
+ by (unfold pvD_def, simp)
+
+lemma holdents_es_th:
+ "holdents (e#s) th = holdents s th - {cs}" (is "?L = ?R")
+proof -
+ { fix cs'
+ assume "cs' \<in> ?L"
+ hence "holding (e#s) th cs'" by (auto simp:holdents_def)
+ hence "cs' \<in> ?R"
+ proof(cases rule:holding_esE)
+ case 2
+ thus ?thesis by (auto simp:holdents_def)
+ qed (insert neq_taker_th, auto)
+ } moreover {
+ fix cs'
+ assume "cs' \<in> ?R"
+ hence "cs' \<noteq> cs" "holding s th cs'" by (auto simp:holdents_def)
+ from holding_esI2[OF this]
+ have "cs' \<in> ?L" by (auto simp:holdents_def)
+ } ultimately show ?thesis by auto
+qed
+
+lemma cntCS_es_th [simp]: "cntCS (e#s) th = cntCS s th - 1"
+proof -
+ have "card (holdents s th - {cs}) = card (holdents s th) - 1"
+ proof -
+ have "cs \<in> holdents s th" using holding_th_cs_s
+ by (auto simp:holdents_def)
+ moreover have "finite (holdents s th)"
+ by (simp add: finite_holdents)
+ ultimately show ?thesis by auto
+ qed
+ thus ?thesis by (unfold cntCS_def holdents_es_th)
+qed
+
+lemma holdents_kept:
+ assumes "th' \<noteq> taker"
+ and "th' \<noteq> th"
+ shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R")
+proof -
+ { fix cs'
+ assume h: "cs' \<in> ?L"
+ have "cs' \<in> ?R"
+ proof(cases "cs' = cs")
+ case False
+ hence eq_wq: "wq (e#s) cs' = wq s cs'" by simp
+ from h have "holding (e#s) th' cs'" by (auto simp:holdents_def)
+ from this[unfolded s_holding_def, folded wq_def, unfolded eq_wq]
+ show ?thesis
+ by (unfold holdents_def s_holding_def, fold wq_def, auto)
+ next
+ case True
+ from h[unfolded this]
+ have "holding (e#s) th' cs" by (auto simp:holdents_def)
+ from held_unique[OF this holding_taker]
+ have "th' = taker" .
+ with assms show ?thesis by auto
+ qed
+ } moreover {
+ fix cs'
+ assume h: "cs' \<in> ?R"
+ have "cs' \<in> ?L"
+ proof(cases "cs' = cs")
+ case False
+ hence eq_wq: "wq (e#s) cs' = wq s cs'" by simp
+ from h have "holding s th' cs'" by (auto simp:holdents_def)
+ from this[unfolded s_holding_def, folded wq_def, unfolded eq_wq]
+ show ?thesis
+ by (unfold holdents_def s_holding_def, fold wq_def, insert eq_wq, simp)
+ next
+ case True
+ from h[unfolded this]
+ have "holding s th' cs" by (auto simp:holdents_def)
+ from held_unique[OF this holding_th_cs_s]
+ have "th' = th" .
+ with assms show ?thesis by auto
+ qed
+ } ultimately show ?thesis by auto
+qed
+
+lemma cntCS_kept [simp]:
+ assumes "th' \<noteq> taker"
+ and "th' \<noteq> th"
+ shows "cntCS (e#s) th' = cntCS s th'"
+ by (unfold cntCS_def holdents_kept[OF assms], simp)
+
+lemma readys_kept1:
+ assumes "th' \<noteq> taker"
+ and "th' \<in> readys (e#s)"
+ shows "th' \<in> readys s"
+proof -
+ { fix cs'
+ assume wait: "waiting s th' cs'"
+ have n_wait: "\<not> waiting (e#s) th' cs'"
+ using assms(2)[unfolded readys_def] by auto
+ have False
+ proof(cases "cs' = cs")
+ case False
+ with n_wait wait
+ show ?thesis
+ by (unfold s_waiting_def, fold wq_def, auto)
+ next
+ case True
+ have "th' \<in> set (th # rest) \<and> th' \<noteq> hd (th # rest)"
+ using wait[unfolded True s_waiting_def, folded wq_def, unfolded wq_s_cs] .
+ moreover have "\<not> (th' \<in> set rest \<and> th' \<noteq> hd (taker # rest'))"
+ using n_wait[unfolded True s_waiting_def, folded wq_def,
+ unfolded wq_es_cs set_wq', unfolded eq_wq'] .
+ ultimately have "th' = taker" by auto
+ with assms(1)
+ show ?thesis by simp
+ qed
+ } with assms(2) show ?thesis
+ by (unfold readys_def, auto)
+qed
+
+lemma readys_kept2:
+ assumes "th' \<noteq> taker"
+ and "th' \<in> readys s"
+ shows "th' \<in> readys (e#s)"
+proof -
+ { fix cs'
+ assume wait: "waiting (e#s) th' cs'"
+ have n_wait: "\<not> waiting s th' cs'"
+ using assms(2)[unfolded readys_def] by auto
+ have False
+ proof(cases "cs' = cs")
+ case False
+ with n_wait wait
+ show ?thesis
+ by (unfold s_waiting_def, fold wq_def, auto)
+ next
+ case True
+ have "th' \<in> set rest \<and> th' \<noteq> hd (taker # rest')"
+ using wait [unfolded True s_waiting_def, folded wq_def,
+ unfolded wq_es_cs set_wq', unfolded eq_wq'] .
+ moreover have "\<not> (th' \<in> set (th # rest) \<and> th' \<noteq> hd (th # rest))"
+ using n_wait[unfolded True s_waiting_def, folded wq_def, unfolded wq_s_cs] .
+ ultimately have "th' = taker" by auto
+ with assms(1)
+ show ?thesis by simp
+ qed
+ } with assms(2) show ?thesis
+ by (unfold readys_def, auto)
+qed
+
+lemma readys_simp [simp]:
+ assumes "th' \<noteq> taker"
+ shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)"
+ using readys_kept1[OF assms] readys_kept2[OF assms]
+ by metis
+
+lemma cnp_cnv_cncs_kept:
+ assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'"
+ shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'"
+proof -
+ { assume eq_th': "th' = taker"
+ have ?thesis
+ apply (unfold eq_th' pvD_taker_es cntCS_es_taker)
+ by (insert neq_taker_th assms[unfolded eq_th'], unfold is_v, simp)
+ } moreover {
+ assume eq_th': "th' = th"
+ have ?thesis
+ apply (unfold eq_th' pvD_th_es cntCS_es_th)
+ by (insert assms[unfolded eq_th'], unfold is_v, simp)
+ } moreover {
+ assume h: "th' \<noteq> taker" "th' \<noteq> th"
+ have ?thesis using assms
+ apply (unfold cntCS_kept[OF h], insert h, unfold is_v, simp)
+ by (fold is_v, unfold pvD_def, simp)
+ } ultimately show ?thesis by metis
+qed
+
+end
+
+context valid_trace_v_e
+begin
+
+lemma holdents_es_th:
+ "holdents (e#s) th = holdents s th - {cs}" (is "?L = ?R")
+proof -
+ { fix cs'
+ assume "cs' \<in> ?L"
+ hence "holding (e#s) th cs'" by (auto simp:holdents_def)
+ hence "cs' \<in> ?R"
+ proof(cases rule:holding_esE)
+ case 1
+ thus ?thesis by (auto simp:holdents_def)
+ qed
+ } moreover {
+ fix cs'
+ assume "cs' \<in> ?R"
+ hence "cs' \<noteq> cs" "holding s th cs'" by (auto simp:holdents_def)
+ from holding_esI2[OF this]
+ have "cs' \<in> ?L" by (auto simp:holdents_def)
+ } ultimately show ?thesis by auto
+qed
+
+lemma cntCS_es_th [simp]: "cntCS (e#s) th = cntCS s th - 1"
+proof -
+ have "card (holdents s th - {cs}) = card (holdents s th) - 1"
+ proof -
+ have "cs \<in> holdents s th" using holding_th_cs_s
+ by (auto simp:holdents_def)
+ moreover have "finite (holdents s th)"
+ by (simp add: finite_holdents)
+ ultimately show ?thesis by auto
+ qed
+ thus ?thesis by (unfold cntCS_def holdents_es_th)
+qed
+
+lemma holdents_kept:
+ assumes "th' \<noteq> th"
+ shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R")
+proof -
+ { fix cs'
+ assume h: "cs' \<in> ?L"
+ have "cs' \<in> ?R"
+ proof(cases "cs' = cs")
+ case False
+ hence eq_wq: "wq (e#s) cs' = wq s cs'" by simp
+ from h have "holding (e#s) th' cs'" by (auto simp:holdents_def)
+ from this[unfolded s_holding_def, folded wq_def, unfolded eq_wq]
+ show ?thesis
+ by (unfold holdents_def s_holding_def, fold wq_def, auto)
+ next
+ case True
+ from h[unfolded this]
+ have "holding (e#s) th' cs" by (auto simp:holdents_def)
+ from this[unfolded s_holding_def, folded wq_def,
+ unfolded wq_es_cs nil_wq']
+ show ?thesis by auto
+ qed
+ } moreover {
+ fix cs'
+ assume h: "cs' \<in> ?R"
+ have "cs' \<in> ?L"
+ proof(cases "cs' = cs")
+ case False
+ hence eq_wq: "wq (e#s) cs' = wq s cs'" by simp
+ from h have "holding s th' cs'" by (auto simp:holdents_def)
+ from this[unfolded s_holding_def, folded wq_def, unfolded eq_wq]
+ show ?thesis
+ by (unfold holdents_def s_holding_def, fold wq_def, insert eq_wq, simp)
+ next
+ case True
+ from h[unfolded this]
+ have "holding s th' cs" by (auto simp:holdents_def)
+ from held_unique[OF this holding_th_cs_s]
+ have "th' = th" .
+ with assms show ?thesis by auto
+ qed
+ } ultimately show ?thesis by auto
+qed
+
+lemma cntCS_kept [simp]:
+ assumes "th' \<noteq> th"
+ shows "cntCS (e#s) th' = cntCS s th'"
+ by (unfold cntCS_def holdents_kept[OF assms], simp)
+
+lemma readys_kept1:
+ assumes "th' \<in> readys (e#s)"
+ shows "th' \<in> readys s"
+proof -
+ { fix cs'
+ assume wait: "waiting s th' cs'"
+ have n_wait: "\<not> waiting (e#s) th' cs'"
+ using assms(1)[unfolded readys_def] by auto
+ have False
+ proof(cases "cs' = cs")
+ case False
+ with n_wait wait
+ show ?thesis
+ by (unfold s_waiting_def, fold wq_def, auto)
+ next
+ case True
+ have "th' \<in> set (th # rest) \<and> th' \<noteq> hd (th # rest)"
+ using wait[unfolded True s_waiting_def, folded wq_def, unfolded wq_s_cs] .
+ hence "th' \<in> set rest" by auto
+ with set_wq' have "th' \<in> set wq'" by metis
+ with nil_wq' show ?thesis by simp
+ qed
+ } thus ?thesis using assms
+ by (unfold readys_def, auto)
+qed
+
+lemma readys_kept2:
+ assumes "th' \<in> readys s"
+ shows "th' \<in> readys (e#s)"
+proof -
+ { fix cs'
+ assume wait: "waiting (e#s) th' cs'"
+ have n_wait: "\<not> waiting s th' cs'"
+ using assms[unfolded readys_def] by auto
+ have False
+ proof(cases "cs' = cs")
+ case False
+ with n_wait wait
+ show ?thesis
+ by (unfold s_waiting_def, fold wq_def, auto)
+ next
+ case True
+ have "th' \<in> set [] \<and> th' \<noteq> hd []"
+ using wait[unfolded True s_waiting_def, folded wq_def,
+ unfolded wq_es_cs nil_wq'] .
+ thus ?thesis by simp
+ qed
+ } with assms show ?thesis
+ by (unfold readys_def, auto)
+qed
+
+lemma readys_simp [simp]:
+ shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)"
+ using readys_kept1[OF assms] readys_kept2[OF assms]
+ by metis
+
+lemma cnp_cnv_cncs_kept:
+ assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'"
+ shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'"
+proof -
+ {
+ assume eq_th': "th' = th"
+ have ?thesis
+ apply (unfold eq_th' pvD_th_es cntCS_es_th)
+ by (insert assms[unfolded eq_th'], unfold is_v, simp)
+ } moreover {
+ assume h: "th' \<noteq> th"
+ have ?thesis using assms
+ apply (unfold cntCS_kept[OF h], insert h, unfold is_v, simp)
+ by (fold is_v, unfold pvD_def, simp)
+ } ultimately show ?thesis by metis
+qed
+
+end
+
+context valid_trace_v
+begin
+
+lemma cnp_cnv_cncs_kept:
+ assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'"
+ shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'"
+proof(cases "rest = []")
+ case True
+ then interpret vt: valid_trace_v_e by (unfold_locales, simp)
+ show ?thesis using assms using vt.cnp_cnv_cncs_kept by blast
+next
+ case False
+ then interpret vt: valid_trace_v_n by (unfold_locales, simp)
+ show ?thesis using assms using vt.cnp_cnv_cncs_kept by blast
+qed
+
+end
+
+context valid_trace_create
+begin
+
+lemma th_not_live_s [simp]: "th \<notin> threads s"
+proof -
+ from pip_e[unfolded is_create]
+ show ?thesis by (cases, simp)
+qed
+
+lemma th_not_ready_s [simp]: "th \<notin> readys s"
+ using th_not_live_s by (unfold readys_def, simp)
+
+lemma th_live_es [simp]: "th \<in> threads (e#s)"
+ by (unfold is_create, simp)
+
+lemma not_waiting_th_s [simp]: "\<not> waiting s th cs'"
+proof
+ assume "waiting s th cs'"
+ from this[unfolded s_waiting_def, folded wq_def, unfolded wq_kept]
+ have "th \<in> set (wq s cs')" by auto
+ from wq_threads[OF this] have "th \<in> threads s" .
+ with th_not_live_s show False by simp
+qed
+
+lemma not_holding_th_s [simp]: "\<not> holding s th cs'"
+proof
+ assume "holding s th cs'"
+ from this[unfolded s_holding_def, folded wq_def, unfolded wq_kept]
+ have "th \<in> set (wq s cs')" by auto
+ from wq_threads[OF this] have "th \<in> threads s" .
+ with th_not_live_s show False by simp
+qed
+
+lemma not_waiting_th_es [simp]: "\<not> waiting (e#s) th cs'"
+proof
+ assume "waiting (e # s) th cs'"
+ from this[unfolded s_waiting_def, folded wq_def, unfolded wq_kept]
+ have "th \<in> set (wq s cs')" by auto
+ from wq_threads[OF this] have "th \<in> threads s" .
+ with th_not_live_s show False by simp
+qed
+
+lemma not_holding_th_es [simp]: "\<not> holding (e#s) th cs'"
+proof
+ assume "holding (e # s) th cs'"
+ from this[unfolded s_holding_def, folded wq_def, unfolded wq_kept]
+ have "th \<in> set (wq s cs')" by auto
+ from wq_threads[OF this] have "th \<in> threads s" .
+ with th_not_live_s show False by simp
+qed
+
+lemma ready_th_es [simp]: "th \<in> readys (e#s)"
+ by (simp add:readys_def)
+
+lemma holdents_th_s: "holdents s th = {}"
+ by (unfold holdents_def, auto)
+
+lemma holdents_th_es: "holdents (e#s) th = {}"
+ by (unfold holdents_def, auto)
+
+lemma cntCS_th_s [simp]: "cntCS s th = 0"
+ by (unfold cntCS_def, simp add:holdents_th_s)
+
+lemma cntCS_th_es [simp]: "cntCS (e#s) th = 0"
+ by (unfold cntCS_def, simp add:holdents_th_es)
+
+lemma pvD_th_s [simp]: "pvD s th = 0"
+ by (unfold pvD_def, simp)
+
+lemma pvD_th_es [simp]: "pvD (e#s) th = 0"
+ by (unfold pvD_def, simp)
+
+lemma holdents_kept:
+ assumes "th' \<noteq> th"
+ shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R")
+proof -
+ { fix cs'
+ assume h: "cs' \<in> ?L"
+ hence "cs' \<in> ?R"
+ by (unfold holdents_def s_holding_def, fold wq_def,
+ unfold wq_kept, auto)
+ } moreover {
+ fix cs'
+ assume h: "cs' \<in> ?R"
+ hence "cs' \<in> ?L"
+ by (unfold holdents_def s_holding_def, fold wq_def,
+ unfold wq_kept, auto)
+ } ultimately show ?thesis by auto
+qed
+
+lemma cntCS_kept [simp]:
+ assumes "th' \<noteq> th"
+ shows "cntCS (e#s) th' = cntCS s th'" (is "?L = ?R")
+ using holdents_kept[OF assms]
+ by (unfold cntCS_def, simp)
+
+lemma readys_kept1:
+ assumes "th' \<noteq> th"
+ and "th' \<in> readys (e#s)"
+ shows "th' \<in> readys s"
+proof -
+ { fix cs'
+ assume wait: "waiting s th' cs'"
+ have n_wait: "\<not> waiting (e#s) th' cs'"
+ using assms by (auto simp:readys_def)
+ from wait[unfolded s_waiting_def, folded wq_def]
+ n_wait[unfolded s_waiting_def, folded wq_def, unfolded wq_kept]
+ have False by auto
+ } thus ?thesis using assms
+ by (unfold readys_def, auto)
+qed
+
+lemma readys_kept2:
+ assumes "th' \<noteq> th"
+ and "th' \<in> readys s"
+ shows "th' \<in> readys (e#s)"
+proof -
+ { fix cs'
+ assume wait: "waiting (e#s) th' cs'"
+ have n_wait: "\<not> waiting s th' cs'"
+ using assms(2) by (auto simp:readys_def)
+ from wait[unfolded s_waiting_def, folded wq_def, unfolded wq_kept]
+ n_wait[unfolded s_waiting_def, folded wq_def]
+ have False by auto
+ } with assms show ?thesis
+ by (unfold readys_def, auto)
+qed
+
+lemma readys_simp [simp]:
+ assumes "th' \<noteq> th"
+ shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)"
+ using readys_kept1[OF assms] readys_kept2[OF assms]
+ by metis
+
+lemma pvD_kept [simp]:
+ assumes "th' \<noteq> th"
+ shows "pvD (e#s) th' = pvD s th'"
+ using assms
+ by (unfold pvD_def, simp)
+
+lemma cnp_cnv_cncs_kept:
+ assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'"
+ shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'"
+proof -
+ {
+ assume eq_th': "th' = th"
+ have ?thesis using assms
+ by (unfold eq_th', simp, unfold is_create, simp)
+ } moreover {
+ assume h: "th' \<noteq> th"
+ hence ?thesis using assms
+ by (simp, simp add:is_create)
+ } ultimately show ?thesis by metis
+qed
+
+end
+
+context valid_trace_exit
+begin
+
+lemma th_live_s [simp]: "th \<in> threads s"
+proof -
+ from pip_e[unfolded is_exit]
+ show ?thesis
+ by (cases, unfold runing_def readys_def, simp)
+qed
+
+lemma th_ready_s [simp]: "th \<in> readys s"
+proof -
+ from pip_e[unfolded is_exit]
+ show ?thesis
+ by (cases, unfold runing_def, simp)
+qed
+
+lemma th_not_live_es [simp]: "th \<notin> threads (e#s)"
+ by (unfold is_exit, simp)
+
+lemma not_holding_th_s [simp]: "\<not> holding s th cs'"
+proof -
+ from pip_e[unfolded is_exit]
+ show ?thesis
+ by (cases, unfold holdents_def, auto)
+qed
+
+lemma cntCS_th_s [simp]: "cntCS s th = 0"
+proof -
+ from pip_e[unfolded is_exit]
+ show ?thesis
+ by (cases, unfold cntCS_def, simp)
+qed
+
+lemma not_holding_th_es [simp]: "\<not> holding (e#s) th cs'"
+proof
+ assume "holding (e # s) th cs'"
+ from this[unfolded s_holding_def, folded wq_def, unfolded wq_kept]
+ have "holding s th cs'"
+ by (unfold s_holding_def, fold wq_def, auto)
+ with not_holding_th_s
+ show False by simp
+qed
+
+lemma ready_th_es [simp]: "th \<notin> readys (e#s)"
+ by (simp add:readys_def)
+
+lemma holdents_th_s: "holdents s th = {}"
+ by (unfold holdents_def, auto)
+
+lemma holdents_th_es: "holdents (e#s) th = {}"
+ by (unfold holdents_def, auto)
+
+lemma cntCS_th_es [simp]: "cntCS (e#s) th = 0"
+ by (unfold cntCS_def, simp add:holdents_th_es)
+
+lemma pvD_th_s [simp]: "pvD s th = 0"
+ by (unfold pvD_def, simp)
+
+lemma pvD_th_es [simp]: "pvD (e#s) th = 0"
+ by (unfold pvD_def, simp)
+
+lemma holdents_kept:
+ assumes "th' \<noteq> th"
+ shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R")
+proof -
+ { fix cs'
+ assume h: "cs' \<in> ?L"
+ hence "cs' \<in> ?R"
+ by (unfold holdents_def s_holding_def, fold wq_def,
+ unfold wq_kept, auto)
+ } moreover {
+ fix cs'
+ assume h: "cs' \<in> ?R"
+ hence "cs' \<in> ?L"
+ by (unfold holdents_def s_holding_def, fold wq_def,
+ unfold wq_kept, auto)
+ } ultimately show ?thesis by auto
+qed
+
+lemma cntCS_kept [simp]:
+ assumes "th' \<noteq> th"
+ shows "cntCS (e#s) th' = cntCS s th'" (is "?L = ?R")
+ using holdents_kept[OF assms]
+ by (unfold cntCS_def, simp)
+
+lemma readys_kept1:
+ assumes "th' \<noteq> th"
+ and "th' \<in> readys (e#s)"
+ shows "th' \<in> readys s"
+proof -
+ { fix cs'
+ assume wait: "waiting s th' cs'"
+ have n_wait: "\<not> waiting (e#s) th' cs'"
+ using assms by (auto simp:readys_def)
+ from wait[unfolded s_waiting_def, folded wq_def]
+ n_wait[unfolded s_waiting_def, folded wq_def, unfolded wq_kept]
+ have False by auto
+ } thus ?thesis using assms
+ by (unfold readys_def, auto)
+qed
+
+lemma readys_kept2:
+ assumes "th' \<noteq> th"
+ and "th' \<in> readys s"
+ shows "th' \<in> readys (e#s)"
+proof -
+ { fix cs'
+ assume wait: "waiting (e#s) th' cs'"
+ have n_wait: "\<not> waiting s th' cs'"
+ using assms(2) by (auto simp:readys_def)
+ from wait[unfolded s_waiting_def, folded wq_def, unfolded wq_kept]
+ n_wait[unfolded s_waiting_def, folded wq_def]
+ have False by auto
+ } with assms show ?thesis
+ by (unfold readys_def, auto)
+qed
+
+lemma readys_simp [simp]:
+ assumes "th' \<noteq> th"
+ shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)"
+ using readys_kept1[OF assms] readys_kept2[OF assms]
+ by metis
+
+lemma pvD_kept [simp]:
+ assumes "th' \<noteq> th"
+ shows "pvD (e#s) th' = pvD s th'"
+ using assms
+ by (unfold pvD_def, simp)
+
+lemma cnp_cnv_cncs_kept:
+ assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'"
+ shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'"
+proof -
+ {
+ assume eq_th': "th' = th"
+ have ?thesis using assms
+ by (unfold eq_th', simp, unfold is_exit, simp)
+ } moreover {
+ assume h: "th' \<noteq> th"
+ hence ?thesis using assms
+ by (simp, simp add:is_exit)
+ } ultimately show ?thesis by metis
+qed
+
+end
+
+context valid_trace_set
+begin
+
+lemma th_live_s [simp]: "th \<in> threads s"
+proof -
+ from pip_e[unfolded is_set]
+ show ?thesis
+ by (cases, unfold runing_def readys_def, simp)
+qed
+
+lemma th_ready_s [simp]: "th \<in> readys s"
+proof -
+ from pip_e[unfolded is_set]
+ show ?thesis
+ by (cases, unfold runing_def, simp)
+qed
+
+lemma th_not_live_es [simp]: "th \<in> threads (e#s)"
+ by (unfold is_set, simp)
+
+
+lemma holdents_kept:
+ shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R")
+proof -
+ { fix cs'
+ assume h: "cs' \<in> ?L"
+ hence "cs' \<in> ?R"
+ by (unfold holdents_def s_holding_def, fold wq_def,
+ unfold wq_kept, auto)
+ } moreover {
+ fix cs'
+ assume h: "cs' \<in> ?R"
+ hence "cs' \<in> ?L"
+ by (unfold holdents_def s_holding_def, fold wq_def,
+ unfold wq_kept, auto)
+ } ultimately show ?thesis by auto
+qed
+
+lemma cntCS_kept [simp]:
+ shows "cntCS (e#s) th' = cntCS s th'" (is "?L = ?R")
+ using holdents_kept
+ by (unfold cntCS_def, simp)
+
+lemma threads_kept[simp]:
+ "threads (e#s) = threads s"
+ by (unfold is_set, simp)
+
+lemma readys_kept1:
+ assumes "th' \<in> readys (e#s)"
+ shows "th' \<in> readys s"
+proof -
+ { fix cs'
+ assume wait: "waiting s th' cs'"
+ have n_wait: "\<not> waiting (e#s) th' cs'"
+ using assms by (auto simp:readys_def)
+ from wait[unfolded s_waiting_def, folded wq_def]
+ n_wait[unfolded s_waiting_def, folded wq_def, unfolded wq_kept]
+ have False by auto
+ } moreover have "th' \<in> threads s"
+ using assms[unfolded readys_def] by auto
+ ultimately show ?thesis
+ by (unfold readys_def, auto)
+qed
+
+lemma readys_kept2:
+ assumes "th' \<in> readys s"
+ shows "th' \<in> readys (e#s)"
+proof -
+ { fix cs'
+ assume wait: "waiting (e#s) th' cs'"
+ have n_wait: "\<not> waiting s th' cs'"
+ using assms by (auto simp:readys_def)
+ from wait[unfolded s_waiting_def, folded wq_def, unfolded wq_kept]
+ n_wait[unfolded s_waiting_def, folded wq_def]
+ have False by auto
+ } with assms show ?thesis
+ by (unfold readys_def, auto)
+qed
+
+lemma readys_simp [simp]:
+ shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)"
+ using readys_kept1 readys_kept2
+ by metis
+
+lemma pvD_kept [simp]:
+ shows "pvD (e#s) th' = pvD s th'"
+ by (unfold pvD_def, simp)
+
+lemma cnp_cnv_cncs_kept:
+ assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'"
+ shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'"
+ using assms
+ by (unfold is_set, simp, fold is_set, simp)
+
+end
+
+context valid_trace
+begin
+
+lemma cnp_cnv_cncs: "cntP s th' = cntV s th' + cntCS s th' + pvD s th'"
+proof(induct rule:ind)
+ case Nil
+ thus ?case
+ by (unfold cntP_def cntV_def pvD_def cntCS_def holdents_def
+ s_holding_def, simp)
+next
+ case (Cons s e)
+ interpret vt_e: valid_trace_e s e using Cons by simp
+ show ?case
+ proof(cases e)
+ case (Create th prio)
+ interpret vt_create: valid_trace_create s e th prio
+ using Create by (unfold_locales, simp)
+ show ?thesis using Cons by (simp add: vt_create.cnp_cnv_cncs_kept)
+ next
+ case (Exit th)
+ interpret vt_exit: valid_trace_exit s e th
+ using Exit by (unfold_locales, simp)
+ show ?thesis using Cons by (simp add: vt_exit.cnp_cnv_cncs_kept)
+ next
+ case (P th cs)
+ interpret vt_p: valid_trace_p s e th cs using P by (unfold_locales, simp)
+ show ?thesis using Cons by (simp add: vt_p.cnp_cnv_cncs_kept)
+ next
+ case (V th cs)
+ interpret vt_v: valid_trace_v s e th cs using V by (unfold_locales, simp)
+ show ?thesis using Cons by (simp add: vt_v.cnp_cnv_cncs_kept)
+ next
+ case (Set th prio)
+ interpret vt_set: valid_trace_set s e th prio
+ using Set by (unfold_locales, simp)
+ show ?thesis using Cons by (simp add: vt_set.cnp_cnv_cncs_kept)
+ qed
+qed
+
+end
+
+section {* Corollaries of @{thm valid_trace.cnp_cnv_cncs} *}
+
+context valid_trace
+begin
+
+lemma not_thread_holdents:
+ assumes not_in: "th \<notin> threads s"
+ shows "holdents s th = {}"
+proof -
+ { fix cs
+ assume "cs \<in> holdents s th"
+ hence "holding s th cs" by (auto simp:holdents_def)
+ from this[unfolded s_holding_def, folded wq_def]
+ have "th \<in> set (wq s cs)" by auto
+ with wq_threads have "th \<in> threads s" by auto
+ with assms
+ have False by simp
+ } thus ?thesis by auto
+qed
+
+lemma not_thread_cncs:
+ assumes not_in: "th \<notin> threads s"
+ shows "cntCS s th = 0"
+ using not_thread_holdents[OF assms]
+ by (simp add:cntCS_def)
+
+lemma cnp_cnv_eq:
+ assumes "th \<notin> threads s"
+ shows "cntP s th = cntV s th"
+ using assms cnp_cnv_cncs not_thread_cncs pvD_def
+ by (auto)
+
+lemma eq_pv_children:
+ assumes eq_pv: "cntP s th = cntV s th"
+ shows "children (RAG s) (Th th) = {}"
+proof -
+ from cnp_cnv_cncs and eq_pv
+ have "cntCS s th = 0"
+ by (auto split:if_splits)
+ from this[unfolded cntCS_def holdents_alt_def]
+ have card_0: "card (the_cs ` children (RAG s) (Th th)) = 0" .
+ have "finite (the_cs ` children (RAG s) (Th th))"
+ by (simp add: fsbtRAGs.finite_children)
+ from card_0[unfolded card_0_eq[OF this]]
+ show ?thesis by auto
+qed
+
+lemma eq_pv_holdents:
+ assumes eq_pv: "cntP s th = cntV s th"
+ shows "holdents s th = {}"
+ by (unfold holdents_alt_def eq_pv_children[OF assms], simp)
+
+lemma eq_pv_subtree:
+ assumes eq_pv: "cntP s th = cntV s th"
+ shows "subtree (RAG s) (Th th) = {Th th}"
+ using eq_pv_children[OF assms]
+ by (unfold subtree_children, simp)
+
+lemma count_eq_RAG_plus:
+ assumes "cntP s th = cntV s th"
+ shows "{th'. (Th th', Th th) \<in> (RAG s)^+} = {}"
+proof(rule ccontr)
+ assume otherwise: "{th'. (Th th', Th th) \<in> (RAG s)\<^sup>+} \<noteq> {}"
+ then obtain th' where "(Th th', Th th) \<in> (RAG s)^+" by auto
+ from tranclD2[OF this]
+ obtain z where "z \<in> children (RAG s) (Th th)"
+ by (auto simp:children_def)
+ with eq_pv_children[OF assms]
+ show False by simp
+qed
+
+lemma eq_pv_dependants:
+ assumes eq_pv: "cntP s th = cntV s th"
+ shows "dependants s th = {}"
+proof -
+ from count_eq_RAG_plus[OF assms, folded dependants_alt_def1]
+ show ?thesis .
+qed
+
+lemma count_eq_tRAG_plus:
+ assumes "cntP s th = cntV s th"
+ shows "{th'. (Th th', Th th) \<in> (tRAG s)^+} = {}"
+ using assms eq_pv_dependants dependants_alt_def eq_dependants by auto
+
+lemma count_eq_RAG_plus_Th:
+ assumes "cntP s th = cntV s th"
+ shows "{Th th' | th'. (Th th', Th th) \<in> (RAG s)^+} = {}"
+ using count_eq_RAG_plus[OF assms] by auto
+
+lemma count_eq_tRAG_plus_Th:
+ assumes "cntP s th = cntV s th"
+ shows "{Th th' | th'. (Th th', Th th) \<in> (tRAG s)^+} = {}"
+ using count_eq_tRAG_plus[OF assms] by auto
+
+end
+
+definition detached :: "state \<Rightarrow> thread \<Rightarrow> bool"
+ where "detached s th \<equiv> (\<not>(\<exists> cs. holding s th cs)) \<and> (\<not>(\<exists>cs. waiting s th cs))"
+
+lemma detached_test:
+ shows "detached s th = (Th th \<notin> Field (RAG s))"
+apply(simp add: detached_def Field_def)
+apply(simp add: s_RAG_def)
+apply(simp add: s_holding_abv s_waiting_abv)
+apply(simp add: Domain_iff Range_iff)
+apply(simp add: wq_def)
+apply(auto)
+done
+
+context valid_trace
+begin
+
+lemma detached_intro:
+ assumes eq_pv: "cntP s th = cntV s th"
+ shows "detached s th"
+proof -
+ from eq_pv cnp_cnv_cncs
+ have "th \<in> readys s \<or> th \<notin> threads s" by (auto simp:pvD_def)
+ thus ?thesis
+ proof
+ assume "th \<notin> threads s"
+ with rg_RAG_threads dm_RAG_threads
+ show ?thesis
+ by (auto simp add: detached_def s_RAG_def s_waiting_abv
+ s_holding_abv wq_def Domain_iff Range_iff)
+ next
+ assume "th \<in> readys s"
+ moreover have "Th th \<notin> Range (RAG s)"
+ proof -
+ from eq_pv_children[OF assms]
+ have "children (RAG s) (Th th) = {}" .
+ thus ?thesis
+ by (unfold children_def, auto)
+ qed
+ ultimately show ?thesis
+ by (auto simp add: detached_def s_RAG_def s_waiting_abv
+ s_holding_abv wq_def readys_def)
+ qed
+qed
+
+lemma detached_elim:
+ assumes dtc: "detached s th"
+ shows "cntP s th = cntV s th"
+proof -
+ have cncs_z: "cntCS s th = 0"
+ proof -
+ from dtc have "holdents s th = {}"
+ unfolding detached_def holdents_test s_RAG_def
+ by (simp add: s_waiting_abv wq_def s_holding_abv Domain_iff Range_iff)
+ thus ?thesis by (auto simp:cntCS_def)
+ qed
+ show ?thesis
+ proof(cases "th \<in> threads s")
+ case True
+ with dtc
+ have "th \<in> readys s"
+ by (unfold readys_def detached_def Field_def Domain_def Range_def,
+ auto simp:waiting_eq s_RAG_def)
+ with cncs_z show ?thesis using cnp_cnv_cncs by (simp add:pvD_def)
+ next
+ case False
+ with cncs_z and cnp_cnv_cncs show ?thesis by (simp add:pvD_def)
+ qed
+qed
+
+lemma detached_eq:
+ shows "(detached s th) = (cntP s th = cntV s th)"
+ by (insert vt, auto intro:detached_intro detached_elim)
+
+end
+
+section {* Recursive definition of @{term "cp"} *}
+
+lemma cp_alt_def1:
+ "cp s th = Max ((the_preced s o the_thread) ` (subtree (tRAG s) (Th th)))"
+proof -
+ have "(the_preced s ` the_thread ` subtree (tRAG s) (Th th)) =
+ ((the_preced s \<circ> the_thread) ` subtree (tRAG s) (Th th))"
+ by auto
+ thus ?thesis by (unfold cp_alt_def, fold threads_set_eq, auto)
+qed
+
+lemma cp_gen_def_cond:
+ assumes "x = Th th"
+ shows "cp s th = cp_gen s (Th th)"
+by (unfold cp_alt_def1 cp_gen_def, simp)
+
+lemma cp_gen_over_set:
+ assumes "\<forall> x \<in> A. \<exists> th. x = Th th"
+ shows "cp_gen s ` A = (cp s \<circ> the_thread) ` A"
+proof(rule f_image_eq)
+ fix a
+ assume "a \<in> A"
+ from assms[rule_format, OF this]
+ obtain th where eq_a: "a = Th th" by auto
+ show "cp_gen s a = (cp s \<circ> the_thread) a"
+ by (unfold eq_a, simp, unfold cp_gen_def_cond[OF refl[of "Th th"]], simp)
+qed
+
+
+context valid_trace
+begin
+(* ddd *)
+lemma cp_gen_rec:
+ assumes "x = Th th"
+ shows "cp_gen s x = Max ({the_preced s th} \<union> (cp_gen s) ` children (tRAG s) x)"
+proof(cases "children (tRAG s) x = {}")
+ case True
+ show ?thesis
+ by (unfold True cp_gen_def subtree_children, simp add:assms)
+next
+ case False
+ hence [simp]: "children (tRAG s) x \<noteq> {}" by auto
+ note fsbttRAGs.finite_subtree[simp]
+ have [simp]: "finite (children (tRAG s) x)"
+ by (intro rev_finite_subset[OF fsbttRAGs.finite_subtree],
+ rule children_subtree)
+ { fix r x
+ have "subtree r x \<noteq> {}" by (auto simp:subtree_def)
+ } note this[simp]
+ have [simp]: "\<exists>x\<in>children (tRAG s) x. subtree (tRAG s) x \<noteq> {}"
+ proof -
+ from False obtain q where "q \<in> children (tRAG s) x" by blast
+ moreover have "subtree (tRAG s) q \<noteq> {}" by simp
+ ultimately show ?thesis by blast
+ qed
+ have h: "Max ((the_preced s \<circ> the_thread) `
+ ({x} \<union> \<Union>(subtree (tRAG s) ` children (tRAG s) x))) =
+ Max ({the_preced s th} \<union> cp_gen s ` children (tRAG s) x)"
+ (is "?L = ?R")
+ proof -
+ let "Max (?f ` (?A \<union> \<Union> (?g ` ?B)))" = ?L
+ let "Max (_ \<union> (?h ` ?B))" = ?R
+ let ?L1 = "?f ` \<Union>(?g ` ?B)"
+ have eq_Max_L1: "Max ?L1 = Max (?h ` ?B)"
+ proof -
+ have "?L1 = ?f ` (\<Union> x \<in> ?B.(?g x))" by simp
+ also have "... = (\<Union> x \<in> ?B. ?f ` (?g x))" by auto
+ finally have "Max ?L1 = Max ..." by simp
+ also have "... = Max (Max ` (\<lambda>x. ?f ` subtree (tRAG s) x) ` ?B)"
+ by (subst Max_UNION, simp+)
+ also have "... = Max (cp_gen s ` children (tRAG s) x)"
+ by (unfold image_comp cp_gen_alt_def, simp)
+ finally show ?thesis .
+ qed
+ show ?thesis
+ proof -
+ have "?L = Max (?f ` ?A \<union> ?L1)" by simp
+ also have "... = max (the_preced s (the_thread x)) (Max ?L1)"
+ by (subst Max_Un, simp+)
+ also have "... = max (?f x) (Max (?h ` ?B))"
+ by (unfold eq_Max_L1, simp)
+ also have "... =?R"
+ by (rule max_Max_eq, (simp)+, unfold assms, simp)
+ finally show ?thesis .
+ qed
+ qed thus ?thesis
+ by (fold h subtree_children, unfold cp_gen_def, simp)
+qed
+
+lemma cp_rec:
+ "cp s th = Max ({the_preced s th} \<union>
+ (cp s o the_thread) ` children (tRAG s) (Th th))"
+proof -
+ have "Th th = Th th" by simp
+ note h = cp_gen_def_cond[OF this] cp_gen_rec[OF this]
+ show ?thesis
+ proof -
+ have "cp_gen s ` children (tRAG s) (Th th) =
+ (cp s \<circ> the_thread) ` children (tRAG s) (Th th)"
+ proof(rule cp_gen_over_set)
+ show " \<forall>x\<in>children (tRAG s) (Th th). \<exists>th. x = Th th"
+ by (unfold tRAG_alt_def, auto simp:children_def)
+ qed
+ thus ?thesis by (subst (1) h(1), unfold h(2), simp)
+ qed
+qed
+end
+
+section {* Other properties useful in Implementation.thy or Correctness.thy *}
+
+context valid_trace_e
+begin
+
+lemma actor_inv:
+ assumes "\<not> isCreate e"
+ shows "actor e \<in> runing s"
+ using pip_e assms
+ by (induct, auto)
+end
+
+context valid_trace
+begin
+
+lemma readys_root:
+ assumes "th \<in> readys s"
+ shows "root (RAG s) (Th th)"
+proof -
+ { fix x
+ assume "x \<in> ancestors (RAG s) (Th th)"
+ hence h: "(Th th, x) \<in> (RAG s)^+" by (auto simp:ancestors_def)
+ from tranclD[OF this]
+ obtain z where "(Th th, z) \<in> RAG s" by auto
+ with assms(1) have False
+ apply (case_tac z, auto simp:readys_def s_RAG_def s_waiting_def cs_waiting_def)
+ by (fold wq_def, blast)
+ } thus ?thesis by (unfold root_def, auto)
+qed
+
+lemma readys_in_no_subtree:
+ assumes "th \<in> readys s"
+ and "th' \<noteq> th"
+ shows "Th th \<notin> subtree (RAG s) (Th th')"
+proof
+ assume "Th th \<in> subtree (RAG s) (Th th')"
+ thus False
+ proof(cases rule:subtreeE)
+ case 1
+ with assms show ?thesis by auto
+ next
+ case 2
+ with readys_root[OF assms(1)]
+ show ?thesis by (auto simp:root_def)
+ qed
+qed
+
+lemma not_in_thread_isolated:
+ assumes "th \<notin> threads s"
+ shows "(Th th) \<notin> Field (RAG s)"
+proof
+ assume "(Th th) \<in> Field (RAG s)"
+ with dm_RAG_threads and rg_RAG_threads assms
+ show False by (unfold Field_def, blast)
+qed
+
+lemma next_th_holding:
+ assumes nxt: "next_th s th cs th'"
+ shows "holding (wq s) th cs"
+proof -
+ from nxt[unfolded next_th_def]
+ obtain rest where h: "wq s cs = th # rest"
+ "rest \<noteq> []"
+ "th' = hd (SOME q. distinct q \<and> set q = set rest)" by auto
+ thus ?thesis
+ by (unfold cs_holding_def, auto)
+qed
+
+lemma next_th_waiting:
+ assumes nxt: "next_th s th cs th'"
+ shows "waiting (wq s) th' cs"
+proof -
+ from nxt[unfolded next_th_def]
+ obtain rest where h: "wq s cs = th # rest"
+ "rest \<noteq> []"
+ "th' = hd (SOME q. distinct q \<and> set q = set rest)" by auto
+ from wq_distinct[of cs, unfolded h]
+ have dst: "distinct (th # rest)" .
+ have in_rest: "th' \<in> set rest"
+ proof(unfold h, rule someI2)
+ show "distinct rest \<and> set rest = set rest" using dst by auto
+ next
+ fix x assume "distinct x \<and> set x = set rest"
+ with h(2)
+ show "hd x \<in> set (rest)" by (cases x, auto)
+ qed
+ hence "th' \<in> set (wq s cs)" by (unfold h(1), auto)
+ moreover have "th' \<noteq> hd (wq s cs)"
+ by (unfold h(1), insert in_rest dst, auto)
+ ultimately show ?thesis by (auto simp:cs_waiting_def)
+qed
+
+lemma next_th_RAG:
+ assumes nxt: "next_th (s::event list) th cs th'"
+ shows "{(Cs cs, Th th), (Th th', Cs cs)} \<subseteq> RAG s"
+ using vt assms next_th_holding next_th_waiting
+ by (unfold s_RAG_def, simp)
+
+end
+
+context valid_trace_p
+begin
+
+find_theorems readys th
+
+end
+
+end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Attic/CpsG_1.thy Tue Jun 14 15:06:16 2016 +0100
@@ -0,0 +1,4403 @@
+theory CpsG
+imports PIPDefs
+begin
+
+lemma Max_f_mono:
+ assumes seq: "A \<subseteq> B"
+ and np: "A \<noteq> {}"
+ and fnt: "finite B"
+ shows "Max (f ` A) \<le> Max (f ` B)"
+proof(rule Max_mono)
+ from seq show "f ` A \<subseteq> f ` B" by auto
+next
+ from np show "f ` A \<noteq> {}" by auto
+next
+ from fnt and seq show "finite (f ` B)" by auto
+qed
+
+(* I am going to use this file as a start point to retrofiting
+ PIPBasics.thy, which is originally called CpsG.ghy *)
+
+locale valid_trace =
+ fixes s
+ assumes vt : "vt s"
+
+locale valid_trace_e = valid_trace +
+ fixes e
+ assumes vt_e: "vt (e#s)"
+begin
+
+lemma pip_e: "PIP s e"
+ using vt_e by (cases, simp)
+
+end
+
+locale valid_trace_create = valid_trace_e +
+ fixes th prio
+ assumes is_create: "e = Create th prio"
+
+locale valid_trace_exit = valid_trace_e +
+ fixes th
+ assumes is_exit: "e = Exit th"
+
+locale valid_trace_p = valid_trace_e +
+ fixes th cs
+ assumes is_p: "e = P th cs"
+
+locale valid_trace_v = valid_trace_e +
+ fixes th cs
+ assumes is_v: "e = V th cs"
+begin
+ definition "rest = tl (wq s cs)"
+ definition "wq' = (SOME q. distinct q \<and> set q = set rest)"
+end
+
+locale valid_trace_v_n = valid_trace_v +
+ assumes rest_nnl: "rest \<noteq> []"
+
+locale valid_trace_v_e = valid_trace_v +
+ assumes rest_nil: "rest = []"
+
+locale valid_trace_set= valid_trace_e +
+ fixes th prio
+ assumes is_set: "e = Set th prio"
+
+context valid_trace
+begin
+
+lemma ind [consumes 0, case_names Nil Cons, induct type]:
+ assumes "PP []"
+ and "(\<And>s e. valid_trace_e s e \<Longrightarrow>
+ PP s \<Longrightarrow> PIP s e \<Longrightarrow> PP (e # s))"
+ shows "PP s"
+proof(induct rule:vt.induct[OF vt, case_names Init Step])
+ case Init
+ from assms(1) show ?case .
+next
+ case (Step s e)
+ show ?case
+ proof(rule assms(2))
+ show "valid_trace_e s e" using Step by (unfold_locales, auto)
+ next
+ show "PP s" using Step by simp
+ next
+ show "PIP s e" using Step by simp
+ qed
+qed
+
+end
+
+
+lemma waiting_eq: "waiting s th cs = waiting (wq s) th cs"
+ by (unfold s_waiting_def cs_waiting_def wq_def, auto)
+
+lemma holding_eq: "holding (s::state) th cs = holding (wq s) th cs"
+ by (unfold s_holding_def wq_def cs_holding_def, simp)
+
+lemma runing_ready:
+ shows "runing s \<subseteq> readys s"
+ unfolding runing_def readys_def
+ by auto
+
+lemma readys_threads:
+ shows "readys s \<subseteq> threads s"
+ unfolding readys_def
+ by auto
+
+lemma wq_v_neq [simp]:
+ "cs \<noteq> cs' \<Longrightarrow> wq (V thread cs#s) cs' = wq s cs'"
+ by (auto simp:wq_def Let_def cp_def split:list.splits)
+
+lemma runing_head:
+ assumes "th \<in> runing s"
+ and "th \<in> set (wq_fun (schs s) cs)"
+ shows "th = hd (wq_fun (schs s) cs)"
+ using assms
+ by (simp add:runing_def readys_def s_waiting_def wq_def)
+
+context valid_trace
+begin
+
+lemma runing_wqE:
+ assumes "th \<in> runing s"
+ and "th \<in> set (wq s cs)"
+ obtains rest where "wq s cs = th#rest"
+proof -
+ from assms(2) obtain th' rest where eq_wq: "wq s cs = th'#rest"
+ by (meson list.set_cases)
+ have "th' = th"
+ proof(rule ccontr)
+ assume "th' \<noteq> th"
+ hence "th \<noteq> hd (wq s cs)" using eq_wq by auto
+ with assms(2)
+ have "waiting s th cs"
+ by (unfold s_waiting_def, fold wq_def, auto)
+ with assms show False
+ by (unfold runing_def readys_def, auto)
+ qed
+ with eq_wq that show ?thesis by metis
+qed
+
+end
+
+context valid_trace_p
+begin
+
+lemma wq_neq_simp [simp]:
+ assumes "cs' \<noteq> cs"
+ shows "wq (e#s) cs' = wq s cs'"
+ using assms unfolding is_p wq_def
+ by (auto simp:Let_def)
+
+lemma runing_th_s:
+ shows "th \<in> runing s"
+proof -
+ from pip_e[unfolded is_p]
+ show ?thesis by (cases, simp)
+qed
+
+lemma th_not_waiting:
+ "\<not> waiting s th c"
+proof -
+ have "th \<in> readys s"
+ using runing_ready runing_th_s by blast
+ thus ?thesis
+ by (unfold readys_def, auto)
+qed
+
+lemma waiting_neq_th:
+ assumes "waiting s t c"
+ shows "t \<noteq> th"
+ using assms using th_not_waiting by blast
+
+lemma th_not_in_wq:
+ shows "th \<notin> set (wq s cs)"
+proof
+ assume otherwise: "th \<in> set (wq s cs)"
+ from runing_wqE[OF runing_th_s this]
+ obtain rest where eq_wq: "wq s cs = th#rest" by blast
+ with otherwise
+ have "holding s th cs"
+ by (unfold s_holding_def, fold wq_def, simp)
+ hence cs_th_RAG: "(Cs cs, Th th) \<in> RAG s"
+ by (unfold s_RAG_def, fold holding_eq, auto)
+ from pip_e[unfolded is_p]
+ show False
+ proof(cases)
+ case (thread_P)
+ with cs_th_RAG show ?thesis by auto
+ qed
+qed
+
+lemma wq_es_cs:
+ "wq (e#s) cs = wq s cs @ [th]"
+ by (unfold is_p wq_def, auto simp:Let_def)
+
+lemma wq_distinct_kept:
+ assumes "distinct (wq s cs')"
+ shows "distinct (wq (e#s) cs')"
+proof(cases "cs' = cs")
+ case True
+ show ?thesis using True assms th_not_in_wq
+ by (unfold True wq_es_cs, auto)
+qed (insert assms, simp)
+
+end
+
+
+context valid_trace_v
+begin
+
+lemma wq_neq_simp [simp]:
+ assumes "cs' \<noteq> cs"
+ shows "wq (e#s) cs' = wq s cs'"
+ using assms unfolding is_v wq_def
+ by (auto simp:Let_def)
+
+lemma runing_th_s:
+ shows "th \<in> runing s"
+proof -
+ from pip_e[unfolded is_v]
+ show ?thesis by (cases, simp)
+qed
+
+lemma th_not_waiting:
+ "\<not> waiting s th c"
+proof -
+ have "th \<in> readys s"
+ using runing_ready runing_th_s by blast
+ thus ?thesis
+ by (unfold readys_def, auto)
+qed
+
+lemma waiting_neq_th:
+ assumes "waiting s t c"
+ shows "t \<noteq> th"
+ using assms using th_not_waiting by blast
+
+lemma wq_s_cs:
+ "wq s cs = th#rest"
+proof -
+ from pip_e[unfolded is_v]
+ show ?thesis
+ proof(cases)
+ case (thread_V)
+ from this(2) show ?thesis
+ by (unfold rest_def s_holding_def, fold wq_def,
+ metis empty_iff list.collapse list.set(1))
+ qed
+qed
+
+lemma wq_es_cs:
+ "wq (e#s) cs = wq'"
+ using wq_s_cs[unfolded wq_def]
+ by (auto simp:Let_def wq_def rest_def wq'_def is_v, simp)
+
+lemma wq_distinct_kept:
+ assumes "distinct (wq s cs')"
+ shows "distinct (wq (e#s) cs')"
+proof(cases "cs' = cs")
+ case True
+ show ?thesis
+ proof(unfold True wq_es_cs wq'_def, rule someI2)
+ show "distinct rest \<and> set rest = set rest"
+ using assms[unfolded True wq_s_cs] by auto
+ qed simp
+qed (insert assms, simp)
+
+end
+
+context valid_trace
+begin
+
+lemma actor_inv:
+ assumes "PIP s e"
+ and "\<not> isCreate e"
+ shows "actor e \<in> runing s"
+ using assms
+ by (induct, auto)
+
+lemma isP_E:
+ assumes "isP e"
+ obtains cs where "e = P (actor e) cs"
+ using assms by (cases e, auto)
+
+lemma isV_E:
+ assumes "isV e"
+ obtains cs where "e = V (actor e) cs"
+ using assms by (cases e, auto)
+
+lemma wq_distinct: "distinct (wq s cs)"
+proof(induct rule:ind)
+ case (Cons s e)
+ interpret vt_e: valid_trace_e s e using Cons by simp
+ show ?case
+ proof(cases e)
+ case (V th cs)
+ interpret vt_v: valid_trace_v s e th cs using V by (unfold_locales, simp)
+ show ?thesis using Cons by (simp add: vt_v.wq_distinct_kept)
+ qed
+qed (unfold wq_def Let_def, simp)
+
+end
+
+context valid_trace_e
+begin
+
+text {*
+ The following lemma shows that only the @{text "P"}
+ operation can add new thread into waiting queues.
+ Such kind of lemmas are very obvious, but need to be checked formally.
+ This is a kind of confirmation that our modelling is correct.
+*}
+
+lemma wq_in_inv:
+ assumes s_ni: "thread \<notin> set (wq s cs)"
+ and s_i: "thread \<in> set (wq (e#s) cs)"
+ shows "e = P thread cs"
+proof(cases e)
+ -- {* This is the only non-trivial case: *}
+ case (V th cs1)
+ have False
+ proof(cases "cs1 = cs")
+ case True
+ show ?thesis
+ proof(cases "(wq s cs1)")
+ case (Cons w_hd w_tl)
+ have "set (wq (e#s) cs) \<subseteq> set (wq s cs)"
+ proof -
+ have "(wq (e#s) cs) = (SOME q. distinct q \<and> set q = set w_tl)"
+ using Cons V by (auto simp:wq_def Let_def True split:if_splits)
+ moreover have "set ... \<subseteq> set (wq s cs)"
+ proof(rule someI2)
+ show "distinct w_tl \<and> set w_tl = set w_tl"
+ by (metis distinct.simps(2) local.Cons wq_distinct)
+ qed (insert Cons True, auto)
+ ultimately show ?thesis by simp
+ qed
+ with assms show ?thesis by auto
+ qed (insert assms V True, auto simp:wq_def Let_def split:if_splits)
+ qed (insert assms V, auto simp:wq_def Let_def split:if_splits)
+ thus ?thesis by auto
+qed (insert assms, auto simp:wq_def Let_def split:if_splits)
+
+lemma wq_out_inv:
+ assumes s_in: "thread \<in> set (wq s cs)"
+ and s_hd: "thread = hd (wq s cs)"
+ and s_i: "thread \<noteq> hd (wq (e#s) cs)"
+ shows "e = V thread cs"
+proof(cases e)
+-- {* There are only two non-trivial cases: *}
+ case (V th cs1)
+ show ?thesis
+ proof(cases "cs1 = cs")
+ case True
+ have "PIP s (V th cs)" using pip_e[unfolded V[unfolded True]] .
+ thus ?thesis
+ proof(cases)
+ case (thread_V)
+ moreover have "th = thread" using thread_V(2) s_hd
+ by (unfold s_holding_def wq_def, simp)
+ ultimately show ?thesis using V True by simp
+ qed
+ qed (insert assms V, auto simp:wq_def Let_def split:if_splits)
+next
+ case (P th cs1)
+ show ?thesis
+ proof(cases "cs1 = cs")
+ case True
+ with P have "wq (e#s) cs = wq_fun (schs s) cs @ [th]"
+ by (auto simp:wq_def Let_def split:if_splits)
+ with s_i s_hd s_in have False
+ by (metis empty_iff hd_append2 list.set(1) wq_def)
+ thus ?thesis by simp
+ qed (insert assms P, auto simp:wq_def Let_def split:if_splits)
+qed (insert assms, auto simp:wq_def Let_def split:if_splits)
+
+end
+
+
+
+context valid_trace
+begin
+
+
+text {* (* ddd *)
+ The nature of the work is like this: since it starts from a very simple and basic
+ model, even intuitively very `basic` and `obvious` properties need to derived from scratch.
+ For instance, the fact
+ that one thread can not be blocked by two critical resources at the same time
+ is obvious, because only running threads can make new requests, if one is waiting for
+ a critical resource and get blocked, it can not make another resource request and get
+ blocked the second time (because it is not running).
+
+ To derive this fact, one needs to prove by contraction and
+ reason about time (or @{text "moement"}). The reasoning is based on a generic theorem
+ named @{text "p_split"}, which is about status changing along the time axis. It says if
+ a condition @{text "Q"} is @{text "True"} at a state @{text "s"},
+ but it was @{text "False"} at the very beginning, then there must exits a moment @{text "t"}
+ in the history of @{text "s"} (notice that @{text "s"} itself is essentially the history
+ of events leading to it), such that @{text "Q"} switched
+ from being @{text "False"} to @{text "True"} and kept being @{text "True"}
+ till the last moment of @{text "s"}.
+
+ Suppose a thread @{text "th"} is blocked
+ on @{text "cs1"} and @{text "cs2"} in some state @{text "s"},
+ since no thread is blocked at the very beginning, by applying
+ @{text "p_split"} to these two blocking facts, there exist
+ two moments @{text "t1"} and @{text "t2"} in @{text "s"}, such that
+ @{text "th"} got blocked on @{text "cs1"} and @{text "cs2"}
+ and kept on blocked on them respectively ever since.
+
+ Without lost of generality, we assume @{text "t1"} is earlier than @{text "t2"}.
+ However, since @{text "th"} was blocked ever since memonent @{text "t1"}, so it was still
+ in blocked state at moment @{text "t2"} and could not
+ make any request and get blocked the second time: Contradiction.
+*}
+
+lemma waiting_unique_pre: (* ddd *)
+ assumes h11: "thread \<in> set (wq s cs1)"
+ and h12: "thread \<noteq> hd (wq s cs1)"
+ assumes h21: "thread \<in> set (wq s cs2)"
+ and h22: "thread \<noteq> hd (wq s cs2)"
+ and neq12: "cs1 \<noteq> cs2"
+ shows "False"
+proof -
+ let "?Q" = "\<lambda> cs s. thread \<in> set (wq s cs) \<and> thread \<noteq> hd (wq s cs)"
+ from h11 and h12 have q1: "?Q cs1 s" by simp
+ from h21 and h22 have q2: "?Q cs2 s" by simp
+ have nq1: "\<not> ?Q cs1 []" by (simp add:wq_def)
+ have nq2: "\<not> ?Q cs2 []" by (simp add:wq_def)
+ from p_split [of "?Q cs1", OF q1 nq1]
+ obtain t1 where lt1: "t1 < length s"
+ and np1: "\<not> ?Q cs1 (moment t1 s)"
+ and nn1: "(\<forall>i'>t1. ?Q cs1 (moment i' s))" by auto
+ from p_split [of "?Q cs2", OF q2 nq2]
+ obtain t2 where lt2: "t2 < length s"
+ and np2: "\<not> ?Q cs2 (moment t2 s)"
+ and nn2: "(\<forall>i'>t2. ?Q cs2 (moment i' s))" by auto
+ { fix s cs
+ assume q: "?Q cs s"
+ have "thread \<notin> runing s"
+ proof
+ assume "thread \<in> runing s"
+ hence " \<forall>cs. \<not> (thread \<in> set (wq_fun (schs s) cs) \<and>
+ thread \<noteq> hd (wq_fun (schs s) cs))"
+ by (unfold runing_def s_waiting_def readys_def, auto)
+ from this[rule_format, of cs] q
+ show False by (simp add: wq_def)
+ qed
+ } note q_not_runing = this
+ { fix t1 t2 cs1 cs2
+ assume lt1: "t1 < length s"
+ and np1: "\<not> ?Q cs1 (moment t1 s)"
+ and nn1: "(\<forall>i'>t1. ?Q cs1 (moment i' s))"
+ and lt2: "t2 < length s"
+ and np2: "\<not> ?Q cs2 (moment t2 s)"
+ and nn2: "(\<forall>i'>t2. ?Q cs2 (moment i' s))"
+ and lt12: "t1 < t2"
+ let ?t3 = "Suc t2"
+ from lt2 have le_t3: "?t3 \<le> length s" by auto
+ from moment_plus [OF this]
+ obtain e where eq_m: "moment ?t3 s = e#moment t2 s" by auto
+ have "t2 < ?t3" by simp
+ from nn2 [rule_format, OF this] and eq_m
+ have h1: "thread \<in> set (wq (e#moment t2 s) cs2)" and
+ h2: "thread \<noteq> hd (wq (e#moment t2 s) cs2)" by auto
+ have "vt (e#moment t2 s)"
+ proof -
+ from vt_moment
+ have "vt (moment ?t3 s)" .
+ with eq_m show ?thesis by simp
+ qed
+ then interpret vt_e: valid_trace_e "moment t2 s" "e"
+ by (unfold_locales, auto, cases, simp)
+ have ?thesis
+ proof -
+ have "thread \<in> runing (moment t2 s)"
+ proof(cases "thread \<in> set (wq (moment t2 s) cs2)")
+ case True
+ have "e = V thread cs2"
+ proof -
+ have eq_th: "thread = hd (wq (moment t2 s) cs2)"
+ using True and np2 by auto
+ from vt_e.wq_out_inv[OF True this h2]
+ show ?thesis .
+ qed
+ thus ?thesis using vt_e.actor_inv[OF vt_e.pip_e] by auto
+ next
+ case False
+ have "e = P thread cs2" using vt_e.wq_in_inv[OF False h1] .
+ with vt_e.actor_inv[OF vt_e.pip_e]
+ show ?thesis by auto
+ qed
+ moreover have "thread \<notin> runing (moment t2 s)"
+ by (rule q_not_runing[OF nn1[rule_format, OF lt12]])
+ ultimately show ?thesis by simp
+ qed
+ } note lt_case = this
+ show ?thesis
+ proof -
+ { assume "t1 < t2"
+ from lt_case[OF lt1 np1 nn1 lt2 np2 nn2 this]
+ have ?thesis .
+ } moreover {
+ assume "t2 < t1"
+ from lt_case[OF lt2 np2 nn2 lt1 np1 nn1 this]
+ have ?thesis .
+ } moreover {
+ assume eq_12: "t1 = t2"
+ let ?t3 = "Suc t2"
+ from lt2 have le_t3: "?t3 \<le> length s" by auto
+ from moment_plus [OF this]
+ obtain e where eq_m: "moment ?t3 s = e#moment t2 s" by auto
+ have lt_2: "t2 < ?t3" by simp
+ from nn2 [rule_format, OF this] and eq_m
+ have h1: "thread \<in> set (wq (e#moment t2 s) cs2)" and
+ h2: "thread \<noteq> hd (wq (e#moment t2 s) cs2)" by auto
+ from nn1[rule_format, OF lt_2[folded eq_12]] eq_m[folded eq_12]
+ have g1: "thread \<in> set (wq (e#moment t1 s) cs1)" and
+ g2: "thread \<noteq> hd (wq (e#moment t1 s) cs1)" by auto
+ have "vt (e#moment t2 s)"
+ proof -
+ from vt_moment
+ have "vt (moment ?t3 s)" .
+ with eq_m show ?thesis by simp
+ qed
+ then interpret vt_e: valid_trace_e "moment t2 s" "e"
+ by (unfold_locales, auto, cases, simp)
+ have "e = V thread cs2 \<or> e = P thread cs2"
+ proof(cases "thread \<in> set (wq (moment t2 s) cs2)")
+ case True
+ have "e = V thread cs2"
+ proof -
+ have eq_th: "thread = hd (wq (moment t2 s) cs2)"
+ using True and np2 by auto
+ from vt_e.wq_out_inv[OF True this h2]
+ show ?thesis .
+ qed
+ thus ?thesis by auto
+ next
+ case False
+ have "e = P thread cs2" using vt_e.wq_in_inv[OF False h1] .
+ thus ?thesis by auto
+ qed
+ moreover have "e = V thread cs1 \<or> e = P thread cs1"
+ proof(cases "thread \<in> set (wq (moment t1 s) cs1)")
+ case True
+ have eq_th: "thread = hd (wq (moment t1 s) cs1)"
+ using True and np1 by auto
+ from vt_e.wq_out_inv[folded eq_12, OF True this g2]
+ have "e = V thread cs1" .
+ thus ?thesis by auto
+ next
+ case False
+ have "e = P thread cs1" using vt_e.wq_in_inv[folded eq_12, OF False g1] .
+ thus ?thesis by auto
+ qed
+ ultimately have ?thesis using neq12 by auto
+ } ultimately show ?thesis using nat_neq_iff by blast
+ qed
+qed
+
+text {*
+ This lemma is a simple corrolary of @{text "waiting_unique_pre"}.
+*}
+
+lemma waiting_unique:
+ assumes "waiting s th cs1"
+ and "waiting s th cs2"
+ shows "cs1 = cs2"
+ using waiting_unique_pre assms
+ unfolding wq_def s_waiting_def
+ by auto
+
+end
+
+(* not used *)
+text {*
+ Every thread can only be blocked on one critical resource,
+ symmetrically, every critical resource can only be held by one thread.
+ This fact is much more easier according to our definition.
+*}
+lemma held_unique:
+ assumes "holding (s::event list) th1 cs"
+ and "holding s th2 cs"
+ shows "th1 = th2"
+ by (insert assms, unfold s_holding_def, auto)
+
+
+lemma last_set_lt: "th \<in> threads s \<Longrightarrow> last_set th s < length s"
+ apply (induct s, auto)
+ by (case_tac a, auto split:if_splits)
+
+lemma last_set_unique:
+ "\<lbrakk>last_set th1 s = last_set th2 s; th1 \<in> threads s; th2 \<in> threads s\<rbrakk>
+ \<Longrightarrow> th1 = th2"
+ apply (induct s, auto)
+ by (case_tac a, auto split:if_splits dest:last_set_lt)
+
+lemma preced_unique :
+ assumes pcd_eq: "preced th1 s = preced th2 s"
+ and th_in1: "th1 \<in> threads s"
+ and th_in2: " th2 \<in> threads s"
+ shows "th1 = th2"
+proof -
+ from pcd_eq have "last_set th1 s = last_set th2 s" by (simp add:preced_def)
+ from last_set_unique [OF this th_in1 th_in2]
+ show ?thesis .
+qed
+
+lemma preced_linorder:
+ assumes neq_12: "th1 \<noteq> th2"
+ and th_in1: "th1 \<in> threads s"
+ and th_in2: " th2 \<in> threads s"
+ shows "preced th1 s < preced th2 s \<or> preced th1 s > preced th2 s"
+proof -
+ from preced_unique [OF _ th_in1 th_in2] and neq_12
+ have "preced th1 s \<noteq> preced th2 s" by auto
+ thus ?thesis by auto
+qed
+
+(* An aux lemma used later *)
+lemma unique_minus:
+ assumes unique: "\<And> a b c. \<lbrakk>(a, b) \<in> r; (a, c) \<in> r\<rbrakk> \<Longrightarrow> b = c"
+ and xy: "(x, y) \<in> r"
+ and xz: "(x, z) \<in> r^+"
+ and neq: "y \<noteq> z"
+ shows "(y, z) \<in> r^+"
+proof -
+ from xz and neq show ?thesis
+ proof(induct)
+ case (base ya)
+ have "(x, ya) \<in> r" by fact
+ from unique [OF xy this] have "y = ya" .
+ with base show ?case by auto
+ next
+ case (step ya z)
+ show ?case
+ proof(cases "y = ya")
+ case True
+ from step True show ?thesis by simp
+ next
+ case False
+ from step False
+ show ?thesis by auto
+ qed
+ qed
+qed
+
+lemma unique_base:
+ assumes unique: "\<And> a b c. \<lbrakk>(a, b) \<in> r; (a, c) \<in> r\<rbrakk> \<Longrightarrow> b = c"
+ and xy: "(x, y) \<in> r"
+ and xz: "(x, z) \<in> r^+"
+ and neq_yz: "y \<noteq> z"
+ shows "(y, z) \<in> r^+"
+proof -
+ from xz neq_yz show ?thesis
+ proof(induct)
+ case (base ya)
+ from xy unique base show ?case by auto
+ next
+ case (step ya z)
+ show ?case
+ proof(cases "y = ya")
+ case True
+ from True step show ?thesis by auto
+ next
+ case False
+ from False step
+ have "(y, ya) \<in> r\<^sup>+" by auto
+ with step show ?thesis by auto
+ qed
+ qed
+qed
+
+lemma unique_chain:
+ assumes unique: "\<And> a b c. \<lbrakk>(a, b) \<in> r; (a, c) \<in> r\<rbrakk> \<Longrightarrow> b = c"
+ and xy: "(x, y) \<in> r^+"
+ and xz: "(x, z) \<in> r^+"
+ and neq_yz: "y \<noteq> z"
+ shows "(y, z) \<in> r^+ \<or> (z, y) \<in> r^+"
+proof -
+ from xy xz neq_yz show ?thesis
+ proof(induct)
+ case (base y)
+ have h1: "(x, y) \<in> r" and h2: "(x, z) \<in> r\<^sup>+" and h3: "y \<noteq> z" using base by auto
+ from unique_base [OF _ h1 h2 h3] and unique show ?case by auto
+ next
+ case (step y za)
+ show ?case
+ proof(cases "y = z")
+ case True
+ from True step show ?thesis by auto
+ next
+ case False
+ from False step have "(y, z) \<in> r\<^sup>+ \<or> (z, y) \<in> r\<^sup>+" by auto
+ thus ?thesis
+ proof
+ assume "(z, y) \<in> r\<^sup>+"
+ with step have "(z, za) \<in> r\<^sup>+" by auto
+ thus ?thesis by auto
+ next
+ assume h: "(y, z) \<in> r\<^sup>+"
+ from step have yza: "(y, za) \<in> r" by simp
+ from step have "za \<noteq> z" by simp
+ from unique_minus [OF _ yza h this] and unique
+ have "(za, z) \<in> r\<^sup>+" by auto
+ thus ?thesis by auto
+ qed
+ qed
+ qed
+qed
+
+text {*
+ The following three lemmas show that @{text "RAG"} does not change
+ by the happening of @{text "Set"}, @{text "Create"} and @{text "Exit"}
+ events, respectively.
+*}
+
+lemma RAG_set_unchanged: "(RAG (Set th prio # s)) = RAG s"
+apply (unfold s_RAG_def s_waiting_def wq_def)
+by (simp add:Let_def)
+
+lemma RAG_create_unchanged: "(RAG (Create th prio # s)) = RAG s"
+apply (unfold s_RAG_def s_waiting_def wq_def)
+by (simp add:Let_def)
+
+lemma RAG_exit_unchanged: "(RAG (Exit th # s)) = RAG s"
+apply (unfold s_RAG_def s_waiting_def wq_def)
+by (simp add:Let_def)
+
+
+context valid_trace_v
+begin
+
+
+lemma distinct_rest: "distinct rest"
+ by (simp add: distinct_tl rest_def wq_distinct)
+
+definition "wq' = (SOME q. distinct q \<and> set q = set rest)"
+
+lemma runing_th_s:
+ shows "th \<in> runing s"
+proof -
+ from pip_e[unfolded is_v]
+ show ?thesis by (cases, simp)
+qed
+
+lemma holding_cs_eq_th:
+ assumes "holding s t cs"
+ shows "t = th"
+proof -
+ from pip_e[unfolded is_v]
+ show ?thesis
+ proof(cases)
+ case (thread_V)
+ from held_unique[OF this(2) assms]
+ show ?thesis by simp
+ qed
+qed
+
+lemma th_not_waiting:
+ "\<not> waiting s th c"
+proof -
+ have "th \<in> readys s"
+ using runing_ready runing_th_s by blast
+ thus ?thesis
+ by (unfold readys_def, auto)
+qed
+
+lemma waiting_neq_th:
+ assumes "waiting s t c"
+ shows "t \<noteq> th"
+ using assms using th_not_waiting by blast
+
+lemma wq_s_cs:
+ "wq s cs = th#rest"
+proof -
+ from pip_e[unfolded is_v]
+ show ?thesis
+ proof(cases)
+ case (thread_V)
+ from this(2) show ?thesis
+ by (unfold rest_def s_holding_def, fold wq_def,
+ metis empty_iff list.collapse list.set(1))
+ qed
+qed
+
+lemma wq_es_cs:
+ "wq (e#s) cs = wq'"
+ using wq_s_cs[unfolded wq_def]
+ by (auto simp:Let_def wq_def rest_def wq'_def is_v, simp)
+
+lemma distinct_wq': "distinct wq'"
+ by (metis (mono_tags, lifting) distinct_rest some_eq_ex wq'_def)
+
+lemma th'_in_inv:
+ assumes "th' \<in> set wq'"
+ shows "th' \<in> set rest"
+ using assms
+ by (metis (mono_tags, lifting) distinct.simps(2)
+ rest_def some_eq_ex wq'_def wq_distinct wq_s_cs)
+
+lemma neq_t_th:
+ assumes "waiting (e#s) t c"
+ shows "t \<noteq> th"
+proof
+ assume otherwise: "t = th"
+ show False
+ proof(cases "c = cs")
+ case True
+ have "t \<in> set wq'"
+ using assms[unfolded True s_waiting_def, folded wq_def, unfolded wq_es_cs]
+ by simp
+ from th'_in_inv[OF this] have "t \<in> set rest" .
+ with wq_s_cs[folded otherwise] wq_distinct[of cs]
+ show ?thesis by simp
+ next
+ case False
+ have "wq (e#s) c = wq s c" using False
+ by (unfold is_v, simp)
+ hence "waiting s t c" using assms
+ by (simp add: cs_waiting_def waiting_eq)
+ hence "t \<notin> readys s" by (unfold readys_def, auto)
+ hence "t \<notin> runing s" using runing_ready by auto
+ with runing_th_s[folded otherwise] show ?thesis by auto
+ qed
+qed
+
+lemma waiting_esI1:
+ assumes "waiting s t c"
+ and "c \<noteq> cs"
+ shows "waiting (e#s) t c"
+proof -
+ have "wq (e#s) c = wq s c"
+ using assms(2) is_v by auto
+ with assms(1) show ?thesis
+ using cs_waiting_def waiting_eq by auto
+qed
+
+lemma holding_esI2:
+ assumes "c \<noteq> cs"
+ and "holding s t c"
+ shows "holding (e#s) t c"
+proof -
+ from assms(1) have "wq (e#s) c = wq s c" using is_v by auto
+ from assms(2)[unfolded s_holding_def, folded wq_def,
+ folded this, unfolded wq_def, folded s_holding_def]
+ show ?thesis .
+qed
+
+lemma holding_esI1:
+ assumes "holding s t c"
+ and "t \<noteq> th"
+ shows "holding (e#s) t c"
+proof -
+ have "c \<noteq> cs" using assms using holding_cs_eq_th by blast
+ from holding_esI2[OF this assms(1)]
+ show ?thesis .
+qed
+
+end
+
+context valid_trace_v_n
+begin
+
+lemma neq_wq': "wq' \<noteq> []"
+proof (unfold wq'_def, rule someI2)
+ show "distinct rest \<and> set rest = set rest"
+ by (simp add: distinct_rest)
+next
+ fix x
+ assume " distinct x \<and> set x = set rest"
+ thus "x \<noteq> []" using rest_nnl by auto
+qed
+
+definition "taker = hd wq'"
+
+definition "rest' = tl wq'"
+
+lemma eq_wq': "wq' = taker # rest'"
+ by (simp add: neq_wq' rest'_def taker_def)
+
+lemma next_th_taker:
+ shows "next_th s th cs taker"
+ using rest_nnl taker_def wq'_def wq_s_cs
+ by (auto simp:next_th_def)
+
+lemma taker_unique:
+ assumes "next_th s th cs taker'"
+ shows "taker' = taker"
+proof -
+ from assms
+ obtain rest' where
+ h: "wq s cs = th # rest'"
+ "taker' = hd (SOME q. distinct q \<and> set q = set rest')"
+ by (unfold next_th_def, auto)
+ with wq_s_cs have "rest' = rest" by auto
+ thus ?thesis using h(2) taker_def wq'_def by auto
+qed
+
+lemma waiting_set_eq:
+ "{(Th th', Cs cs) |th'. next_th s th cs th'} = {(Th taker, Cs cs)}"
+ by (smt all_not_in_conv bot.extremum insertI1 insert_subset
+ mem_Collect_eq next_th_taker subsetI subset_antisym taker_def taker_unique)
+
+lemma holding_set_eq:
+ "{(Cs cs, Th th') |th'. next_th s th cs th'} = {(Cs cs, Th taker)}"
+ using next_th_taker taker_def waiting_set_eq
+ by fastforce
+
+lemma holding_taker:
+ shows "holding (e#s) taker cs"
+ by (unfold s_holding_def, fold wq_def, unfold wq_es_cs,
+ auto simp:neq_wq' taker_def)
+
+lemma waiting_esI2:
+ assumes "waiting s t cs"
+ and "t \<noteq> taker"
+ shows "waiting (e#s) t cs"
+proof -
+ have "t \<in> set wq'"
+ proof(unfold wq'_def, rule someI2)
+ show "distinct rest \<and> set rest = set rest"
+ by (simp add: distinct_rest)
+ next
+ fix x
+ assume "distinct x \<and> set x = set rest"
+ moreover have "t \<in> set rest"
+ using assms(1) cs_waiting_def waiting_eq wq_s_cs by auto
+ ultimately show "t \<in> set x" by simp
+ qed
+ moreover have "t \<noteq> hd wq'"
+ using assms(2) taker_def by auto
+ ultimately show ?thesis
+ by (unfold s_waiting_def, fold wq_def, unfold wq_es_cs, simp)
+qed
+
+lemma waiting_esE:
+ assumes "waiting (e#s) t c"
+ obtains "c \<noteq> cs" "waiting s t c"
+ | "c = cs" "t \<noteq> taker" "waiting s t cs" "t \<in> set rest'"
+proof(cases "c = cs")
+ case False
+ hence "wq (e#s) c = wq s c" using is_v by auto
+ with assms have "waiting s t c" using cs_waiting_def waiting_eq by auto
+ from that(1)[OF False this] show ?thesis .
+next
+ case True
+ from assms[unfolded s_waiting_def True, folded wq_def, unfolded wq_es_cs]
+ have "t \<noteq> hd wq'" "t \<in> set wq'" by auto
+ hence "t \<noteq> taker" by (simp add: taker_def)
+ moreover hence "t \<noteq> th" using assms neq_t_th by blast
+ moreover have "t \<in> set rest" by (simp add: `t \<in> set wq'` th'_in_inv)
+ ultimately have "waiting s t cs"
+ by (metis cs_waiting_def list.distinct(2) list.sel(1)
+ list.set_sel(2) rest_def waiting_eq wq_s_cs)
+ show ?thesis using that(2)
+ using True `t \<in> set wq'` `t \<noteq> taker` `waiting s t cs` eq_wq' by auto
+qed
+
+lemma holding_esI1:
+ assumes "c = cs"
+ and "t = taker"
+ shows "holding (e#s) t c"
+ by (unfold assms, simp add: holding_taker)
+
+lemma holding_esE:
+ assumes "holding (e#s) t c"
+ obtains "c = cs" "t = taker"
+ | "c \<noteq> cs" "holding s t c"
+proof(cases "c = cs")
+ case True
+ from assms[unfolded True, unfolded s_holding_def,
+ folded wq_def, unfolded wq_es_cs]
+ have "t = taker" by (simp add: taker_def)
+ from that(1)[OF True this] show ?thesis .
+next
+ case False
+ hence "wq (e#s) c = wq s c" using is_v by auto
+ from assms[unfolded s_holding_def, folded wq_def,
+ unfolded this, unfolded wq_def, folded s_holding_def]
+ have "holding s t c" .
+ from that(2)[OF False this] show ?thesis .
+qed
+
+end
+
+
+context valid_trace_v_n
+begin
+
+lemma nil_wq': "wq' = []"
+proof (unfold wq'_def, rule someI2)
+ show "distinct rest \<and> set rest = set rest"
+ by (simp add: distinct_rest)
+next
+ fix x
+ assume " distinct x \<and> set x = set rest"
+ thus "x = []" using rest_nil by auto
+qed
+
+lemma no_taker:
+ assumes "next_th s th cs taker"
+ shows "False"
+proof -
+ from assms[unfolded next_th_def]
+ obtain rest' where "wq s cs = th # rest'" "rest' \<noteq> []"
+ by auto
+ thus ?thesis using rest_def rest_nil by auto
+qed
+
+lemma waiting_set_eq:
+ "{(Th th', Cs cs) |th'. next_th s th cs th'} = {}"
+ using no_taker by auto
+
+lemma holding_set_eq:
+ "{(Cs cs, Th th') |th'. next_th s th cs th'} = {}"
+ using no_taker by auto
+
+lemma no_holding:
+ assumes "holding (e#s) taker cs"
+ shows False
+proof -
+ from wq_es_cs[unfolded nil_wq']
+ have " wq (e # s) cs = []" .
+ from assms[unfolded s_holding_def, folded wq_def, unfolded this]
+ show ?thesis by auto
+qed
+
+lemma no_waiting:
+ assumes "waiting (e#s) t cs"
+ shows False
+proof -
+ from wq_es_cs[unfolded nil_wq']
+ have " wq (e # s) cs = []" .
+ from assms[unfolded s_waiting_def, folded wq_def, unfolded this]
+ show ?thesis by auto
+qed
+
+lemma waiting_esI2:
+ assumes "waiting s t c"
+ shows "waiting (e#s) t c"
+proof -
+ have "c \<noteq> cs" using assms
+ using cs_waiting_def rest_nil waiting_eq wq_s_cs by auto
+ from waiting_esI1[OF assms this]
+ show ?thesis .
+qed
+
+lemma waiting_esE:
+ assumes "waiting (e#s) t c"
+ obtains "c \<noteq> cs" "waiting s t c"
+proof(cases "c = cs")
+ case False
+ hence "wq (e#s) c = wq s c" using is_v by auto
+ with assms have "waiting s t c" using cs_waiting_def waiting_eq by auto
+ from that(1)[OF False this] show ?thesis .
+next
+ case True
+ from no_waiting[OF assms[unfolded True]]
+ show ?thesis by auto
+qed
+
+lemma holding_esE:
+ assumes "holding (e#s) t c"
+ obtains "c \<noteq> cs" "holding s t c"
+proof(cases "c = cs")
+ case True
+ from no_holding[OF assms[unfolded True]]
+ show ?thesis by auto
+next
+ case False
+ hence "wq (e#s) c = wq s c" using is_v by auto
+ from assms[unfolded s_holding_def, folded wq_def,
+ unfolded this, unfolded wq_def, folded s_holding_def]
+ have "holding s t c" .
+ from that[OF False this] show ?thesis .
+qed
+
+end (* ccc *)
+
+lemma rel_eqI:
+ assumes "\<And> x y. (x,y) \<in> A \<Longrightarrow> (x,y) \<in> B"
+ and "\<And> x y. (x,y) \<in> B \<Longrightarrow> (x, y) \<in> A"
+ shows "A = B"
+ using assms by auto
+
+lemma in_RAG_E:
+ assumes "(n1, n2) \<in> RAG (s::state)"
+ obtains (waiting) th cs where "n1 = Th th" "n2 = Cs cs" "waiting s th cs"
+ | (holding) th cs where "n1 = Cs cs" "n2 = Th th" "holding s th cs"
+ using assms[unfolded s_RAG_def, folded waiting_eq holding_eq]
+ by auto
+
+context valid_trace_v
+begin
+
+lemma RAG_es:
+ "RAG (e # s) =
+ RAG s - {(Cs cs, Th th)} -
+ {(Th th', Cs cs) |th'. next_th s th cs th'} \<union>
+ {(Cs cs, Th th') |th'. next_th s th cs th'}" (is "?L = ?R")
+proof(rule rel_eqI)
+ fix n1 n2
+ assume "(n1, n2) \<in> ?L"
+ thus "(n1, n2) \<in> ?R"
+ proof(cases rule:in_RAG_E)
+ case (waiting th' cs')
+ show ?thesis
+ proof(cases "rest = []")
+ case False
+ interpret h_n: valid_trace_v_n s e th cs
+ by (unfold_locales, insert False, simp)
+ from waiting(3)
+ show ?thesis
+ proof(cases rule:h_n.waiting_esE)
+ case 1
+ with waiting(1,2)
+ show ?thesis
+ by (unfold h_n.waiting_set_eq h_n.holding_set_eq s_RAG_def,
+ fold waiting_eq, auto)
+ next
+ case 2
+ with waiting(1,2)
+ show ?thesis
+ by (unfold h_n.waiting_set_eq h_n.holding_set_eq s_RAG_def,
+ fold waiting_eq, auto)
+ qed
+ next
+ case True
+ interpret h_e: valid_trace_v_e s e th cs
+ by (unfold_locales, insert True, simp)
+ from waiting(3)
+ show ?thesis
+ proof(cases rule:h_e.waiting_esE)
+ case 1
+ with waiting(1,2)
+ show ?thesis
+ by (unfold h_e.waiting_set_eq h_e.holding_set_eq s_RAG_def,
+ fold waiting_eq, auto)
+ qed
+ qed
+ next
+ case (holding th' cs')
+ show ?thesis
+ proof(cases "rest = []")
+ case False
+ interpret h_n: valid_trace_v_n s e th cs
+ by (unfold_locales, insert False, simp)
+ from holding(3)
+ show ?thesis
+ proof(cases rule:h_n.holding_esE)
+ case 1
+ with holding(1,2)
+ show ?thesis
+ by (unfold h_n.waiting_set_eq h_n.holding_set_eq s_RAG_def,
+ fold waiting_eq, auto)
+ next
+ case 2
+ with holding(1,2)
+ show ?thesis
+ by (unfold h_n.waiting_set_eq h_n.holding_set_eq s_RAG_def,
+ fold holding_eq, auto)
+ qed
+ next
+ case True
+ interpret h_e: valid_trace_v_e s e th cs
+ by (unfold_locales, insert True, simp)
+ from holding(3)
+ show ?thesis
+ proof(cases rule:h_e.holding_esE)
+ case 1
+ with holding(1,2)
+ show ?thesis
+ by (unfold h_e.waiting_set_eq h_e.holding_set_eq s_RAG_def,
+ fold holding_eq, auto)
+ qed
+ qed
+ qed
+next
+ fix n1 n2
+ assume h: "(n1, n2) \<in> ?R"
+ show "(n1, n2) \<in> ?L"
+ proof(cases "rest = []")
+ case False
+ interpret h_n: valid_trace_v_n s e th cs
+ by (unfold_locales, insert False, simp)
+ from h[unfolded h_n.waiting_set_eq h_n.holding_set_eq]
+ have "((n1, n2) \<in> RAG s \<and> (n1 \<noteq> Cs cs \<or> n2 \<noteq> Th th)
+ \<and> (n1 \<noteq> Th h_n.taker \<or> n2 \<noteq> Cs cs)) \<or>
+ (n2 = Th h_n.taker \<and> n1 = Cs cs)"
+ by auto
+ thus ?thesis
+ proof
+ assume "n2 = Th h_n.taker \<and> n1 = Cs cs"
+ with h_n.holding_taker
+ show ?thesis
+ by (unfold s_RAG_def, fold holding_eq, auto)
+ next
+ assume h: "(n1, n2) \<in> RAG s \<and>
+ (n1 \<noteq> Cs cs \<or> n2 \<noteq> Th th) \<and> (n1 \<noteq> Th h_n.taker \<or> n2 \<noteq> Cs cs)"
+ hence "(n1, n2) \<in> RAG s" by simp
+ thus ?thesis
+ proof(cases rule:in_RAG_E)
+ case (waiting th' cs')
+ from h and this(1,2)
+ have "th' \<noteq> h_n.taker \<or> cs' \<noteq> cs" by auto
+ hence "waiting (e#s) th' cs'"
+ proof
+ assume "cs' \<noteq> cs"
+ from waiting_esI1[OF waiting(3) this]
+ show ?thesis .
+ next
+ assume neq_th': "th' \<noteq> h_n.taker"
+ show ?thesis
+ proof(cases "cs' = cs")
+ case False
+ from waiting_esI1[OF waiting(3) this]
+ show ?thesis .
+ next
+ case True
+ from h_n.waiting_esI2[OF waiting(3)[unfolded True] neq_th', folded True]
+ show ?thesis .
+ qed
+ qed
+ thus ?thesis using waiting(1,2)
+ by (unfold s_RAG_def, fold waiting_eq, auto)
+ next
+ case (holding th' cs')
+ from h this(1,2)
+ have "cs' \<noteq> cs \<or> th' \<noteq> th" by auto
+ hence "holding (e#s) th' cs'"
+ proof
+ assume "cs' \<noteq> cs"
+ from holding_esI2[OF this holding(3)]
+ show ?thesis .
+ next
+ assume "th' \<noteq> th"
+ from holding_esI1[OF holding(3) this]
+ show ?thesis .
+ qed
+ thus ?thesis using holding(1,2)
+ by (unfold s_RAG_def, fold holding_eq, auto)
+ qed
+ qed
+ next
+ case True
+ interpret h_e: valid_trace_v_e s e th cs
+ by (unfold_locales, insert True, simp)
+ from h[unfolded h_e.waiting_set_eq h_e.holding_set_eq]
+ have h_s: "(n1, n2) \<in> RAG s" "(n1, n2) \<noteq> (Cs cs, Th th)"
+ by auto
+ from h_s(1)
+ show ?thesis
+ proof(cases rule:in_RAG_E)
+ case (waiting th' cs')
+ from h_e.waiting_esI2[OF this(3)]
+ show ?thesis using waiting(1,2)
+ by (unfold s_RAG_def, fold waiting_eq, auto)
+ next
+ case (holding th' cs')
+ with h_s(2)
+ have "cs' \<noteq> cs \<or> th' \<noteq> th" by auto
+ thus ?thesis
+ proof
+ assume neq_cs: "cs' \<noteq> cs"
+ from holding_esI2[OF this holding(3)]
+ show ?thesis using holding(1,2)
+ by (unfold s_RAG_def, fold holding_eq, auto)
+ next
+ assume "th' \<noteq> th"
+ from holding_esI1[OF holding(3) this]
+ show ?thesis using holding(1,2)
+ by (unfold s_RAG_def, fold holding_eq, auto)
+ qed
+ qed
+ qed
+qed
+
+end
+
+
+
+context valid_trace
+begin
+
+lemma finite_threads:
+ shows "finite (threads s)"
+using vt by (induct) (auto elim: step.cases)
+
+lemma cp_eq_cpreced: "cp s th = cpreced (wq s) s th"
+unfolding cp_def wq_def
+apply(induct s rule: schs.induct)
+apply(simp add: Let_def cpreced_initial)
+apply(simp add: Let_def)
+apply(simp add: Let_def)
+apply(simp add: Let_def)
+apply(subst (2) schs.simps)
+apply(simp add: Let_def)
+apply(subst (2) schs.simps)
+apply(simp add: Let_def)
+done
+
+lemma RAG_target_th: "(Th th, x) \<in> RAG (s::state) \<Longrightarrow> \<exists> cs. x = Cs cs"
+ by (unfold s_RAG_def, auto)
+
+lemma wq_threads:
+ assumes h: "th \<in> set (wq s cs)"
+ shows "th \<in> threads s"
+
+
+lemma wq_threads:
+ assumes h: "th \<in> set (wq s cs)"
+ shows "th \<in> threads s"
+proof -
+ from vt and h show ?thesis
+ proof(induct arbitrary: th cs)
+ case (vt_cons s e)
+ interpret vt_s: valid_trace s
+ using vt_cons(1) by (unfold_locales, auto)
+ assume ih: "\<And>th cs. th \<in> set (wq s cs) \<Longrightarrow> th \<in> threads s"
+ and stp: "step s e"
+ and vt: "vt s"
+ and h: "th \<in> set (wq (e # s) cs)"
+ show ?case
+ proof(cases e)
+ case (Create th' prio)
+ with ih h show ?thesis
+ by (auto simp:wq_def Let_def)
+ next
+ case (Exit th')
+ with stp ih h show ?thesis
+ apply (auto simp:wq_def Let_def)
+ apply (ind_cases "step s (Exit th')")
+ apply (auto simp:runing_def readys_def s_holding_def s_waiting_def holdents_def
+ s_RAG_def s_holding_def cs_holding_def)
+ done
+ next
+ case (V th' cs')
+ show ?thesis
+ proof(cases "cs' = cs")
+ case False
+ with h
+ show ?thesis
+ apply(unfold wq_def V, auto simp:Let_def V split:prod.splits, fold wq_def)
+ by (drule_tac ih, simp)
+ next
+ case True
+ from h
+ show ?thesis
+ proof(unfold V wq_def)
+ assume th_in: "th \<in> set (wq_fun (schs (V th' cs' # s)) cs)" (is "th \<in> set ?l")
+ show "th \<in> threads (V th' cs' # s)"
+ proof(cases "cs = cs'")
+ case False
+ hence "?l = wq_fun (schs s) cs" by (simp add:Let_def)
+ with th_in have " th \<in> set (wq s cs)"
+ by (fold wq_def, simp)
+ from ih [OF this] show ?thesis by simp
+ next
+ case True
+ show ?thesis
+ proof(cases "wq_fun (schs s) cs'")
+ case Nil
+ with h V show ?thesis
+ apply (auto simp:wq_def Let_def split:if_splits)
+ by (fold wq_def, drule_tac ih, simp)
+ next
+ case (Cons a rest)
+ assume eq_wq: "wq_fun (schs s) cs' = a # rest"
+ with h V show ?thesis
+ apply (auto simp:Let_def wq_def split:if_splits)
+ proof -
+ assume th_in: "th \<in> set (SOME q. distinct q \<and> set q = set rest)"
+ have "set (SOME q. distinct q \<and> set q = set rest) = set rest"
+ proof(rule someI2)
+ from vt_s.wq_distinct[of cs'] and eq_wq[folded wq_def]
+ show "distinct rest \<and> set rest = set rest" by auto
+ next
+ show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest"
+ by auto
+ qed
+ with eq_wq th_in have "th \<in> set (wq_fun (schs s) cs')" by auto
+ from ih[OF this[folded wq_def]] show "th \<in> threads s" .
+ next
+ assume th_in: "th \<in> set (wq_fun (schs s) cs)"
+ from ih[OF this[folded wq_def]]
+ show "th \<in> threads s" .
+ qed
+ qed
+ qed
+ qed
+ qed
+ next
+ case (P th' cs')
+ from h stp
+ show ?thesis
+ apply (unfold P wq_def)
+ apply (auto simp:Let_def split:if_splits, fold wq_def)
+ apply (auto intro:ih)
+ apply(ind_cases "step s (P th' cs')")
+ by (unfold runing_def readys_def, auto)
+ next
+ case (Set thread prio)
+ with ih h show ?thesis
+ by (auto simp:wq_def Let_def)
+ qed
+ next
+ case vt_nil
+ thus ?case by (auto simp:wq_def)
+ qed
+qed
+
+lemma dm_RAG_threads:
+ assumes in_dom: "(Th th) \<in> Domain (RAG s)"
+ shows "th \<in> threads s"
+proof -
+ from in_dom obtain n where "(Th th, n) \<in> RAG s" by auto
+ moreover from RAG_target_th[OF this] obtain cs where "n = Cs cs" by auto
+ ultimately have "(Th th, Cs cs) \<in> RAG s" by simp
+ hence "th \<in> set (wq s cs)"
+ by (unfold s_RAG_def, auto simp:cs_waiting_def)
+ from wq_threads [OF this] show ?thesis .
+qed
+
+
+lemma cp_le:
+ assumes th_in: "th \<in> threads s"
+ shows "cp s th \<le> Max ((\<lambda> th. (preced th s)) ` threads s)"
+proof(unfold cp_eq_cpreced cpreced_def cs_dependants_def)
+ show "Max ((\<lambda>th. preced th s) ` ({th} \<union> {th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+}))
+ \<le> Max ((\<lambda>th. preced th s) ` threads s)"
+ (is "Max (?f ` ?A) \<le> Max (?f ` ?B)")
+ proof(rule Max_f_mono)
+ show "{th} \<union> {th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+} \<noteq> {}" by simp
+ next
+ from finite_threads
+ show "finite (threads s)" .
+ next
+ from th_in
+ show "{th} \<union> {th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+} \<subseteq> threads s"
+ apply (auto simp:Domain_def)
+ apply (rule_tac dm_RAG_threads)
+ apply (unfold trancl_domain [of "RAG s", symmetric])
+ by (unfold cs_RAG_def s_RAG_def, auto simp:Domain_def)
+ qed
+qed
+
+lemma le_cp:
+ shows "preced th s \<le> cp s th"
+proof(unfold cp_eq_cpreced preced_def cpreced_def, simp)
+ show "Prc (priority th s) (last_set th s)
+ \<le> Max (insert (Prc (priority th s) (last_set th s))
+ ((\<lambda>th. Prc (priority th s) (last_set th s)) ` dependants (wq s) th))"
+ (is "?l \<le> Max (insert ?l ?A)")
+ proof(cases "?A = {}")
+ case False
+ have "finite ?A" (is "finite (?f ` ?B)")
+ proof -
+ have "finite ?B"
+ proof-
+ have "finite {th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+}"
+ proof -
+ let ?F = "\<lambda> (x, y). the_th x"
+ have "{th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+} \<subseteq> ?F ` ((RAG (wq s))\<^sup>+)"
+ apply (auto simp:image_def)
+ by (rule_tac x = "(Th x, Th th)" in bexI, auto)
+ moreover have "finite \<dots>"
+ proof -
+ from finite_RAG have "finite (RAG s)" .
+ hence "finite ((RAG (wq s))\<^sup>+)"
+ apply (unfold finite_trancl)
+ by (auto simp: s_RAG_def cs_RAG_def wq_def)
+ thus ?thesis by auto
+ qed
+ ultimately show ?thesis by (auto intro:finite_subset)
+ qed
+ thus ?thesis by (simp add:cs_dependants_def)
+ qed
+ thus ?thesis by simp
+ qed
+ from Max_insert [OF this False, of ?l] show ?thesis by auto
+ next
+ case True
+ thus ?thesis by auto
+ qed
+qed
+
+lemma max_cp_eq:
+ shows "Max ((cp s) ` threads s) = Max ((\<lambda> th. (preced th s)) ` threads s)"
+ (is "?l = ?r")
+proof(cases "threads s = {}")
+ case True
+ thus ?thesis by auto
+next
+ case False
+ have "?l \<in> ((cp s) ` threads s)"
+ proof(rule Max_in)
+ from finite_threads
+ show "finite (cp s ` threads s)" by auto
+ next
+ from False show "cp s ` threads s \<noteq> {}" by auto
+ qed
+ then obtain th
+ where th_in: "th \<in> threads s" and eq_l: "?l = cp s th" by auto
+ have "\<dots> \<le> ?r" by (rule cp_le[OF th_in])
+ moreover have "?r \<le> cp s th" (is "Max (?f ` ?A) \<le> cp s th")
+ proof -
+ have "?r \<in> (?f ` ?A)"
+ proof(rule Max_in)
+ from finite_threads
+ show " finite ((\<lambda>th. preced th s) ` threads s)" by auto
+ next
+ from False show " (\<lambda>th. preced th s) ` threads s \<noteq> {}" by auto
+ qed
+ then obtain th' where
+ th_in': "th' \<in> ?A " and eq_r: "?r = ?f th'" by auto
+ from le_cp [of th'] eq_r
+ have "?r \<le> cp s th'" by auto
+ moreover have "\<dots> \<le> cp s th"
+ proof(fold eq_l)
+ show " cp s th' \<le> Max (cp s ` threads s)"
+ proof(rule Max_ge)
+ from th_in' show "cp s th' \<in> cp s ` threads s"
+ by auto
+ next
+ from finite_threads
+ show "finite (cp s ` threads s)" by auto
+ qed
+ qed
+ ultimately show ?thesis by auto
+ qed
+ ultimately show ?thesis using eq_l by auto
+qed
+
+lemma max_cp_eq_the_preced:
+ shows "Max ((cp s) ` threads s) = Max (the_preced s ` threads s)"
+ using max_cp_eq using the_preced_def by presburger
+
+end
+
+lemma preced_v [simp]: "preced th' (V th cs#s) = preced th' s"
+ by (unfold preced_def, simp)
+
+lemma the_preced_v[simp]: "the_preced (V th cs#s) = the_preced s"
+proof
+ fix th'
+ show "the_preced (V th cs # s) th' = the_preced s th'"
+ by (unfold the_preced_def preced_def, simp)
+qed
+
+lemma step_RAG_v:
+assumes vt:
+ "vt (V th cs#s)"
+shows "
+ RAG (V th cs # s) =
+ RAG s - {(Cs cs, Th th)} -
+ {(Th th', Cs cs) |th'. next_th s th cs th'} \<union>
+ {(Cs cs, Th th') |th'. next_th s th cs th'}" (is "?L = ?R")
+proof -
+ interpret vt_v: valid_trace_v s "V th cs"
+ using assms step_back_vt by (unfold_locales, auto)
+ show ?thesis using vt_v.RAG_es .
+qed
+
+
+
+
+
+text {* (* ddd *)
+ The following @{text "step_RAG_v"} lemma charaterizes how @{text "RAG"} is changed
+ with the happening of @{text "V"}-events:
+*}
+lemma step_RAG_v:
+assumes vt:
+ "vt (V th cs#s)"
+shows "
+ RAG (V th cs # s) =
+ RAG s - {(Cs cs, Th th)} -
+ {(Th th', Cs cs) |th'. next_th s th cs th'} \<union>
+ {(Cs cs, Th th') |th'. next_th s th cs th'}"
+ apply (insert vt, unfold s_RAG_def)
+ apply (auto split:if_splits list.splits simp:Let_def)
+ apply (auto elim: step_v_waiting_mono step_v_hold_inv
+ step_v_release step_v_wait_inv
+ step_v_get_hold step_v_release_inv)
+ apply (erule_tac step_v_not_wait, auto)
+ done
+
+text {*
+ The following @{text "step_RAG_p"} lemma charaterizes how @{text "RAG"} is changed
+ with the happening of @{text "P"}-events:
+*}
+lemma step_RAG_p:
+ "vt (P th cs#s) \<Longrightarrow>
+ RAG (P th cs # s) = (if (wq s cs = []) then RAG s \<union> {(Cs cs, Th th)}
+ else RAG s \<union> {(Th th, Cs cs)})"
+ apply(simp only: s_RAG_def wq_def)
+ apply (auto split:list.splits prod.splits simp:Let_def wq_def cs_waiting_def cs_holding_def)
+ apply(case_tac "csa = cs", auto)
+ apply(fold wq_def)
+ apply(drule_tac step_back_step)
+ apply(ind_cases " step s (P (hd (wq s cs)) cs)")
+ apply(simp add:s_RAG_def wq_def cs_holding_def)
+ apply(auto)
+ done
+
+
+lemma RAG_target_th: "(Th th, x) \<in> RAG (s::state) \<Longrightarrow> \<exists> cs. x = Cs cs"
+ by (unfold s_RAG_def, auto)
+
+context valid_trace
+begin
+
+text {*
+ The following lemma shows that @{text "RAG"} is acyclic.
+ The overall structure is by induction on the formation of @{text "vt s"}
+ and then case analysis on event @{text "e"}, where the non-trivial cases
+ for those for @{text "V"} and @{text "P"} events.
+*}
+lemma acyclic_RAG:
+ shows "acyclic (RAG s)"
+using vt
+proof(induct)
+ case (vt_cons s e)
+ interpret vt_s: valid_trace s using vt_cons(1)
+ by (unfold_locales, simp)
+ assume ih: "acyclic (RAG s)"
+ and stp: "step s e"
+ and vt: "vt s"
+ show ?case
+ proof(cases e)
+ case (Create th prio)
+ with ih
+ show ?thesis by (simp add:RAG_create_unchanged)
+ next
+ case (Exit th)
+ with ih show ?thesis by (simp add:RAG_exit_unchanged)
+ next
+ case (V th cs)
+ from V vt stp have vtt: "vt (V th cs#s)" by auto
+ from step_RAG_v [OF this]
+ have eq_de:
+ "RAG (e # s) =
+ RAG s - {(Cs cs, Th th)} - {(Th th', Cs cs) |th'. next_th s th cs th'} \<union>
+ {(Cs cs, Th th') |th'. next_th s th cs th'}"
+ (is "?L = (?A - ?B - ?C) \<union> ?D") by (simp add:V)
+ from ih have ac: "acyclic (?A - ?B - ?C)" by (auto elim:acyclic_subset)
+ from step_back_step [OF vtt]
+ have "step s (V th cs)" .
+ thus ?thesis
+ proof(cases)
+ assume "holding s th cs"
+ hence th_in: "th \<in> set (wq s cs)" and
+ eq_hd: "th = hd (wq s cs)" unfolding s_holding_def wq_def by auto
+ then obtain rest where
+ eq_wq: "wq s cs = th#rest"
+ by (cases "wq s cs", auto)
+ show ?thesis
+ proof(cases "rest = []")
+ case False
+ let ?th' = "hd (SOME q. distinct q \<and> set q = set rest)"
+ from eq_wq False have eq_D: "?D = {(Cs cs, Th ?th')}"
+ by (unfold next_th_def, auto)
+ let ?E = "(?A - ?B - ?C)"
+ have "(Th ?th', Cs cs) \<notin> ?E\<^sup>*"
+ proof
+ assume "(Th ?th', Cs cs) \<in> ?E\<^sup>*"
+ hence " (Th ?th', Cs cs) \<in> ?E\<^sup>+" by (simp add: rtrancl_eq_or_trancl)
+ from tranclD [OF this]
+ obtain x where th'_e: "(Th ?th', x) \<in> ?E" by blast
+ hence th_d: "(Th ?th', x) \<in> ?A" by simp
+ from RAG_target_th [OF this]
+ obtain cs' where eq_x: "x = Cs cs'" by auto
+ with th_d have "(Th ?th', Cs cs') \<in> ?A" by simp
+ hence wt_th': "waiting s ?th' cs'"
+ unfolding s_RAG_def s_waiting_def cs_waiting_def wq_def by simp
+ hence "cs' = cs"
+ proof(rule vt_s.waiting_unique)
+ from eq_wq vt_s.wq_distinct[of cs]
+ show "waiting s ?th' cs"
+ apply (unfold s_waiting_def wq_def, auto)
+ proof -
+ assume hd_in: "hd (SOME q. distinct q \<and> set q = set rest) \<notin> set rest"
+ and eq_wq: "wq_fun (schs s) cs = th # rest"
+ have "(SOME q. distinct q \<and> set q = set rest) \<noteq> []"
+ proof(rule someI2)
+ from vt_s.wq_distinct[of cs] and eq_wq
+ show "distinct rest \<and> set rest = set rest" unfolding wq_def by auto
+ next
+ fix x assume "distinct x \<and> set x = set rest"
+ with False show "x \<noteq> []" by auto
+ qed
+ hence "hd (SOME q. distinct q \<and> set q = set rest) \<in>
+ set (SOME q. distinct q \<and> set q = set rest)" by auto
+ moreover have "\<dots> = set rest"
+ proof(rule someI2)
+ from vt_s.wq_distinct[of cs] and eq_wq
+ show "distinct rest \<and> set rest = set rest" unfolding wq_def by auto
+ next
+ show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest" by auto
+ qed
+ moreover note hd_in
+ ultimately show "hd (SOME q. distinct q \<and> set q = set rest) = th" by auto
+ next
+ assume hd_in: "hd (SOME q. distinct q \<and> set q = set rest) \<notin> set rest"
+ and eq_wq: "wq s cs = hd (SOME q. distinct q \<and> set q = set rest) # rest"
+ have "(SOME q. distinct q \<and> set q = set rest) \<noteq> []"
+ proof(rule someI2)
+ from vt_s.wq_distinct[of cs] and eq_wq
+ show "distinct rest \<and> set rest = set rest" by auto
+ next
+ fix x assume "distinct x \<and> set x = set rest"
+ with False show "x \<noteq> []" by auto
+ qed
+ hence "hd (SOME q. distinct q \<and> set q = set rest) \<in>
+ set (SOME q. distinct q \<and> set q = set rest)" by auto
+ moreover have "\<dots> = set rest"
+ proof(rule someI2)
+ from vt_s.wq_distinct[of cs] and eq_wq
+ show "distinct rest \<and> set rest = set rest" by auto
+ next
+ show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest" by auto
+ qed
+ moreover note hd_in
+ ultimately show False by auto
+ qed
+ qed
+ with th'_e eq_x have "(Th ?th', Cs cs) \<in> ?E" by simp
+ with False
+ show "False" by (auto simp: next_th_def eq_wq)
+ qed
+ with acyclic_insert[symmetric] and ac
+ and eq_de eq_D show ?thesis by auto
+ next
+ case True
+ with eq_wq
+ have eq_D: "?D = {}"
+ by (unfold next_th_def, auto)
+ with eq_de ac
+ show ?thesis by auto
+ qed
+ qed
+ next
+ case (P th cs)
+ from P vt stp have vtt: "vt (P th cs#s)" by auto
+ from step_RAG_p [OF this] P
+ have "RAG (e # s) =
+ (if wq s cs = [] then RAG s \<union> {(Cs cs, Th th)} else
+ RAG s \<union> {(Th th, Cs cs)})" (is "?L = ?R")
+ by simp
+ moreover have "acyclic ?R"
+ proof(cases "wq s cs = []")
+ case True
+ hence eq_r: "?R = RAG s \<union> {(Cs cs, Th th)}" by simp
+ have "(Th th, Cs cs) \<notin> (RAG s)\<^sup>*"
+ proof
+ assume "(Th th, Cs cs) \<in> (RAG s)\<^sup>*"
+ hence "(Th th, Cs cs) \<in> (RAG s)\<^sup>+" by (simp add: rtrancl_eq_or_trancl)
+ from tranclD2 [OF this]
+ obtain x where "(x, Cs cs) \<in> RAG s" by auto
+ with True show False by (auto simp:s_RAG_def cs_waiting_def)
+ qed
+ with acyclic_insert ih eq_r show ?thesis by auto
+ next
+ case False
+ hence eq_r: "?R = RAG s \<union> {(Th th, Cs cs)}" by simp
+ have "(Cs cs, Th th) \<notin> (RAG s)\<^sup>*"
+ proof
+ assume "(Cs cs, Th th) \<in> (RAG s)\<^sup>*"
+ hence "(Cs cs, Th th) \<in> (RAG s)\<^sup>+" by (simp add: rtrancl_eq_or_trancl)
+ moreover from step_back_step [OF vtt] have "step s (P th cs)" .
+ ultimately show False
+ proof -
+ show " \<lbrakk>(Cs cs, Th th) \<in> (RAG s)\<^sup>+; step s (P th cs)\<rbrakk> \<Longrightarrow> False"
+ by (ind_cases "step s (P th cs)", simp)
+ qed
+ qed
+ with acyclic_insert ih eq_r show ?thesis by auto
+ qed
+ ultimately show ?thesis by simp
+ next
+ case (Set thread prio)
+ with ih
+ thm RAG_set_unchanged
+ show ?thesis by (simp add:RAG_set_unchanged)
+ qed
+ next
+ case vt_nil
+ show "acyclic (RAG ([]::state))"
+ by (auto simp: s_RAG_def cs_waiting_def
+ cs_holding_def wq_def acyclic_def)
+qed
+
+
+lemma finite_RAG:
+ shows "finite (RAG s)"
+proof -
+ from vt show ?thesis
+ proof(induct)
+ case (vt_cons s e)
+ interpret vt_s: valid_trace s using vt_cons(1)
+ by (unfold_locales, simp)
+ assume ih: "finite (RAG s)"
+ and stp: "step s e"
+ and vt: "vt s"
+ show ?case
+ proof(cases e)
+ case (Create th prio)
+ with ih
+ show ?thesis by (simp add:RAG_create_unchanged)
+ next
+ case (Exit th)
+ with ih show ?thesis by (simp add:RAG_exit_unchanged)
+ next
+ case (V th cs)
+ from V vt stp have vtt: "vt (V th cs#s)" by auto
+ from step_RAG_v [OF this]
+ have eq_de: "RAG (e # s) =
+ RAG s - {(Cs cs, Th th)} - {(Th th', Cs cs) |th'. next_th s th cs th'} \<union>
+ {(Cs cs, Th th') |th'. next_th s th cs th'}
+"
+ (is "?L = (?A - ?B - ?C) \<union> ?D") by (simp add:V)
+ moreover from ih have ac: "finite (?A - ?B - ?C)" by simp
+ moreover have "finite ?D"
+ proof -
+ have "?D = {} \<or> (\<exists> a. ?D = {a})"
+ by (unfold next_th_def, auto)
+ thus ?thesis
+ proof
+ assume h: "?D = {}"
+ show ?thesis by (unfold h, simp)
+ next
+ assume "\<exists> a. ?D = {a}"
+ thus ?thesis
+ by (metis finite.simps)
+ qed
+ qed
+ ultimately show ?thesis by simp
+ next
+ case (P th cs)
+ from P vt stp have vtt: "vt (P th cs#s)" by auto
+ from step_RAG_p [OF this] P
+ have "RAG (e # s) =
+ (if wq s cs = [] then RAG s \<union> {(Cs cs, Th th)} else
+ RAG s \<union> {(Th th, Cs cs)})" (is "?L = ?R")
+ by simp
+ moreover have "finite ?R"
+ proof(cases "wq s cs = []")
+ case True
+ hence eq_r: "?R = RAG s \<union> {(Cs cs, Th th)}" by simp
+ with True and ih show ?thesis by auto
+ next
+ case False
+ hence "?R = RAG s \<union> {(Th th, Cs cs)}" by simp
+ with False and ih show ?thesis by auto
+ qed
+ ultimately show ?thesis by auto
+ next
+ case (Set thread prio)
+ with ih
+ show ?thesis by (simp add:RAG_set_unchanged)
+ qed
+ next
+ case vt_nil
+ show "finite (RAG ([]::state))"
+ by (auto simp: s_RAG_def cs_waiting_def
+ cs_holding_def wq_def acyclic_def)
+ qed
+qed
+
+text {* Several useful lemmas *}
+
+lemma wf_dep_converse:
+ shows "wf ((RAG s)^-1)"
+proof(rule finite_acyclic_wf_converse)
+ from finite_RAG
+ show "finite (RAG s)" .
+next
+ from acyclic_RAG
+ show "acyclic (RAG s)" .
+qed
+
+end
+
+lemma hd_np_in: "x \<in> set l \<Longrightarrow> hd l \<in> set l"
+ by (induct l, auto)
+
+lemma th_chasing: "(Th th, Cs cs) \<in> RAG (s::state) \<Longrightarrow> \<exists> th'. (Cs cs, Th th') \<in> RAG s"
+ by (auto simp:s_RAG_def s_holding_def cs_holding_def cs_waiting_def wq_def dest:hd_np_in)
+
+context valid_trace
+begin
+
+lemma wq_threads:
+ assumes h: "th \<in> set (wq s cs)"
+ shows "th \<in> threads s"
+proof -
+ from vt and h show ?thesis
+ proof(induct arbitrary: th cs)
+ case (vt_cons s e)
+ interpret vt_s: valid_trace s
+ using vt_cons(1) by (unfold_locales, auto)
+ assume ih: "\<And>th cs. th \<in> set (wq s cs) \<Longrightarrow> th \<in> threads s"
+ and stp: "step s e"
+ and vt: "vt s"
+ and h: "th \<in> set (wq (e # s) cs)"
+ show ?case
+ proof(cases e)
+ case (Create th' prio)
+ with ih h show ?thesis
+ by (auto simp:wq_def Let_def)
+ next
+ case (Exit th')
+ with stp ih h show ?thesis
+ apply (auto simp:wq_def Let_def)
+ apply (ind_cases "step s (Exit th')")
+ apply (auto simp:runing_def readys_def s_holding_def s_waiting_def holdents_def
+ s_RAG_def s_holding_def cs_holding_def)
+ done
+ next
+ case (V th' cs')
+ show ?thesis
+ proof(cases "cs' = cs")
+ case False
+ with h
+ show ?thesis
+ apply(unfold wq_def V, auto simp:Let_def V split:prod.splits, fold wq_def)
+ by (drule_tac ih, simp)
+ next
+ case True
+ from h
+ show ?thesis
+ proof(unfold V wq_def)
+ assume th_in: "th \<in> set (wq_fun (schs (V th' cs' # s)) cs)" (is "th \<in> set ?l")
+ show "th \<in> threads (V th' cs' # s)"
+ proof(cases "cs = cs'")
+ case False
+ hence "?l = wq_fun (schs s) cs" by (simp add:Let_def)
+ with th_in have " th \<in> set (wq s cs)"
+ by (fold wq_def, simp)
+ from ih [OF this] show ?thesis by simp
+ next
+ case True
+ show ?thesis
+ proof(cases "wq_fun (schs s) cs'")
+ case Nil
+ with h V show ?thesis
+ apply (auto simp:wq_def Let_def split:if_splits)
+ by (fold wq_def, drule_tac ih, simp)
+ next
+ case (Cons a rest)
+ assume eq_wq: "wq_fun (schs s) cs' = a # rest"
+ with h V show ?thesis
+ apply (auto simp:Let_def wq_def split:if_splits)
+ proof -
+ assume th_in: "th \<in> set (SOME q. distinct q \<and> set q = set rest)"
+ have "set (SOME q. distinct q \<and> set q = set rest) = set rest"
+ proof(rule someI2)
+ from vt_s.wq_distinct[of cs'] and eq_wq[folded wq_def]
+ show "distinct rest \<and> set rest = set rest" by auto
+ next
+ show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest"
+ by auto
+ qed
+ with eq_wq th_in have "th \<in> set (wq_fun (schs s) cs')" by auto
+ from ih[OF this[folded wq_def]] show "th \<in> threads s" .
+ next
+ assume th_in: "th \<in> set (wq_fun (schs s) cs)"
+ from ih[OF this[folded wq_def]]
+ show "th \<in> threads s" .
+ qed
+ qed
+ qed
+ qed
+ qed
+ next
+ case (P th' cs')
+ from h stp
+ show ?thesis
+ apply (unfold P wq_def)
+ apply (auto simp:Let_def split:if_splits, fold wq_def)
+ apply (auto intro:ih)
+ apply(ind_cases "step s (P th' cs')")
+ by (unfold runing_def readys_def, auto)
+ next
+ case (Set thread prio)
+ with ih h show ?thesis
+ by (auto simp:wq_def Let_def)
+ qed
+ next
+ case vt_nil
+ thus ?case by (auto simp:wq_def)
+ qed
+qed
+
+lemma range_in: "\<lbrakk>(Th th) \<in> Range (RAG (s::state))\<rbrakk> \<Longrightarrow> th \<in> threads s"
+ apply(unfold s_RAG_def cs_waiting_def cs_holding_def)
+ by (auto intro:wq_threads)
+
+lemma readys_v_eq:
+ assumes neq_th: "th \<noteq> thread"
+ and eq_wq: "wq s cs = thread#rest"
+ and not_in: "th \<notin> set rest"
+ shows "(th \<in> readys (V thread cs#s)) = (th \<in> readys s)"
+proof -
+ from assms show ?thesis
+ apply (auto simp:readys_def)
+ apply(simp add:s_waiting_def[folded wq_def])
+ apply (erule_tac x = csa in allE)
+ apply (simp add:s_waiting_def wq_def Let_def split:if_splits)
+ apply (case_tac "csa = cs", simp)
+ apply (erule_tac x = cs in allE)
+ apply(auto simp add: s_waiting_def[folded wq_def] Let_def split: list.splits)
+ apply(auto simp add: wq_def)
+ apply (auto simp:s_waiting_def wq_def Let_def split:list.splits)
+ proof -
+ assume th_nin: "th \<notin> set rest"
+ and th_in: "th \<in> set (SOME q. distinct q \<and> set q = set rest)"
+ and eq_wq: "wq_fun (schs s) cs = thread # rest"
+ have "set (SOME q. distinct q \<and> set q = set rest) = set rest"
+ proof(rule someI2)
+ from wq_distinct[of cs, unfolded wq_def] and eq_wq[unfolded wq_def]
+ show "distinct rest \<and> set rest = set rest" by auto
+ next
+ show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest" by auto
+ qed
+ with th_nin th_in show False by auto
+ qed
+qed
+
+text {* \noindent
+ The following lemmas shows that: starting from any node in @{text "RAG"},
+ by chasing out-going edges, it is always possible to reach a node representing a ready
+ thread. In this lemma, it is the @{text "th'"}.
+*}
+
+lemma chain_building:
+ shows "node \<in> Domain (RAG s) \<longrightarrow> (\<exists> th'. th' \<in> readys s \<and> (node, Th th') \<in> (RAG s)^+)"
+proof -
+ from wf_dep_converse
+ have h: "wf ((RAG s)\<inverse>)" .
+ show ?thesis
+ proof(induct rule:wf_induct [OF h])
+ fix x
+ assume ih [rule_format]:
+ "\<forall>y. (y, x) \<in> (RAG s)\<inverse> \<longrightarrow>
+ y \<in> Domain (RAG s) \<longrightarrow> (\<exists>th'. th' \<in> readys s \<and> (y, Th th') \<in> (RAG s)\<^sup>+)"
+ show "x \<in> Domain (RAG s) \<longrightarrow> (\<exists>th'. th' \<in> readys s \<and> (x, Th th') \<in> (RAG s)\<^sup>+)"
+ proof
+ assume x_d: "x \<in> Domain (RAG s)"
+ show "\<exists>th'. th' \<in> readys s \<and> (x, Th th') \<in> (RAG s)\<^sup>+"
+ proof(cases x)
+ case (Th th)
+ from x_d Th obtain cs where x_in: "(Th th, Cs cs) \<in> RAG s" by (auto simp:s_RAG_def)
+ with Th have x_in_r: "(Cs cs, x) \<in> (RAG s)^-1" by simp
+ from th_chasing [OF x_in] obtain th' where "(Cs cs, Th th') \<in> RAG s" by blast
+ hence "Cs cs \<in> Domain (RAG s)" by auto
+ from ih [OF x_in_r this] obtain th'
+ where th'_ready: " th' \<in> readys s" and cs_in: "(Cs cs, Th th') \<in> (RAG s)\<^sup>+" by auto
+ have "(x, Th th') \<in> (RAG s)\<^sup>+" using Th x_in cs_in by auto
+ with th'_ready show ?thesis by auto
+ next
+ case (Cs cs)
+ from x_d Cs obtain th' where th'_d: "(Th th', x) \<in> (RAG s)^-1" by (auto simp:s_RAG_def)
+ show ?thesis
+ proof(cases "th' \<in> readys s")
+ case True
+ from True and th'_d show ?thesis by auto
+ next
+ case False
+ from th'_d and range_in have "th' \<in> threads s" by auto
+ with False have "Th th' \<in> Domain (RAG s)"
+ by (auto simp:readys_def wq_def s_waiting_def s_RAG_def cs_waiting_def Domain_def)
+ from ih [OF th'_d this]
+ obtain th'' where
+ th''_r: "th'' \<in> readys s" and
+ th''_in: "(Th th', Th th'') \<in> (RAG s)\<^sup>+" by auto
+ from th'_d and th''_in
+ have "(x, Th th'') \<in> (RAG s)\<^sup>+" by auto
+ with th''_r show ?thesis by auto
+ qed
+ qed
+ qed
+ qed
+qed
+
+text {* \noindent
+ The following is just an instance of @{text "chain_building"}.
+*}
+lemma th_chain_to_ready:
+ assumes th_in: "th \<in> threads s"
+ shows "th \<in> readys s \<or> (\<exists> th'. th' \<in> readys s \<and> (Th th, Th th') \<in> (RAG s)^+)"
+proof(cases "th \<in> readys s")
+ case True
+ thus ?thesis by auto
+next
+ case False
+ from False and th_in have "Th th \<in> Domain (RAG s)"
+ by (auto simp:readys_def s_waiting_def s_RAG_def wq_def cs_waiting_def Domain_def)
+ from chain_building [rule_format, OF this]
+ show ?thesis by auto
+qed
+
+end
+
+
+
+lemma holding_unique: "\<lbrakk>holding (s::state) th1 cs; holding s th2 cs\<rbrakk> \<Longrightarrow> th1 = th2"
+ by (unfold s_holding_def cs_holding_def, auto)
+
+context valid_trace
+begin
+
+lemma unique_RAG: "\<lbrakk>(n, n1) \<in> RAG s; (n, n2) \<in> RAG s\<rbrakk> \<Longrightarrow> n1 = n2"
+ apply(unfold s_RAG_def, auto, fold waiting_eq holding_eq)
+ by(auto elim:waiting_unique holding_unique)
+
+end
+
+
+lemma trancl_split: "(a, b) \<in> r^+ \<Longrightarrow> \<exists> c. (a, c) \<in> r"
+by (induct rule:trancl_induct, auto)
+
+context valid_trace
+begin
+
+lemma dchain_unique:
+ assumes th1_d: "(n, Th th1) \<in> (RAG s)^+"
+ and th1_r: "th1 \<in> readys s"
+ and th2_d: "(n, Th th2) \<in> (RAG s)^+"
+ and th2_r: "th2 \<in> readys s"
+ shows "th1 = th2"
+proof -
+ { assume neq: "th1 \<noteq> th2"
+ hence "Th th1 \<noteq> Th th2" by simp
+ from unique_chain [OF _ th1_d th2_d this] and unique_RAG
+ have "(Th th1, Th th2) \<in> (RAG s)\<^sup>+ \<or> (Th th2, Th th1) \<in> (RAG s)\<^sup>+" by auto
+ hence "False"
+ proof
+ assume "(Th th1, Th th2) \<in> (RAG s)\<^sup>+"
+ from trancl_split [OF this]
+ obtain n where dd: "(Th th1, n) \<in> RAG s" by auto
+ then obtain cs where eq_n: "n = Cs cs"
+ by (auto simp:s_RAG_def s_holding_def cs_holding_def cs_waiting_def wq_def dest:hd_np_in)
+ from dd eq_n have "th1 \<notin> readys s"
+ by (auto simp:readys_def s_RAG_def wq_def s_waiting_def cs_waiting_def)
+ with th1_r show ?thesis by auto
+ next
+ assume "(Th th2, Th th1) \<in> (RAG s)\<^sup>+"
+ from trancl_split [OF this]
+ obtain n where dd: "(Th th2, n) \<in> RAG s" by auto
+ then obtain cs where eq_n: "n = Cs cs"
+ by (auto simp:s_RAG_def s_holding_def cs_holding_def cs_waiting_def wq_def dest:hd_np_in)
+ from dd eq_n have "th2 \<notin> readys s"
+ by (auto simp:readys_def wq_def s_RAG_def s_waiting_def cs_waiting_def)
+ with th2_r show ?thesis by auto
+ qed
+ } thus ?thesis by auto
+qed
+
+end
+
+
+lemma step_holdents_p_add:
+ assumes vt: "vt (P th cs#s)"
+ and "wq s cs = []"
+ shows "holdents (P th cs#s) th = holdents s th \<union> {cs}"
+proof -
+ from assms show ?thesis
+ unfolding holdents_test step_RAG_p[OF vt] by (auto)
+qed
+
+lemma step_holdents_p_eq:
+ assumes vt: "vt (P th cs#s)"
+ and "wq s cs \<noteq> []"
+ shows "holdents (P th cs#s) th = holdents s th"
+proof -
+ from assms show ?thesis
+ unfolding holdents_test step_RAG_p[OF vt] by auto
+qed
+
+
+lemma (in valid_trace) finite_holding :
+ shows "finite (holdents s th)"
+proof -
+ let ?F = "\<lambda> (x, y). the_cs x"
+ from finite_RAG
+ have "finite (RAG s)" .
+ hence "finite (?F `(RAG s))" by simp
+ moreover have "{cs . (Cs cs, Th th) \<in> RAG s} \<subseteq> \<dots>"
+ proof -
+ { have h: "\<And> a A f. a \<in> A \<Longrightarrow> f a \<in> f ` A" by auto
+ fix x assume "(Cs x, Th th) \<in> RAG s"
+ hence "?F (Cs x, Th th) \<in> ?F `(RAG s)" by (rule h)
+ moreover have "?F (Cs x, Th th) = x" by simp
+ ultimately have "x \<in> (\<lambda>(x, y). the_cs x) ` RAG s" by simp
+ } thus ?thesis by auto
+ qed
+ ultimately show ?thesis by (unfold holdents_test, auto intro:finite_subset)
+qed
+
+lemma cntCS_v_dec:
+ assumes vtv: "vt (V thread cs#s)"
+ shows "(cntCS (V thread cs#s) thread + 1) = cntCS s thread"
+proof -
+ from vtv interpret vt_s: valid_trace s
+ by (cases, unfold_locales, simp)
+ from vtv interpret vt_v: valid_trace "V thread cs#s"
+ by (unfold_locales, simp)
+ from step_back_step[OF vtv]
+ have cs_in: "cs \<in> holdents s thread"
+ apply (cases, unfold holdents_test s_RAG_def, simp)
+ by (unfold cs_holding_def s_holding_def wq_def, auto)
+ moreover have cs_not_in:
+ "(holdents (V thread cs#s) thread) = holdents s thread - {cs}"
+ apply (insert vt_s.wq_distinct[of cs])
+ apply (unfold holdents_test, unfold step_RAG_v[OF vtv],
+ auto simp:next_th_def)
+ proof -
+ fix rest
+ assume dst: "distinct (rest::thread list)"
+ and ne: "rest \<noteq> []"
+ and hd_ni: "hd (SOME q. distinct q \<and> set q = set rest) \<notin> set rest"
+ moreover have "set (SOME q. distinct q \<and> set q = set rest) = set rest"
+ proof(rule someI2)
+ from dst show "distinct rest \<and> set rest = set rest" by auto
+ next
+ show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest" by auto
+ qed
+ ultimately have "hd (SOME q. distinct q \<and> set q = set rest) \<notin>
+ set (SOME q. distinct q \<and> set q = set rest)" by simp
+ moreover have "(SOME q. distinct q \<and> set q = set rest) \<noteq> []"
+ proof(rule someI2)
+ from dst show "distinct rest \<and> set rest = set rest" by auto
+ next
+ fix x assume " distinct x \<and> set x = set rest" with ne
+ show "x \<noteq> []" by auto
+ qed
+ ultimately
+ show "(Cs cs, Th (hd (SOME q. distinct q \<and> set q = set rest))) \<in> RAG s"
+ by auto
+ next
+ fix rest
+ assume dst: "distinct (rest::thread list)"
+ and ne: "rest \<noteq> []"
+ and hd_ni: "hd (SOME q. distinct q \<and> set q = set rest) \<notin> set rest"
+ moreover have "set (SOME q. distinct q \<and> set q = set rest) = set rest"
+ proof(rule someI2)
+ from dst show "distinct rest \<and> set rest = set rest" by auto
+ next
+ show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest" by auto
+ qed
+ ultimately have "hd (SOME q. distinct q \<and> set q = set rest) \<notin>
+ set (SOME q. distinct q \<and> set q = set rest)" by simp
+ moreover have "(SOME q. distinct q \<and> set q = set rest) \<noteq> []"
+ proof(rule someI2)
+ from dst show "distinct rest \<and> set rest = set rest" by auto
+ next
+ fix x assume " distinct x \<and> set x = set rest" with ne
+ show "x \<noteq> []" by auto
+ qed
+ ultimately show "False" by auto
+ qed
+ ultimately
+ have "holdents s thread = insert cs (holdents (V thread cs#s) thread)"
+ by auto
+ moreover have "card \<dots> =
+ Suc (card ((holdents (V thread cs#s) thread) - {cs}))"
+ proof(rule card_insert)
+ from vt_v.finite_holding
+ show " finite (holdents (V thread cs # s) thread)" .
+ qed
+ moreover from cs_not_in
+ have "cs \<notin> (holdents (V thread cs#s) thread)" by auto
+ ultimately show ?thesis by (simp add:cntCS_def)
+qed
+
+lemma count_rec1 [simp]:
+ assumes "Q e"
+ shows "count Q (e#es) = Suc (count Q es)"
+ using assms
+ by (unfold count_def, auto)
+
+lemma count_rec2 [simp]:
+ assumes "\<not>Q e"
+ shows "count Q (e#es) = (count Q es)"
+ using assms
+ by (unfold count_def, auto)
+
+lemma count_rec3 [simp]:
+ shows "count Q [] = 0"
+ by (unfold count_def, auto)
+
+lemma cntP_diff_inv:
+ assumes "cntP (e#s) th \<noteq> cntP s th"
+ shows "isP e \<and> actor e = th"
+proof(cases e)
+ case (P th' pty)
+ show ?thesis
+ by (cases "(\<lambda>e. \<exists>cs. e = P th cs) (P th' pty)",
+ insert assms P, auto simp:cntP_def)
+qed (insert assms, auto simp:cntP_def)
+
+lemma cntV_diff_inv:
+ assumes "cntV (e#s) th \<noteq> cntV s th"
+ shows "isV e \<and> actor e = th"
+proof(cases e)
+ case (V th' pty)
+ show ?thesis
+ by (cases "(\<lambda>e. \<exists>cs. e = V th cs) (V th' pty)",
+ insert assms V, auto simp:cntV_def)
+qed (insert assms, auto simp:cntV_def)
+
+context valid_trace
+begin
+
+text {* (* ddd *) \noindent
+ The relationship between @{text "cntP"}, @{text "cntV"} and @{text "cntCS"}
+ of one particular thread. t
+*}
+
+lemma cnp_cnv_cncs:
+ shows "cntP s th = cntV s th + (if (th \<in> readys s \<or> th \<notin> threads s)
+ then cntCS s th else cntCS s th + 1)"
+proof -
+ from vt show ?thesis
+ proof(induct arbitrary:th)
+ case (vt_cons s e)
+ interpret vt_s: valid_trace s using vt_cons(1) by (unfold_locales, simp)
+ assume vt: "vt s"
+ and ih: "\<And>th. cntP s th = cntV s th +
+ (if (th \<in> readys s \<or> th \<notin> threads s) then cntCS s th else cntCS s th + 1)"
+ and stp: "step s e"
+ from stp show ?case
+ proof(cases)
+ case (thread_create thread prio)
+ assume eq_e: "e = Create thread prio"
+ and not_in: "thread \<notin> threads s"
+ show ?thesis
+ proof -
+ { fix cs
+ assume "thread \<in> set (wq s cs)"
+ from vt_s.wq_threads [OF this] have "thread \<in> threads s" .
+ with not_in have "False" by simp
+ } with eq_e have eq_readys: "readys (e#s) = readys s \<union> {thread}"
+ by (auto simp:readys_def threads.simps s_waiting_def
+ wq_def cs_waiting_def Let_def)
+ from eq_e have eq_cnp: "cntP (e#s) th = cntP s th" by (simp add:cntP_def count_def)
+ from eq_e have eq_cnv: "cntV (e#s) th = cntV s th" by (simp add:cntV_def count_def)
+ have eq_cncs: "cntCS (e#s) th = cntCS s th"
+ unfolding cntCS_def holdents_test
+ by (simp add:RAG_create_unchanged eq_e)
+ { assume "th \<noteq> thread"
+ with eq_readys eq_e
+ have "(th \<in> readys (e # s) \<or> th \<notin> threads (e # s)) =
+ (th \<in> readys (s) \<or> th \<notin> threads (s))"
+ by (simp add:threads.simps)
+ with eq_cnp eq_cnv eq_cncs ih not_in
+ have ?thesis by simp
+ } moreover {
+ assume eq_th: "th = thread"
+ with not_in ih have " cntP s th = cntV s th + cntCS s th" by simp
+ moreover from eq_th and eq_readys have "th \<in> readys (e#s)" by simp
+ moreover note eq_cnp eq_cnv eq_cncs
+ ultimately have ?thesis by auto
+ } ultimately show ?thesis by blast
+ qed
+ next
+ case (thread_exit thread)
+ assume eq_e: "e = Exit thread"
+ and is_runing: "thread \<in> runing s"
+ and no_hold: "holdents s thread = {}"
+ from eq_e have eq_cnp: "cntP (e#s) th = cntP s th" by (simp add:cntP_def count_def)
+ from eq_e have eq_cnv: "cntV (e#s) th = cntV s th" by (simp add:cntV_def count_def)
+ have eq_cncs: "cntCS (e#s) th = cntCS s th"
+ unfolding cntCS_def holdents_test
+ by (simp add:RAG_exit_unchanged eq_e)
+ { assume "th \<noteq> thread"
+ with eq_e
+ have "(th \<in> readys (e # s) \<or> th \<notin> threads (e # s)) =
+ (th \<in> readys (s) \<or> th \<notin> threads (s))"
+ apply (simp add:threads.simps readys_def)
+ apply (subst s_waiting_def)
+ apply (simp add:Let_def)
+ apply (subst s_waiting_def, simp)
+ done
+ with eq_cnp eq_cnv eq_cncs ih
+ have ?thesis by simp
+ } moreover {
+ assume eq_th: "th = thread"
+ with ih is_runing have " cntP s th = cntV s th + cntCS s th"
+ by (simp add:runing_def)
+ moreover from eq_th eq_e have "th \<notin> threads (e#s)"
+ by simp
+ moreover note eq_cnp eq_cnv eq_cncs
+ ultimately have ?thesis by auto
+ } ultimately show ?thesis by blast
+ next
+ case (thread_P thread cs)
+ assume eq_e: "e = P thread cs"
+ and is_runing: "thread \<in> runing s"
+ and no_dep: "(Cs cs, Th thread) \<notin> (RAG s)\<^sup>+"
+ from thread_P vt stp ih have vtp: "vt (P thread cs#s)" by auto
+ then interpret vt_p: valid_trace "(P thread cs#s)"
+ by (unfold_locales, simp)
+ show ?thesis
+ proof -
+ { have hh: "\<And> A B C. (B = C) \<Longrightarrow> (A \<and> B) = (A \<and> C)" by blast
+ assume neq_th: "th \<noteq> thread"
+ with eq_e
+ have eq_readys: "(th \<in> readys (e#s)) = (th \<in> readys (s))"
+ apply (simp add:readys_def s_waiting_def wq_def Let_def)
+ apply (rule_tac hh)
+ apply (intro iffI allI, clarify)
+ apply (erule_tac x = csa in allE, auto)
+ apply (subgoal_tac "wq_fun (schs s) cs \<noteq> []", auto)
+ apply (erule_tac x = cs in allE, auto)
+ by (case_tac "(wq_fun (schs s) cs)", auto)
+ moreover from neq_th eq_e have "cntCS (e # s) th = cntCS s th"
+ apply (simp add:cntCS_def holdents_test)
+ by (unfold step_RAG_p [OF vtp], auto)
+ moreover from eq_e neq_th have "cntP (e # s) th = cntP s th"
+ by (simp add:cntP_def count_def)
+ moreover from eq_e neq_th have "cntV (e#s) th = cntV s th"
+ by (simp add:cntV_def count_def)
+ moreover from eq_e neq_th have "threads (e#s) = threads s" by simp
+ moreover note ih [of th]
+ ultimately have ?thesis by simp
+ } moreover {
+ assume eq_th: "th = thread"
+ have ?thesis
+ proof -
+ from eq_e eq_th have eq_cnp: "cntP (e # s) th = 1 + (cntP s th)"
+ by (simp add:cntP_def count_def)
+ from eq_e eq_th have eq_cnv: "cntV (e#s) th = cntV s th"
+ by (simp add:cntV_def count_def)
+ show ?thesis
+ proof (cases "wq s cs = []")
+ case True
+ with is_runing
+ have "th \<in> readys (e#s)"
+ apply (unfold eq_e wq_def, unfold readys_def s_RAG_def)
+ apply (simp add: wq_def[symmetric] runing_def eq_th s_waiting_def)
+ by (auto simp:readys_def wq_def Let_def s_waiting_def wq_def)
+ moreover have "cntCS (e # s) th = 1 + cntCS s th"
+ proof -
+ have "card {csa. csa = cs \<or> (Cs csa, Th thread) \<in> RAG s} =
+ Suc (card {cs. (Cs cs, Th thread) \<in> RAG s})" (is "card ?L = Suc (card ?R)")
+ proof -
+ have "?L = insert cs ?R" by auto
+ moreover have "card \<dots> = Suc (card (?R - {cs}))"
+ proof(rule card_insert)
+ from vt_s.finite_holding [of thread]
+ show " finite {cs. (Cs cs, Th thread) \<in> RAG s}"
+ by (unfold holdents_test, simp)
+ qed
+ moreover have "?R - {cs} = ?R"
+ proof -
+ have "cs \<notin> ?R"
+ proof
+ assume "cs \<in> {cs. (Cs cs, Th thread) \<in> RAG s}"
+ with no_dep show False by auto
+ qed
+ thus ?thesis by auto
+ qed
+ ultimately show ?thesis by auto
+ qed
+ thus ?thesis
+ apply (unfold eq_e eq_th cntCS_def)
+ apply (simp add: holdents_test)
+ by (unfold step_RAG_p [OF vtp], auto simp:True)
+ qed
+ moreover from is_runing have "th \<in> readys s"
+ by (simp add:runing_def eq_th)
+ moreover note eq_cnp eq_cnv ih [of th]
+ ultimately show ?thesis by auto
+ next
+ case False
+ have eq_wq: "wq (e#s) cs = wq s cs @ [th]"
+ by (unfold eq_th eq_e wq_def, auto simp:Let_def)
+ have "th \<notin> readys (e#s)"
+ proof
+ assume "th \<in> readys (e#s)"
+ hence "\<forall>cs. \<not> waiting (e # s) th cs" by (simp add:readys_def)
+ from this[rule_format, of cs] have " \<not> waiting (e # s) th cs" .
+ hence "th \<in> set (wq (e#s) cs) \<Longrightarrow> th = hd (wq (e#s) cs)"
+ by (simp add:s_waiting_def wq_def)
+ moreover from eq_wq have "th \<in> set (wq (e#s) cs)" by auto
+ ultimately have "th = hd (wq (e#s) cs)" by blast
+ with eq_wq have "th = hd (wq s cs @ [th])" by simp
+ hence "th = hd (wq s cs)" using False by auto
+ with False eq_wq vt_p.wq_distinct [of cs]
+ show False by (fold eq_e, auto)
+ qed
+ moreover from is_runing have "th \<in> threads (e#s)"
+ by (unfold eq_e, auto simp:runing_def readys_def eq_th)
+ moreover have "cntCS (e # s) th = cntCS s th"
+ apply (unfold cntCS_def holdents_test eq_e step_RAG_p[OF vtp])
+ by (auto simp:False)
+ moreover note eq_cnp eq_cnv ih[of th]
+ moreover from is_runing have "th \<in> readys s"
+ by (simp add:runing_def eq_th)
+ ultimately show ?thesis by auto
+ qed
+ qed
+ } ultimately show ?thesis by blast
+ qed
+ next
+ case (thread_V thread cs)
+ from assms vt stp ih thread_V have vtv: "vt (V thread cs # s)" by auto
+ then interpret vt_v: valid_trace "(V thread cs # s)" by (unfold_locales, simp)
+ assume eq_e: "e = V thread cs"
+ and is_runing: "thread \<in> runing s"
+ and hold: "holding s thread cs"
+ from hold obtain rest
+ where eq_wq: "wq s cs = thread # rest"
+ by (case_tac "wq s cs", auto simp: wq_def s_holding_def)
+ have eq_threads: "threads (e#s) = threads s" by (simp add: eq_e)
+ have eq_set: "set (SOME q. distinct q \<and> set q = set rest) = set rest"
+ proof(rule someI2)
+ from vt_v.wq_distinct[of cs] and eq_wq
+ show "distinct rest \<and> set rest = set rest"
+ by (metis distinct.simps(2) vt_s.wq_distinct)
+ next
+ show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest"
+ by auto
+ qed
+ show ?thesis
+ proof -
+ { assume eq_th: "th = thread"
+ from eq_th have eq_cnp: "cntP (e # s) th = cntP s th"
+ by (unfold eq_e, simp add:cntP_def count_def)
+ moreover from eq_th have eq_cnv: "cntV (e#s) th = 1 + cntV s th"
+ by (unfold eq_e, simp add:cntV_def count_def)
+ moreover from cntCS_v_dec [OF vtv]
+ have "cntCS (e # s) thread + 1 = cntCS s thread"
+ by (simp add:eq_e)
+ moreover from is_runing have rd_before: "thread \<in> readys s"
+ by (unfold runing_def, simp)
+ moreover have "thread \<in> readys (e # s)"
+ proof -
+ from is_runing
+ have "thread \<in> threads (e#s)"
+ by (unfold eq_e, auto simp:runing_def readys_def)
+ moreover have "\<forall> cs1. \<not> waiting (e#s) thread cs1"
+ proof
+ fix cs1
+ { assume eq_cs: "cs1 = cs"
+ have "\<not> waiting (e # s) thread cs1"
+ proof -
+ from eq_wq
+ have "thread \<notin> set (wq (e#s) cs1)"
+ apply(unfold eq_e wq_def eq_cs s_holding_def)
+ apply (auto simp:Let_def)
+ proof -
+ assume "thread \<in> set (SOME q. distinct q \<and> set q = set rest)"
+ with eq_set have "thread \<in> set rest" by simp
+ with vt_v.wq_distinct[of cs]
+ and eq_wq show False
+ by (metis distinct.simps(2) vt_s.wq_distinct)
+ qed
+ thus ?thesis by (simp add:wq_def s_waiting_def)
+ qed
+ } moreover {
+ assume neq_cs: "cs1 \<noteq> cs"
+ have "\<not> waiting (e # s) thread cs1"
+ proof -
+ from wq_v_neq [OF neq_cs[symmetric]]
+ have "wq (V thread cs # s) cs1 = wq s cs1" .
+ moreover have "\<not> waiting s thread cs1"
+ proof -
+ from runing_ready and is_runing
+ have "thread \<in> readys s" by auto
+ thus ?thesis by (simp add:readys_def)
+ qed
+ ultimately show ?thesis
+ by (auto simp:wq_def s_waiting_def eq_e)
+ qed
+ } ultimately show "\<not> waiting (e # s) thread cs1" by blast
+ qed
+ ultimately show ?thesis by (simp add:readys_def)
+ qed
+ moreover note eq_th ih
+ ultimately have ?thesis by auto
+ } moreover {
+ assume neq_th: "th \<noteq> thread"
+ from neq_th eq_e have eq_cnp: "cntP (e # s) th = cntP s th"
+ by (simp add:cntP_def count_def)
+ from neq_th eq_e have eq_cnv: "cntV (e # s) th = cntV s th"
+ by (simp add:cntV_def count_def)
+ have ?thesis
+ proof(cases "th \<in> set rest")
+ case False
+ have "(th \<in> readys (e # s)) = (th \<in> readys s)"
+ apply (insert step_back_vt[OF vtv])
+ by (simp add: False eq_e eq_wq neq_th vt_s.readys_v_eq)
+ moreover have "cntCS (e#s) th = cntCS s th"
+ apply (insert neq_th, unfold eq_e cntCS_def holdents_test step_RAG_v[OF vtv], auto)
+ proof -
+ have "{csa. (Cs csa, Th th) \<in> RAG s \<or> csa = cs \<and> next_th s thread cs th} =
+ {cs. (Cs cs, Th th) \<in> RAG s}"
+ proof -
+ from False eq_wq
+ have " next_th s thread cs th \<Longrightarrow> (Cs cs, Th th) \<in> RAG s"
+ apply (unfold next_th_def, auto)
+ proof -
+ assume ne: "rest \<noteq> []"
+ and ni: "hd (SOME q. distinct q \<and> set q = set rest) \<notin> set rest"
+ and eq_wq: "wq s cs = thread # rest"
+ from eq_set ni have "hd (SOME q. distinct q \<and> set q = set rest) \<notin>
+ set (SOME q. distinct q \<and> set q = set rest)
+ " by simp
+ moreover have "(SOME q. distinct q \<and> set q = set rest) \<noteq> []"
+ proof(rule someI2)
+ from vt_s.wq_distinct[ of cs] and eq_wq
+ show "distinct rest \<and> set rest = set rest" by auto
+ next
+ fix x assume "distinct x \<and> set x = set rest"
+ with ne show "x \<noteq> []" by auto
+ qed
+ ultimately show
+ "(Cs cs, Th (hd (SOME q. distinct q \<and> set q = set rest))) \<in> RAG s"
+ by auto
+ qed
+ thus ?thesis by auto
+ qed
+ thus "card {csa. (Cs csa, Th th) \<in> RAG s \<or> csa = cs \<and> next_th s thread cs th} =
+ card {cs. (Cs cs, Th th) \<in> RAG s}" by simp
+ qed
+ moreover note ih eq_cnp eq_cnv eq_threads
+ ultimately show ?thesis by auto
+ next
+ case True
+ assume th_in: "th \<in> set rest"
+ show ?thesis
+ proof(cases "next_th s thread cs th")
+ case False
+ with eq_wq and th_in have
+ neq_hd: "th \<noteq> hd (SOME q. distinct q \<and> set q = set rest)" (is "th \<noteq> hd ?rest")
+ by (auto simp:next_th_def)
+ have "(th \<in> readys (e # s)) = (th \<in> readys s)"
+ proof -
+ from eq_wq and th_in
+ have "\<not> th \<in> readys s"
+ apply (auto simp:readys_def s_waiting_def)
+ apply (rule_tac x = cs in exI, auto)
+ by (insert vt_s.wq_distinct[of cs], auto simp add: wq_def)
+ moreover
+ from eq_wq and th_in and neq_hd
+ have "\<not> (th \<in> readys (e # s))"
+ apply (auto simp:readys_def s_waiting_def eq_e wq_def Let_def split:list.splits)
+ by (rule_tac x = cs in exI, auto simp:eq_set)
+ ultimately show ?thesis by auto
+ qed
+ moreover have "cntCS (e#s) th = cntCS s th"
+ proof -
+ from eq_wq and th_in and neq_hd
+ have "(holdents (e # s) th) = (holdents s th)"
+ apply (unfold eq_e step_RAG_v[OF vtv],
+ auto simp:next_th_def eq_set s_RAG_def holdents_test wq_def
+ Let_def cs_holding_def)
+ by (insert vt_s.wq_distinct[of cs], auto simp:wq_def)
+ thus ?thesis by (simp add:cntCS_def)
+ qed
+ moreover note ih eq_cnp eq_cnv eq_threads
+ ultimately show ?thesis by auto
+ next
+ case True
+ let ?rest = " (SOME q. distinct q \<and> set q = set rest)"
+ let ?t = "hd ?rest"
+ from True eq_wq th_in neq_th
+ have "th \<in> readys (e # s)"
+ apply (auto simp:eq_e readys_def s_waiting_def wq_def
+ Let_def next_th_def)
+ proof -
+ assume eq_wq: "wq_fun (schs s) cs = thread # rest"
+ and t_in: "?t \<in> set rest"
+ show "?t \<in> threads s"
+ proof(rule vt_s.wq_threads)
+ from eq_wq and t_in
+ show "?t \<in> set (wq s cs)" by (auto simp:wq_def)
+ qed
+ next
+ fix csa
+ assume eq_wq: "wq_fun (schs s) cs = thread # rest"
+ and t_in: "?t \<in> set rest"
+ and neq_cs: "csa \<noteq> cs"
+ and t_in': "?t \<in> set (wq_fun (schs s) csa)"
+ show "?t = hd (wq_fun (schs s) csa)"
+ proof -
+ { assume neq_hd': "?t \<noteq> hd (wq_fun (schs s) csa)"
+ from vt_s.wq_distinct[of cs] and
+ eq_wq[folded wq_def] and t_in eq_wq
+ have "?t \<noteq> thread" by auto
+ with eq_wq and t_in
+ have w1: "waiting s ?t cs"
+ by (auto simp:s_waiting_def wq_def)
+ from t_in' neq_hd'
+ have w2: "waiting s ?t csa"
+ by (auto simp:s_waiting_def wq_def)
+ from vt_s.waiting_unique[OF w1 w2]
+ and neq_cs have "False" by auto
+ } thus ?thesis by auto
+ qed
+ qed
+ moreover have "cntP s th = cntV s th + cntCS s th + 1"
+ proof -
+ have "th \<notin> readys s"
+ proof -
+ from True eq_wq neq_th th_in
+ show ?thesis
+ apply (unfold readys_def s_waiting_def, auto)
+ by (rule_tac x = cs in exI, auto simp add: wq_def)
+ qed
+ moreover have "th \<in> threads s"
+ proof -
+ from th_in eq_wq
+ have "th \<in> set (wq s cs)" by simp
+ from vt_s.wq_threads [OF this]
+ show ?thesis .
+ qed
+ ultimately show ?thesis using ih by auto
+ qed
+ moreover from True neq_th have "cntCS (e # s) th = 1 + cntCS s th"
+ apply (unfold cntCS_def holdents_test eq_e step_RAG_v[OF vtv], auto)
+ proof -
+ show "card {csa. (Cs csa, Th th) \<in> RAG s \<or> csa = cs} =
+ Suc (card {cs. (Cs cs, Th th) \<in> RAG s})"
+ (is "card ?A = Suc (card ?B)")
+ proof -
+ have "?A = insert cs ?B" by auto
+ hence "card ?A = card (insert cs ?B)" by simp
+ also have "\<dots> = Suc (card ?B)"
+ proof(rule card_insert_disjoint)
+ have "?B \<subseteq> ((\<lambda> (x, y). the_cs x) ` RAG s)"
+ apply (auto simp:image_def)
+ by (rule_tac x = "(Cs x, Th th)" in bexI, auto)
+ with vt_s.finite_RAG
+ show "finite {cs. (Cs cs, Th th) \<in> RAG s}" by (auto intro:finite_subset)
+ next
+ show "cs \<notin> {cs. (Cs cs, Th th) \<in> RAG s}"
+ proof
+ assume "cs \<in> {cs. (Cs cs, Th th) \<in> RAG s}"
+ hence "(Cs cs, Th th) \<in> RAG s" by simp
+ with True neq_th eq_wq show False
+ by (auto simp:next_th_def s_RAG_def cs_holding_def)
+ qed
+ qed
+ finally show ?thesis .
+ qed
+ qed
+ moreover note eq_cnp eq_cnv
+ ultimately show ?thesis by simp
+ qed
+ qed
+ } ultimately show ?thesis by blast
+ qed
+ next
+ case (thread_set thread prio)
+ assume eq_e: "e = Set thread prio"
+ and is_runing: "thread \<in> runing s"
+ show ?thesis
+ proof -
+ from eq_e have eq_cnp: "cntP (e#s) th = cntP s th" by (simp add:cntP_def count_def)
+ from eq_e have eq_cnv: "cntV (e#s) th = cntV s th" by (simp add:cntV_def count_def)
+ have eq_cncs: "cntCS (e#s) th = cntCS s th"
+ unfolding cntCS_def holdents_test
+ by (simp add:RAG_set_unchanged eq_e)
+ from eq_e have eq_readys: "readys (e#s) = readys s"
+ by (simp add:readys_def cs_waiting_def s_waiting_def wq_def,
+ auto simp:Let_def)
+ { assume "th \<noteq> thread"
+ with eq_readys eq_e
+ have "(th \<in> readys (e # s) \<or> th \<notin> threads (e # s)) =
+ (th \<in> readys (s) \<or> th \<notin> threads (s))"
+ by (simp add:threads.simps)
+ with eq_cnp eq_cnv eq_cncs ih is_runing
+ have ?thesis by simp
+ } moreover {
+ assume eq_th: "th = thread"
+ with is_runing ih have " cntP s th = cntV s th + cntCS s th"
+ by (unfold runing_def, auto)
+ moreover from eq_th and eq_readys is_runing have "th \<in> readys (e#s)"
+ by (simp add:runing_def)
+ moreover note eq_cnp eq_cnv eq_cncs
+ ultimately have ?thesis by auto
+ } ultimately show ?thesis by blast
+ qed
+ qed
+ next
+ case vt_nil
+ show ?case
+ by (unfold cntP_def cntV_def cntCS_def,
+ auto simp:count_def holdents_test s_RAG_def wq_def cs_holding_def)
+ qed
+qed
+
+lemma not_thread_cncs:
+ assumes not_in: "th \<notin> threads s"
+ shows "cntCS s th = 0"
+proof -
+ from vt not_in show ?thesis
+ proof(induct arbitrary:th)
+ case (vt_cons s e th)
+ interpret vt_s: valid_trace s using vt_cons(1)
+ by (unfold_locales, simp)
+ assume vt: "vt s"
+ and ih: "\<And>th. th \<notin> threads s \<Longrightarrow> cntCS s th = 0"
+ and stp: "step s e"
+ and not_in: "th \<notin> threads (e # s)"
+ from stp show ?case
+ proof(cases)
+ case (thread_create thread prio)
+ assume eq_e: "e = Create thread prio"
+ and not_in': "thread \<notin> threads s"
+ have "cntCS (e # s) th = cntCS s th"
+ apply (unfold eq_e cntCS_def holdents_test)
+ by (simp add:RAG_create_unchanged)
+ moreover have "th \<notin> threads s"
+ proof -
+ from not_in eq_e show ?thesis by simp
+ qed
+ moreover note ih ultimately show ?thesis by auto
+ next
+ case (thread_exit thread)
+ assume eq_e: "e = Exit thread"
+ and nh: "holdents s thread = {}"
+ have eq_cns: "cntCS (e # s) th = cntCS s th"
+ apply (unfold eq_e cntCS_def holdents_test)
+ by (simp add:RAG_exit_unchanged)
+ show ?thesis
+ proof(cases "th = thread")
+ case True
+ have "cntCS s th = 0" by (unfold cntCS_def, auto simp:nh True)
+ with eq_cns show ?thesis by simp
+ next
+ case False
+ with not_in and eq_e
+ have "th \<notin> threads s" by simp
+ from ih[OF this] and eq_cns show ?thesis by simp
+ qed
+ next
+ case (thread_P thread cs)
+ assume eq_e: "e = P thread cs"
+ and is_runing: "thread \<in> runing s"
+ from assms thread_P ih vt stp thread_P have vtp: "vt (P thread cs#s)" by auto
+ have neq_th: "th \<noteq> thread"
+ proof -
+ from not_in eq_e have "th \<notin> threads s" by simp
+ moreover from is_runing have "thread \<in> threads s"
+ by (simp add:runing_def readys_def)
+ ultimately show ?thesis by auto
+ qed
+ hence "cntCS (e # s) th = cntCS s th "
+ apply (unfold cntCS_def holdents_test eq_e)
+ by (unfold step_RAG_p[OF vtp], auto)
+ moreover have "cntCS s th = 0"
+ proof(rule ih)
+ from not_in eq_e show "th \<notin> threads s" by simp
+ qed
+ ultimately show ?thesis by simp
+ next
+ case (thread_V thread cs)
+ assume eq_e: "e = V thread cs"
+ and is_runing: "thread \<in> runing s"
+ and hold: "holding s thread cs"
+ have neq_th: "th \<noteq> thread"
+ proof -
+ from not_in eq_e have "th \<notin> threads s" by simp
+ moreover from is_runing have "thread \<in> threads s"
+ by (simp add:runing_def readys_def)
+ ultimately show ?thesis by auto
+ qed
+ from assms thread_V vt stp ih
+ have vtv: "vt (V thread cs#s)" by auto
+ then interpret vt_v: valid_trace "(V thread cs#s)"
+ by (unfold_locales, simp)
+ from hold obtain rest
+ where eq_wq: "wq s cs = thread # rest"
+ by (case_tac "wq s cs", auto simp: wq_def s_holding_def)
+ from not_in eq_e eq_wq
+ have "\<not> next_th s thread cs th"
+ apply (auto simp:next_th_def)
+ proof -
+ assume ne: "rest \<noteq> []"
+ and ni: "hd (SOME q. distinct q \<and> set q = set rest) \<notin> threads s" (is "?t \<notin> threads s")
+ have "?t \<in> set rest"
+ proof(rule someI2)
+ from vt_v.wq_distinct[of cs] and eq_wq
+ show "distinct rest \<and> set rest = set rest"
+ by (metis distinct.simps(2) vt_s.wq_distinct)
+ next
+ fix x assume "distinct x \<and> set x = set rest" with ne
+ show "hd x \<in> set rest" by (cases x, auto)
+ qed
+ with eq_wq have "?t \<in> set (wq s cs)" by simp
+ from vt_s.wq_threads[OF this] and ni
+ show False
+ using `hd (SOME q. distinct q \<and> set q = set rest) \<in> set (wq s cs)`
+ ni vt_s.wq_threads by blast
+ qed
+ moreover note neq_th eq_wq
+ ultimately have "cntCS (e # s) th = cntCS s th"
+ by (unfold eq_e cntCS_def holdents_test step_RAG_v[OF vtv], auto)
+ moreover have "cntCS s th = 0"
+ proof(rule ih)
+ from not_in eq_e show "th \<notin> threads s" by simp
+ qed
+ ultimately show ?thesis by simp
+ next
+ case (thread_set thread prio)
+ print_facts
+ assume eq_e: "e = Set thread prio"
+ and is_runing: "thread \<in> runing s"
+ from not_in and eq_e have "th \<notin> threads s" by auto
+ from ih [OF this] and eq_e
+ show ?thesis
+ apply (unfold eq_e cntCS_def holdents_test)
+ by (simp add:RAG_set_unchanged)
+ qed
+ next
+ case vt_nil
+ show ?case
+ by (unfold cntCS_def,
+ auto simp:count_def holdents_test s_RAG_def wq_def cs_holding_def)
+ qed
+qed
+
+end
+
+
+context valid_trace
+begin
+
+lemma dm_RAG_threads:
+ assumes in_dom: "(Th th) \<in> Domain (RAG s)"
+ shows "th \<in> threads s"
+proof -
+ from in_dom obtain n where "(Th th, n) \<in> RAG s" by auto
+ moreover from RAG_target_th[OF this] obtain cs where "n = Cs cs" by auto
+ ultimately have "(Th th, Cs cs) \<in> RAG s" by simp
+ hence "th \<in> set (wq s cs)"
+ by (unfold s_RAG_def, auto simp:cs_waiting_def)
+ from wq_threads [OF this] show ?thesis .
+qed
+
+end
+
+lemma cp_eq_cpreced: "cp s th = cpreced (wq s) s th"
+unfolding cp_def wq_def
+apply(induct s rule: schs.induct)
+thm cpreced_initial
+apply(simp add: Let_def cpreced_initial)
+apply(simp add: Let_def)
+apply(simp add: Let_def)
+apply(simp add: Let_def)
+apply(subst (2) schs.simps)
+apply(simp add: Let_def)
+apply(subst (2) schs.simps)
+apply(simp add: Let_def)
+done
+
+context valid_trace
+begin
+
+lemma runing_unique:
+ assumes runing_1: "th1 \<in> runing s"
+ and runing_2: "th2 \<in> runing s"
+ shows "th1 = th2"
+proof -
+ from runing_1 and runing_2 have "cp s th1 = cp s th2"
+ unfolding runing_def
+ apply(simp)
+ done
+ hence eq_max: "Max ((\<lambda>th. preced th s) ` ({th1} \<union> dependants (wq s) th1)) =
+ Max ((\<lambda>th. preced th s) ` ({th2} \<union> dependants (wq s) th2))"
+ (is "Max (?f ` ?A) = Max (?f ` ?B)")
+ unfolding cp_eq_cpreced
+ unfolding cpreced_def .
+ obtain th1' where th1_in: "th1' \<in> ?A" and eq_f_th1: "?f th1' = Max (?f ` ?A)"
+ proof -
+ have h1: "finite (?f ` ?A)"
+ proof -
+ have "finite ?A"
+ proof -
+ have "finite (dependants (wq s) th1)"
+ proof-
+ have "finite {th'. (Th th', Th th1) \<in> (RAG (wq s))\<^sup>+}"
+ proof -
+ let ?F = "\<lambda> (x, y). the_th x"
+ have "{th'. (Th th', Th th1) \<in> (RAG (wq s))\<^sup>+} \<subseteq> ?F ` ((RAG (wq s))\<^sup>+)"
+ apply (auto simp:image_def)
+ by (rule_tac x = "(Th x, Th th1)" in bexI, auto)
+ moreover have "finite \<dots>"
+ proof -
+ from finite_RAG have "finite (RAG s)" .
+ hence "finite ((RAG (wq s))\<^sup>+)"
+ apply (unfold finite_trancl)
+ by (auto simp: s_RAG_def cs_RAG_def wq_def)
+ thus ?thesis by auto
+ qed
+ ultimately show ?thesis by (auto intro:finite_subset)
+ qed
+ thus ?thesis by (simp add:cs_dependants_def)
+ qed
+ thus ?thesis by simp
+ qed
+ thus ?thesis by auto
+ qed
+ moreover have h2: "(?f ` ?A) \<noteq> {}"
+ proof -
+ have "?A \<noteq> {}" by simp
+ thus ?thesis by simp
+ qed
+ from Max_in [OF h1 h2]
+ have "Max (?f ` ?A) \<in> (?f ` ?A)" .
+ thus ?thesis
+ thm cpreced_def
+ unfolding cpreced_def[symmetric]
+ unfolding cp_eq_cpreced[symmetric]
+ unfolding cpreced_def
+ using that[intro] by (auto)
+ qed
+ obtain th2' where th2_in: "th2' \<in> ?B" and eq_f_th2: "?f th2' = Max (?f ` ?B)"
+ proof -
+ have h1: "finite (?f ` ?B)"
+ proof -
+ have "finite ?B"
+ proof -
+ have "finite (dependants (wq s) th2)"
+ proof-
+ have "finite {th'. (Th th', Th th2) \<in> (RAG (wq s))\<^sup>+}"
+ proof -
+ let ?F = "\<lambda> (x, y). the_th x"
+ have "{th'. (Th th', Th th2) \<in> (RAG (wq s))\<^sup>+} \<subseteq> ?F ` ((RAG (wq s))\<^sup>+)"
+ apply (auto simp:image_def)
+ by (rule_tac x = "(Th x, Th th2)" in bexI, auto)
+ moreover have "finite \<dots>"
+ proof -
+ from finite_RAG have "finite (RAG s)" .
+ hence "finite ((RAG (wq s))\<^sup>+)"
+ apply (unfold finite_trancl)
+ by (auto simp: s_RAG_def cs_RAG_def wq_def)
+ thus ?thesis by auto
+ qed
+ ultimately show ?thesis by (auto intro:finite_subset)
+ qed
+ thus ?thesis by (simp add:cs_dependants_def)
+ qed
+ thus ?thesis by simp
+ qed
+ thus ?thesis by auto
+ qed
+ moreover have h2: "(?f ` ?B) \<noteq> {}"
+ proof -
+ have "?B \<noteq> {}" by simp
+ thus ?thesis by simp
+ qed
+ from Max_in [OF h1 h2]
+ have "Max (?f ` ?B) \<in> (?f ` ?B)" .
+ thus ?thesis by (auto intro:that)
+ qed
+ from eq_f_th1 eq_f_th2 eq_max
+ have eq_preced: "preced th1' s = preced th2' s" by auto
+ hence eq_th12: "th1' = th2'"
+ proof (rule preced_unique)
+ from th1_in have "th1' = th1 \<or> (th1' \<in> dependants (wq s) th1)" by simp
+ thus "th1' \<in> threads s"
+ proof
+ assume "th1' \<in> dependants (wq s) th1"
+ hence "(Th th1') \<in> Domain ((RAG s)^+)"
+ apply (unfold cs_dependants_def cs_RAG_def s_RAG_def)
+ by (auto simp:Domain_def)
+ hence "(Th th1') \<in> Domain (RAG s)" by (simp add:trancl_domain)
+ from dm_RAG_threads[OF this] show ?thesis .
+ next
+ assume "th1' = th1"
+ with runing_1 show ?thesis
+ by (unfold runing_def readys_def, auto)
+ qed
+ next
+ from th2_in have "th2' = th2 \<or> (th2' \<in> dependants (wq s) th2)" by simp
+ thus "th2' \<in> threads s"
+ proof
+ assume "th2' \<in> dependants (wq s) th2"
+ hence "(Th th2') \<in> Domain ((RAG s)^+)"
+ apply (unfold cs_dependants_def cs_RAG_def s_RAG_def)
+ by (auto simp:Domain_def)
+ hence "(Th th2') \<in> Domain (RAG s)" by (simp add:trancl_domain)
+ from dm_RAG_threads[OF this] show ?thesis .
+ next
+ assume "th2' = th2"
+ with runing_2 show ?thesis
+ by (unfold runing_def readys_def, auto)
+ qed
+ qed
+ from th1_in have "th1' = th1 \<or> th1' \<in> dependants (wq s) th1" by simp
+ thus ?thesis
+ proof
+ assume eq_th': "th1' = th1"
+ from th2_in have "th2' = th2 \<or> th2' \<in> dependants (wq s) th2" by simp
+ thus ?thesis
+ proof
+ assume "th2' = th2" thus ?thesis using eq_th' eq_th12 by simp
+ next
+ assume "th2' \<in> dependants (wq s) th2"
+ with eq_th12 eq_th' have "th1 \<in> dependants (wq s) th2" by simp
+ hence "(Th th1, Th th2) \<in> (RAG s)^+"
+ by (unfold cs_dependants_def s_RAG_def cs_RAG_def, simp)
+ hence "Th th1 \<in> Domain ((RAG s)^+)"
+ apply (unfold cs_dependants_def cs_RAG_def s_RAG_def)
+ by (auto simp:Domain_def)
+ hence "Th th1 \<in> Domain (RAG s)" by (simp add:trancl_domain)
+ then obtain n where d: "(Th th1, n) \<in> RAG s" by (auto simp:Domain_def)
+ from RAG_target_th [OF this]
+ obtain cs' where "n = Cs cs'" by auto
+ with d have "(Th th1, Cs cs') \<in> RAG s" by simp
+ with runing_1 have "False"
+ apply (unfold runing_def readys_def s_RAG_def)
+ by (auto simp:waiting_eq)
+ thus ?thesis by simp
+ qed
+ next
+ assume th1'_in: "th1' \<in> dependants (wq s) th1"
+ from th2_in have "th2' = th2 \<or> th2' \<in> dependants (wq s) th2" by simp
+ thus ?thesis
+ proof
+ assume "th2' = th2"
+ with th1'_in eq_th12 have "th2 \<in> dependants (wq s) th1" by simp
+ hence "(Th th2, Th th1) \<in> (RAG s)^+"
+ by (unfold cs_dependants_def s_RAG_def cs_RAG_def, simp)
+ hence "Th th2 \<in> Domain ((RAG s)^+)"
+ apply (unfold cs_dependants_def cs_RAG_def s_RAG_def)
+ by (auto simp:Domain_def)
+ hence "Th th2 \<in> Domain (RAG s)" by (simp add:trancl_domain)
+ then obtain n where d: "(Th th2, n) \<in> RAG s" by (auto simp:Domain_def)
+ from RAG_target_th [OF this]
+ obtain cs' where "n = Cs cs'" by auto
+ with d have "(Th th2, Cs cs') \<in> RAG s" by simp
+ with runing_2 have "False"
+ apply (unfold runing_def readys_def s_RAG_def)
+ by (auto simp:waiting_eq)
+ thus ?thesis by simp
+ next
+ assume "th2' \<in> dependants (wq s) th2"
+ with eq_th12 have "th1' \<in> dependants (wq s) th2" by simp
+ hence h1: "(Th th1', Th th2) \<in> (RAG s)^+"
+ by (unfold cs_dependants_def s_RAG_def cs_RAG_def, simp)
+ from th1'_in have h2: "(Th th1', Th th1) \<in> (RAG s)^+"
+ by (unfold cs_dependants_def s_RAG_def cs_RAG_def, simp)
+ show ?thesis
+ proof(rule dchain_unique[OF h1 _ h2, symmetric])
+ from runing_1 show "th1 \<in> readys s" by (simp add:runing_def)
+ from runing_2 show "th2 \<in> readys s" by (simp add:runing_def)
+ qed
+ qed
+ qed
+qed
+
+
+lemma "card (runing s) \<le> 1"
+apply(subgoal_tac "finite (runing s)")
+prefer 2
+apply (metis finite_nat_set_iff_bounded lessI runing_unique)
+apply(rule ccontr)
+apply(simp)
+apply(case_tac "Suc (Suc 0) \<le> card (runing s)")
+apply(subst (asm) card_le_Suc_iff)
+apply(simp)
+apply(auto)[1]
+apply (metis insertCI runing_unique)
+apply(auto)
+done
+
+end
+
+
+lemma create_pre:
+ assumes stp: "step s e"
+ and not_in: "th \<notin> threads s"
+ and is_in: "th \<in> threads (e#s)"
+ obtains prio where "e = Create th prio"
+proof -
+ from assms
+ show ?thesis
+ proof(cases)
+ case (thread_create thread prio)
+ with is_in not_in have "e = Create th prio" by simp
+ from that[OF this] show ?thesis .
+ next
+ case (thread_exit thread)
+ with assms show ?thesis by (auto intro!:that)
+ next
+ case (thread_P thread)
+ with assms show ?thesis by (auto intro!:that)
+ next
+ case (thread_V thread)
+ with assms show ?thesis by (auto intro!:that)
+ next
+ case (thread_set thread)
+ with assms show ?thesis by (auto intro!:that)
+ qed
+qed
+
+context valid_trace
+begin
+
+lemma cnp_cnv_eq:
+ assumes "th \<notin> threads s"
+ shows "cntP s th = cntV s th"
+ using assms
+ using cnp_cnv_cncs not_thread_cncs by auto
+
+end
+
+
+lemma eq_RAG:
+ "RAG (wq s) = RAG s"
+by (unfold cs_RAG_def s_RAG_def, auto)
+
+context valid_trace
+begin
+
+lemma count_eq_dependants:
+ assumes eq_pv: "cntP s th = cntV s th"
+ shows "dependants (wq s) th = {}"
+proof -
+ from cnp_cnv_cncs and eq_pv
+ have "cntCS s th = 0"
+ by (auto split:if_splits)
+ moreover have "finite {cs. (Cs cs, Th th) \<in> RAG s}"
+ proof -
+ from finite_holding[of th] show ?thesis
+ by (simp add:holdents_test)
+ qed
+ ultimately have h: "{cs. (Cs cs, Th th) \<in> RAG s} = {}"
+ by (unfold cntCS_def holdents_test cs_dependants_def, auto)
+ show ?thesis
+ proof(unfold cs_dependants_def)
+ { assume "{th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+} \<noteq> {}"
+ then obtain th' where "(Th th', Th th) \<in> (RAG (wq s))\<^sup>+" by auto
+ hence "False"
+ proof(cases)
+ assume "(Th th', Th th) \<in> RAG (wq s)"
+ thus "False" by (auto simp:cs_RAG_def)
+ next
+ fix c
+ assume "(c, Th th) \<in> RAG (wq s)"
+ with h and eq_RAG show "False"
+ by (cases c, auto simp:cs_RAG_def)
+ qed
+ } thus "{th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+} = {}" by auto
+ qed
+qed
+
+lemma dependants_threads:
+ shows "dependants (wq s) th \<subseteq> threads s"
+proof
+ { fix th th'
+ assume h: "th \<in> {th'a. (Th th'a, Th th') \<in> (RAG (wq s))\<^sup>+}"
+ have "Th th \<in> Domain (RAG s)"
+ proof -
+ from h obtain th' where "(Th th, Th th') \<in> (RAG (wq s))\<^sup>+" by auto
+ hence "(Th th) \<in> Domain ( (RAG (wq s))\<^sup>+)" by (auto simp:Domain_def)
+ with trancl_domain have "(Th th) \<in> Domain (RAG (wq s))" by simp
+ thus ?thesis using eq_RAG by simp
+ qed
+ from dm_RAG_threads[OF this]
+ have "th \<in> threads s" .
+ } note hh = this
+ fix th1
+ assume "th1 \<in> dependants (wq s) th"
+ hence "th1 \<in> {th'a. (Th th'a, Th th) \<in> (RAG (wq s))\<^sup>+}"
+ by (unfold cs_dependants_def, simp)
+ from hh [OF this] show "th1 \<in> threads s" .
+qed
+
+lemma finite_threads:
+ shows "finite (threads s)"
+using vt by (induct) (auto elim: step.cases)
+
+end
+
+lemma Max_f_mono:
+ assumes seq: "A \<subseteq> B"
+ and np: "A \<noteq> {}"
+ and fnt: "finite B"
+ shows "Max (f ` A) \<le> Max (f ` B)"
+proof(rule Max_mono)
+ from seq show "f ` A \<subseteq> f ` B" by auto
+next
+ from np show "f ` A \<noteq> {}" by auto
+next
+ from fnt and seq show "finite (f ` B)" by auto
+qed
+
+context valid_trace
+begin
+
+lemma cp_le:
+ assumes th_in: "th \<in> threads s"
+ shows "cp s th \<le> Max ((\<lambda> th. (preced th s)) ` threads s)"
+proof(unfold cp_eq_cpreced cpreced_def cs_dependants_def)
+ show "Max ((\<lambda>th. preced th s) ` ({th} \<union> {th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+}))
+ \<le> Max ((\<lambda>th. preced th s) ` threads s)"
+ (is "Max (?f ` ?A) \<le> Max (?f ` ?B)")
+ proof(rule Max_f_mono)
+ show "{th} \<union> {th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+} \<noteq> {}" by simp
+ next
+ from finite_threads
+ show "finite (threads s)" .
+ next
+ from th_in
+ show "{th} \<union> {th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+} \<subseteq> threads s"
+ apply (auto simp:Domain_def)
+ apply (rule_tac dm_RAG_threads)
+ apply (unfold trancl_domain [of "RAG s", symmetric])
+ by (unfold cs_RAG_def s_RAG_def, auto simp:Domain_def)
+ qed
+qed
+
+lemma le_cp:
+ shows "preced th s \<le> cp s th"
+proof(unfold cp_eq_cpreced preced_def cpreced_def, simp)
+ show "Prc (priority th s) (last_set th s)
+ \<le> Max (insert (Prc (priority th s) (last_set th s))
+ ((\<lambda>th. Prc (priority th s) (last_set th s)) ` dependants (wq s) th))"
+ (is "?l \<le> Max (insert ?l ?A)")
+ proof(cases "?A = {}")
+ case False
+ have "finite ?A" (is "finite (?f ` ?B)")
+ proof -
+ have "finite ?B"
+ proof-
+ have "finite {th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+}"
+ proof -
+ let ?F = "\<lambda> (x, y). the_th x"
+ have "{th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+} \<subseteq> ?F ` ((RAG (wq s))\<^sup>+)"
+ apply (auto simp:image_def)
+ by (rule_tac x = "(Th x, Th th)" in bexI, auto)
+ moreover have "finite \<dots>"
+ proof -
+ from finite_RAG have "finite (RAG s)" .
+ hence "finite ((RAG (wq s))\<^sup>+)"
+ apply (unfold finite_trancl)
+ by (auto simp: s_RAG_def cs_RAG_def wq_def)
+ thus ?thesis by auto
+ qed
+ ultimately show ?thesis by (auto intro:finite_subset)
+ qed
+ thus ?thesis by (simp add:cs_dependants_def)
+ qed
+ thus ?thesis by simp
+ qed
+ from Max_insert [OF this False, of ?l] show ?thesis by auto
+ next
+ case True
+ thus ?thesis by auto
+ qed
+qed
+
+lemma max_cp_eq:
+ shows "Max ((cp s) ` threads s) = Max ((\<lambda> th. (preced th s)) ` threads s)"
+ (is "?l = ?r")
+proof(cases "threads s = {}")
+ case True
+ thus ?thesis by auto
+next
+ case False
+ have "?l \<in> ((cp s) ` threads s)"
+ proof(rule Max_in)
+ from finite_threads
+ show "finite (cp s ` threads s)" by auto
+ next
+ from False show "cp s ` threads s \<noteq> {}" by auto
+ qed
+ then obtain th
+ where th_in: "th \<in> threads s" and eq_l: "?l = cp s th" by auto
+ have "\<dots> \<le> ?r" by (rule cp_le[OF th_in])
+ moreover have "?r \<le> cp s th" (is "Max (?f ` ?A) \<le> cp s th")
+ proof -
+ have "?r \<in> (?f ` ?A)"
+ proof(rule Max_in)
+ from finite_threads
+ show " finite ((\<lambda>th. preced th s) ` threads s)" by auto
+ next
+ from False show " (\<lambda>th. preced th s) ` threads s \<noteq> {}" by auto
+ qed
+ then obtain th' where
+ th_in': "th' \<in> ?A " and eq_r: "?r = ?f th'" by auto
+ from le_cp [of th'] eq_r
+ have "?r \<le> cp s th'" by auto
+ moreover have "\<dots> \<le> cp s th"
+ proof(fold eq_l)
+ show " cp s th' \<le> Max (cp s ` threads s)"
+ proof(rule Max_ge)
+ from th_in' show "cp s th' \<in> cp s ` threads s"
+ by auto
+ next
+ from finite_threads
+ show "finite (cp s ` threads s)" by auto
+ qed
+ qed
+ ultimately show ?thesis by auto
+ qed
+ ultimately show ?thesis using eq_l by auto
+qed
+
+lemma max_cp_readys_threads_pre:
+ assumes np: "threads s \<noteq> {}"
+ shows "Max (cp s ` readys s) = Max (cp s ` threads s)"
+proof(unfold max_cp_eq)
+ show "Max (cp s ` readys s) = Max ((\<lambda>th. preced th s) ` threads s)"
+ proof -
+ let ?p = "Max ((\<lambda>th. preced th s) ` threads s)"
+ let ?f = "(\<lambda>th. preced th s)"
+ have "?p \<in> ((\<lambda>th. preced th s) ` threads s)"
+ proof(rule Max_in)
+ from finite_threads show "finite (?f ` threads s)" by simp
+ next
+ from np show "?f ` threads s \<noteq> {}" by simp
+ qed
+ then obtain tm where tm_max: "?f tm = ?p" and tm_in: "tm \<in> threads s"
+ by (auto simp:Image_def)
+ from th_chain_to_ready [OF tm_in]
+ have "tm \<in> readys s \<or> (\<exists>th'. th' \<in> readys s \<and> (Th tm, Th th') \<in> (RAG s)\<^sup>+)" .
+ thus ?thesis
+ proof
+ assume "\<exists>th'. th' \<in> readys s \<and> (Th tm, Th th') \<in> (RAG s)\<^sup>+ "
+ then obtain th' where th'_in: "th' \<in> readys s"
+ and tm_chain:"(Th tm, Th th') \<in> (RAG s)\<^sup>+" by auto
+ have "cp s th' = ?f tm"
+ proof(subst cp_eq_cpreced, subst cpreced_def, rule Max_eqI)
+ from dependants_threads finite_threads
+ show "finite ((\<lambda>th. preced th s) ` ({th'} \<union> dependants (wq s) th'))"
+ by (auto intro:finite_subset)
+ next
+ fix p assume p_in: "p \<in> (\<lambda>th. preced th s) ` ({th'} \<union> dependants (wq s) th')"
+ from tm_max have " preced tm s = Max ((\<lambda>th. preced th s) ` threads s)" .
+ moreover have "p \<le> \<dots>"
+ proof(rule Max_ge)
+ from finite_threads
+ show "finite ((\<lambda>th. preced th s) ` threads s)" by simp
+ next
+ from p_in and th'_in and dependants_threads[of th']
+ show "p \<in> (\<lambda>th. preced th s) ` threads s"
+ by (auto simp:readys_def)
+ qed
+ ultimately show "p \<le> preced tm s" by auto
+ next
+ show "preced tm s \<in> (\<lambda>th. preced th s) ` ({th'} \<union> dependants (wq s) th')"
+ proof -
+ from tm_chain
+ have "tm \<in> dependants (wq s) th'"
+ by (unfold cs_dependants_def s_RAG_def cs_RAG_def, auto)
+ thus ?thesis by auto
+ qed
+ qed
+ with tm_max
+ have h: "cp s th' = Max ((\<lambda>th. preced th s) ` threads s)" by simp
+ show ?thesis
+ proof (fold h, rule Max_eqI)
+ fix q
+ assume "q \<in> cp s ` readys s"
+ then obtain th1 where th1_in: "th1 \<in> readys s"
+ and eq_q: "q = cp s th1" by auto
+ show "q \<le> cp s th'"
+ apply (unfold h eq_q)
+ apply (unfold cp_eq_cpreced cpreced_def)
+ apply (rule Max_mono)
+ proof -
+ from dependants_threads [of th1] th1_in
+ show "(\<lambda>th. preced th s) ` ({th1} \<union> dependants (wq s) th1) \<subseteq>
+ (\<lambda>th. preced th s) ` threads s"
+ by (auto simp:readys_def)
+ next
+ show "(\<lambda>th. preced th s) ` ({th1} \<union> dependants (wq s) th1) \<noteq> {}" by simp
+ next
+ from finite_threads
+ show " finite ((\<lambda>th. preced th s) ` threads s)" by simp
+ qed
+ next
+ from finite_threads
+ show "finite (cp s ` readys s)" by (auto simp:readys_def)
+ next
+ from th'_in
+ show "cp s th' \<in> cp s ` readys s" by simp
+ qed
+ next
+ assume tm_ready: "tm \<in> readys s"
+ show ?thesis
+ proof(fold tm_max)
+ have cp_eq_p: "cp s tm = preced tm s"
+ proof(unfold cp_eq_cpreced cpreced_def, rule Max_eqI)
+ fix y
+ assume hy: "y \<in> (\<lambda>th. preced th s) ` ({tm} \<union> dependants (wq s) tm)"
+ show "y \<le> preced tm s"
+ proof -
+ { fix y'
+ assume hy' : "y' \<in> ((\<lambda>th. preced th s) ` dependants (wq s) tm)"
+ have "y' \<le> preced tm s"
+ proof(unfold tm_max, rule Max_ge)
+ from hy' dependants_threads[of tm]
+ show "y' \<in> (\<lambda>th. preced th s) ` threads s" by auto
+ next
+ from finite_threads
+ show "finite ((\<lambda>th. preced th s) ` threads s)" by simp
+ qed
+ } with hy show ?thesis by auto
+ qed
+ next
+ from dependants_threads[of tm] finite_threads
+ show "finite ((\<lambda>th. preced th s) ` ({tm} \<union> dependants (wq s) tm))"
+ by (auto intro:finite_subset)
+ next
+ show "preced tm s \<in> (\<lambda>th. preced th s) ` ({tm} \<union> dependants (wq s) tm)"
+ by simp
+ qed
+ moreover have "Max (cp s ` readys s) = cp s tm"
+ proof(rule Max_eqI)
+ from tm_ready show "cp s tm \<in> cp s ` readys s" by simp
+ next
+ from finite_threads
+ show "finite (cp s ` readys s)" by (auto simp:readys_def)
+ next
+ fix y assume "y \<in> cp s ` readys s"
+ then obtain th1 where th1_readys: "th1 \<in> readys s"
+ and h: "y = cp s th1" by auto
+ show "y \<le> cp s tm"
+ apply(unfold cp_eq_p h)
+ apply(unfold cp_eq_cpreced cpreced_def tm_max, rule Max_mono)
+ proof -
+ from finite_threads
+ show "finite ((\<lambda>th. preced th s) ` threads s)" by simp
+ next
+ show "(\<lambda>th. preced th s) ` ({th1} \<union> dependants (wq s) th1) \<noteq> {}"
+ by simp
+ next
+ from dependants_threads[of th1] th1_readys
+ show "(\<lambda>th. preced th s) ` ({th1} \<union> dependants (wq s) th1)
+ \<subseteq> (\<lambda>th. preced th s) ` threads s"
+ by (auto simp:readys_def)
+ qed
+ qed
+ ultimately show " Max (cp s ` readys s) = preced tm s" by simp
+ qed
+ qed
+ qed
+qed
+
+text {* (* ccc *) \noindent
+ Since the current precedence of the threads in ready queue will always be boosted,
+ there must be one inside it has the maximum precedence of the whole system.
+*}
+lemma max_cp_readys_threads:
+ shows "Max (cp s ` readys s) = Max (cp s ` threads s)"
+proof(cases "threads s = {}")
+ case True
+ thus ?thesis
+ by (auto simp:readys_def)
+next
+ case False
+ show ?thesis by (rule max_cp_readys_threads_pre[OF False])
+qed
+
+end
+
+lemma eq_holding: "holding (wq s) th cs = holding s th cs"
+ apply (unfold s_holding_def cs_holding_def wq_def, simp)
+ done
+
+lemma f_image_eq:
+ assumes h: "\<And> a. a \<in> A \<Longrightarrow> f a = g a"
+ shows "f ` A = g ` A"
+proof
+ show "f ` A \<subseteq> g ` A"
+ by(rule image_subsetI, auto intro:h)
+next
+ show "g ` A \<subseteq> f ` A"
+ by (rule image_subsetI, auto intro:h[symmetric])
+qed
+
+
+definition detached :: "state \<Rightarrow> thread \<Rightarrow> bool"
+ where "detached s th \<equiv> (\<not>(\<exists> cs. holding s th cs)) \<and> (\<not>(\<exists>cs. waiting s th cs))"
+
+lemma detached_test:
+ shows "detached s th = (Th th \<notin> Field (RAG s))"
+apply(simp add: detached_def Field_def)
+apply(simp add: s_RAG_def)
+apply(simp add: s_holding_abv s_waiting_abv)
+apply(simp add: Domain_iff Range_iff)
+apply(simp add: wq_def)
+apply(auto)
+done
+
+context valid_trace
+begin
+
+lemma detached_intro:
+ assumes eq_pv: "cntP s th = cntV s th"
+ shows "detached s th"
+proof -
+ from cnp_cnv_cncs
+ have eq_cnt: "cntP s th =
+ cntV s th + (if th \<in> readys s \<or> th \<notin> threads s then cntCS s th else cntCS s th + 1)" .
+ hence cncs_zero: "cntCS s th = 0"
+ by (auto simp:eq_pv split:if_splits)
+ with eq_cnt
+ have "th \<in> readys s \<or> th \<notin> threads s" by (auto simp:eq_pv)
+ thus ?thesis
+ proof
+ assume "th \<notin> threads s"
+ with range_in dm_RAG_threads
+ show ?thesis
+ by (auto simp add: detached_def s_RAG_def s_waiting_abv s_holding_abv wq_def Domain_iff Range_iff)
+ next
+ assume "th \<in> readys s"
+ moreover have "Th th \<notin> Range (RAG s)"
+ proof -
+ from card_0_eq [OF finite_holding] and cncs_zero
+ have "holdents s th = {}"
+ by (simp add:cntCS_def)
+ thus ?thesis
+ apply(auto simp:holdents_test)
+ apply(case_tac a)
+ apply(auto simp:holdents_test s_RAG_def)
+ done
+ qed
+ ultimately show ?thesis
+ by (auto simp add: detached_def s_RAG_def s_waiting_abv s_holding_abv wq_def readys_def)
+ qed
+qed
+
+lemma detached_elim:
+ assumes dtc: "detached s th"
+ shows "cntP s th = cntV s th"
+proof -
+ from cnp_cnv_cncs
+ have eq_pv: " cntP s th =
+ cntV s th + (if th \<in> readys s \<or> th \<notin> threads s then cntCS s th else cntCS s th + 1)" .
+ have cncs_z: "cntCS s th = 0"
+ proof -
+ from dtc have "holdents s th = {}"
+ unfolding detached_def holdents_test s_RAG_def
+ by (simp add: s_waiting_abv wq_def s_holding_abv Domain_iff Range_iff)
+ thus ?thesis by (auto simp:cntCS_def)
+ qed
+ show ?thesis
+ proof(cases "th \<in> threads s")
+ case True
+ with dtc
+ have "th \<in> readys s"
+ by (unfold readys_def detached_def Field_def Domain_def Range_def,
+ auto simp:waiting_eq s_RAG_def)
+ with cncs_z and eq_pv show ?thesis by simp
+ next
+ case False
+ with cncs_z and eq_pv show ?thesis by simp
+ qed
+qed
+
+lemma detached_eq:
+ shows "(detached s th) = (cntP s th = cntV s th)"
+ by (insert vt, auto intro:detached_intro detached_elim)
+
+end
+
+text {*
+ The lemmas in this .thy file are all obvious lemmas, however, they still needs to be derived
+ from the concise and miniature model of PIP given in PrioGDef.thy.
+*}
+
+lemma eq_dependants: "dependants (wq s) = dependants s"
+ by (simp add: s_dependants_abv wq_def)
+
+lemma next_th_unique:
+ assumes nt1: "next_th s th cs th1"
+ and nt2: "next_th s th cs th2"
+ shows "th1 = th2"
+using assms by (unfold next_th_def, auto)
+
+lemma birth_time_lt: "s \<noteq> [] \<Longrightarrow> last_set th s < length s"
+ apply (induct s, simp)
+proof -
+ fix a s
+ assume ih: "s \<noteq> [] \<Longrightarrow> last_set th s < length s"
+ and eq_as: "a # s \<noteq> []"
+ show "last_set th (a # s) < length (a # s)"
+ proof(cases "s \<noteq> []")
+ case False
+ from False show ?thesis
+ by (cases a, auto simp:last_set.simps)
+ next
+ case True
+ from ih [OF True] show ?thesis
+ by (cases a, auto simp:last_set.simps)
+ qed
+qed
+
+lemma th_in_ne: "th \<in> threads s \<Longrightarrow> s \<noteq> []"
+ by (induct s, auto simp:threads.simps)
+
+lemma preced_tm_lt: "th \<in> threads s \<Longrightarrow> preced th s = Prc x y \<Longrightarrow> y < length s"
+ apply (drule_tac th_in_ne)
+ by (unfold preced_def, auto intro: birth_time_lt)
+
+lemma inj_the_preced:
+ "inj_on (the_preced s) (threads s)"
+ by (metis inj_onI preced_unique the_preced_def)
+
+lemma tRAG_alt_def:
+ "tRAG s = {(Th th1, Th th2) | th1 th2.
+ \<exists> cs. (Th th1, Cs cs) \<in> RAG s \<and> (Cs cs, Th th2) \<in> RAG s}"
+ by (auto simp:tRAG_def RAG_split wRAG_def hRAG_def)
+
+lemma tRAG_Field:
+ "Field (tRAG s) \<subseteq> Field (RAG s)"
+ by (unfold tRAG_alt_def Field_def, auto)
+
+lemma tRAG_ancestorsE:
+ assumes "x \<in> ancestors (tRAG s) u"
+ obtains th where "x = Th th"
+proof -
+ from assms have "(u, x) \<in> (tRAG s)^+"
+ by (unfold ancestors_def, auto)
+ from tranclE[OF this] obtain c where "(c, x) \<in> tRAG s" by auto
+ then obtain th where "x = Th th"
+ by (unfold tRAG_alt_def, auto)
+ from that[OF this] show ?thesis .
+qed
+
+lemma tRAG_mono:
+ assumes "RAG s' \<subseteq> RAG s"
+ shows "tRAG s' \<subseteq> tRAG s"
+ using assms
+ by (unfold tRAG_alt_def, auto)
+
+lemma holding_next_thI:
+ assumes "holding s th cs"
+ and "length (wq s cs) > 1"
+ obtains th' where "next_th s th cs th'"
+proof -
+ from assms(1)[folded eq_holding, unfolded cs_holding_def]
+ have " th \<in> set (wq s cs) \<and> th = hd (wq s cs)" .
+ then obtain rest where h1: "wq s cs = th#rest"
+ by (cases "wq s cs", auto)
+ with assms(2) have h2: "rest \<noteq> []" by auto
+ let ?th' = "hd (SOME q. distinct q \<and> set q = set rest)"
+ have "next_th s th cs ?th'" using h1(1) h2
+ by (unfold next_th_def, auto)
+ from that[OF this] show ?thesis .
+qed
+
+lemma RAG_tRAG_transfer:
+ assumes "vt s'"
+ assumes "RAG s = RAG s' \<union> {(Th th, Cs cs)}"
+ and "(Cs cs, Th th'') \<in> RAG s'"
+ shows "tRAG s = tRAG s' \<union> {(Th th, Th th'')}" (is "?L = ?R")
+proof -
+ interpret vt_s': valid_trace "s'" using assms(1)
+ by (unfold_locales, simp)
+ interpret rtree: rtree "RAG s'"
+ proof
+ show "single_valued (RAG s')"
+ apply (intro_locales)
+ by (unfold single_valued_def,
+ auto intro:vt_s'.unique_RAG)
+
+ show "acyclic (RAG s')"
+ by (rule vt_s'.acyclic_RAG)
+ qed
+ { fix n1 n2
+ assume "(n1, n2) \<in> ?L"
+ from this[unfolded tRAG_alt_def]
+ obtain th1 th2 cs' where
+ h: "n1 = Th th1" "n2 = Th th2"
+ "(Th th1, Cs cs') \<in> RAG s"
+ "(Cs cs', Th th2) \<in> RAG s" by auto
+ from h(4) and assms(2) have cs_in: "(Cs cs', Th th2) \<in> RAG s'" by auto
+ from h(3) and assms(2)
+ have "(Th th1, Cs cs') = (Th th, Cs cs) \<or>
+ (Th th1, Cs cs') \<in> RAG s'" by auto
+ hence "(n1, n2) \<in> ?R"
+ proof
+ assume h1: "(Th th1, Cs cs') = (Th th, Cs cs)"
+ hence eq_th1: "th1 = th" by simp
+ moreover have "th2 = th''"
+ proof -
+ from h1 have "cs' = cs" by simp
+ from assms(3) cs_in[unfolded this] rtree.sgv
+ show ?thesis
+ by (unfold single_valued_def, auto)
+ qed
+ ultimately show ?thesis using h(1,2) by auto
+ next
+ assume "(Th th1, Cs cs') \<in> RAG s'"
+ with cs_in have "(Th th1, Th th2) \<in> tRAG s'"
+ by (unfold tRAG_alt_def, auto)
+ from this[folded h(1, 2)] show ?thesis by auto
+ qed
+ } moreover {
+ fix n1 n2
+ assume "(n1, n2) \<in> ?R"
+ hence "(n1, n2) \<in>tRAG s' \<or> (n1, n2) = (Th th, Th th'')" by auto
+ hence "(n1, n2) \<in> ?L"
+ proof
+ assume "(n1, n2) \<in> tRAG s'"
+ moreover have "... \<subseteq> ?L"
+ proof(rule tRAG_mono)
+ show "RAG s' \<subseteq> RAG s" by (unfold assms(2), auto)
+ qed
+ ultimately show ?thesis by auto
+ next
+ assume eq_n: "(n1, n2) = (Th th, Th th'')"
+ from assms(2, 3) have "(Cs cs, Th th'') \<in> RAG s" by auto
+ moreover have "(Th th, Cs cs) \<in> RAG s" using assms(2) by auto
+ ultimately show ?thesis
+ by (unfold eq_n tRAG_alt_def, auto)
+ qed
+ } ultimately show ?thesis by auto
+qed
+
+context valid_trace
+begin
+
+lemmas RAG_tRAG_transfer = RAG_tRAG_transfer[OF vt]
+
+end
+
+lemma cp_alt_def:
+ "cp s th =
+ Max ((the_preced s) ` {th'. Th th' \<in> (subtree (RAG s) (Th th))})"
+proof -
+ have "Max (the_preced s ` ({th} \<union> dependants (wq s) th)) =
+ Max (the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th)})"
+ (is "Max (_ ` ?L) = Max (_ ` ?R)")
+ proof -
+ have "?L = ?R"
+ by (auto dest:rtranclD simp:cs_dependants_def cs_RAG_def s_RAG_def subtree_def)
+ thus ?thesis by simp
+ qed
+ thus ?thesis by (unfold cp_eq_cpreced cpreced_def, fold the_preced_def, simp)
+qed
+
+lemma cp_gen_alt_def:
+ "cp_gen s = (Max \<circ> (\<lambda>x. (the_preced s \<circ> the_thread) ` subtree (tRAG s) x))"
+ by (auto simp:cp_gen_def)
+
+lemma tRAG_nodeE:
+ assumes "(n1, n2) \<in> tRAG s"
+ obtains th1 th2 where "n1 = Th th1" "n2 = Th th2"
+ using assms
+ by (auto simp: tRAG_def wRAG_def hRAG_def tRAG_def)
+
+lemma subtree_nodeE:
+ assumes "n \<in> subtree (tRAG s) (Th th)"
+ obtains th1 where "n = Th th1"
+proof -
+ show ?thesis
+ proof(rule subtreeE[OF assms])
+ assume "n = Th th"
+ from that[OF this] show ?thesis .
+ next
+ assume "Th th \<in> ancestors (tRAG s) n"
+ hence "(n, Th th) \<in> (tRAG s)^+" by (auto simp:ancestors_def)
+ hence "\<exists> th1. n = Th th1"
+ proof(induct)
+ case (base y)
+ from tRAG_nodeE[OF this] show ?case by metis
+ next
+ case (step y z)
+ thus ?case by auto
+ qed
+ with that show ?thesis by auto
+ qed
+qed
+
+lemma tRAG_star_RAG: "(tRAG s)^* \<subseteq> (RAG s)^*"
+proof -
+ have "(wRAG s O hRAG s)^* \<subseteq> (RAG s O RAG s)^*"
+ by (rule rtrancl_mono, auto simp:RAG_split)
+ also have "... \<subseteq> ((RAG s)^*)^*"
+ by (rule rtrancl_mono, auto)
+ also have "... = (RAG s)^*" by simp
+ finally show ?thesis by (unfold tRAG_def, simp)
+qed
+
+lemma tRAG_subtree_RAG: "subtree (tRAG s) x \<subseteq> subtree (RAG s) x"
+proof -
+ { fix a
+ assume "a \<in> subtree (tRAG s) x"
+ hence "(a, x) \<in> (tRAG s)^*" by (auto simp:subtree_def)
+ with tRAG_star_RAG[of s]
+ have "(a, x) \<in> (RAG s)^*" by auto
+ hence "a \<in> subtree (RAG s) x" by (auto simp:subtree_def)
+ } thus ?thesis by auto
+qed
+
+lemma tRAG_trancl_eq:
+ "{th'. (Th th', Th th) \<in> (tRAG s)^+} =
+ {th'. (Th th', Th th) \<in> (RAG s)^+}"
+ (is "?L = ?R")
+proof -
+ { fix th'
+ assume "th' \<in> ?L"
+ hence "(Th th', Th th) \<in> (tRAG s)^+" by auto
+ from tranclD[OF this]
+ obtain z where h: "(Th th', z) \<in> tRAG s" "(z, Th th) \<in> (tRAG s)\<^sup>*" by auto
+ from tRAG_subtree_RAG[of s] and this(2)
+ have "(z, Th th) \<in> (RAG s)^*" by (meson subsetCE tRAG_star_RAG)
+ moreover from h(1) have "(Th th', z) \<in> (RAG s)^+" using tRAG_alt_def by auto
+ ultimately have "th' \<in> ?R" by auto
+ } moreover
+ { fix th'
+ assume "th' \<in> ?R"
+ hence "(Th th', Th th) \<in> (RAG s)^+" by (auto)
+ from plus_rpath[OF this]
+ obtain xs where rp: "rpath (RAG s) (Th th') xs (Th th)" "xs \<noteq> []" by auto
+ hence "(Th th', Th th) \<in> (tRAG s)^+"
+ proof(induct xs arbitrary:th' th rule:length_induct)
+ case (1 xs th' th)
+ then obtain x1 xs1 where Cons1: "xs = x1#xs1" by (cases xs, auto)
+ show ?case
+ proof(cases "xs1")
+ case Nil
+ from 1(2)[unfolded Cons1 Nil]
+ have rp: "rpath (RAG s) (Th th') [x1] (Th th)" .
+ hence "(Th th', x1) \<in> (RAG s)" by (cases, simp)
+ then obtain cs where "x1 = Cs cs"
+ by (unfold s_RAG_def, auto)
+ from rpath_nnl_lastE[OF rp[unfolded this]]
+ show ?thesis by auto
+ next
+ case (Cons x2 xs2)
+ from 1(2)[unfolded Cons1[unfolded this]]
+ have rp: "rpath (RAG s) (Th th') (x1 # x2 # xs2) (Th th)" .
+ from rpath_edges_on[OF this]
+ have eds: "edges_on (Th th' # x1 # x2 # xs2) \<subseteq> RAG s" .
+ have "(Th th', x1) \<in> edges_on (Th th' # x1 # x2 # xs2)"
+ by (simp add: edges_on_unfold)
+ with eds have rg1: "(Th th', x1) \<in> RAG s" by auto
+ then obtain cs1 where eq_x1: "x1 = Cs cs1" by (unfold s_RAG_def, auto)
+ have "(x1, x2) \<in> edges_on (Th th' # x1 # x2 # xs2)"
+ by (simp add: edges_on_unfold)
+ from this eds
+ have rg2: "(x1, x2) \<in> RAG s" by auto
+ from this[unfolded eq_x1]
+ obtain th1 where eq_x2: "x2 = Th th1" by (unfold s_RAG_def, auto)
+ from rg1[unfolded eq_x1] rg2[unfolded eq_x1 eq_x2]
+ have rt1: "(Th th', Th th1) \<in> tRAG s" by (unfold tRAG_alt_def, auto)
+ from rp have "rpath (RAG s) x2 xs2 (Th th)"
+ by (elim rpath_ConsE, simp)
+ from this[unfolded eq_x2] have rp': "rpath (RAG s) (Th th1) xs2 (Th th)" .
+ show ?thesis
+ proof(cases "xs2 = []")
+ case True
+ from rpath_nilE[OF rp'[unfolded this]]
+ have "th1 = th" by auto
+ from rt1[unfolded this] show ?thesis by auto
+ next
+ case False
+ from 1(1)[rule_format, OF _ rp' this, unfolded Cons1 Cons]
+ have "(Th th1, Th th) \<in> (tRAG s)\<^sup>+" by simp
+ with rt1 show ?thesis by auto
+ qed
+ qed
+ qed
+ hence "th' \<in> ?L" by auto
+ } ultimately show ?thesis by blast
+qed
+
+lemma tRAG_trancl_eq_Th:
+ "{Th th' | th'. (Th th', Th th) \<in> (tRAG s)^+} =
+ {Th th' | th'. (Th th', Th th) \<in> (RAG s)^+}"
+ using tRAG_trancl_eq by auto
+
+lemma dependants_alt_def:
+ "dependants s th = {th'. (Th th', Th th) \<in> (tRAG s)^+}"
+ by (metis eq_RAG s_dependants_def tRAG_trancl_eq)
+
+context valid_trace
+begin
+
+lemma count_eq_tRAG_plus:
+ assumes "cntP s th = cntV s th"
+ shows "{th'. (Th th', Th th) \<in> (tRAG s)^+} = {}"
+ using assms count_eq_dependants dependants_alt_def eq_dependants by auto
+
+lemma count_eq_RAG_plus:
+ assumes "cntP s th = cntV s th"
+ shows "{th'. (Th th', Th th) \<in> (RAG s)^+} = {}"
+ using assms count_eq_dependants cs_dependants_def eq_RAG by auto
+
+lemma count_eq_RAG_plus_Th:
+ assumes "cntP s th = cntV s th"
+ shows "{Th th' | th'. (Th th', Th th) \<in> (RAG s)^+} = {}"
+ using count_eq_RAG_plus[OF assms] by auto
+
+lemma count_eq_tRAG_plus_Th:
+ assumes "cntP s th = cntV s th"
+ shows "{Th th' | th'. (Th th', Th th) \<in> (tRAG s)^+} = {}"
+ using count_eq_tRAG_plus[OF assms] by auto
+
+end
+
+lemma tRAG_subtree_eq:
+ "(subtree (tRAG s) (Th th)) = {Th th' | th'. Th th' \<in> (subtree (RAG s) (Th th))}"
+ (is "?L = ?R")
+proof -
+ { fix n
+ assume h: "n \<in> ?L"
+ hence "n \<in> ?R"
+ by (smt mem_Collect_eq subsetCE subtree_def subtree_nodeE tRAG_subtree_RAG)
+ } moreover {
+ fix n
+ assume "n \<in> ?R"
+ then obtain th' where h: "n = Th th'" "(Th th', Th th) \<in> (RAG s)^*"
+ by (auto simp:subtree_def)
+ from rtranclD[OF this(2)]
+ have "n \<in> ?L"
+ proof
+ assume "Th th' \<noteq> Th th \<and> (Th th', Th th) \<in> (RAG s)\<^sup>+"
+ with h have "n \<in> {Th th' | th'. (Th th', Th th) \<in> (RAG s)^+}" by auto
+ thus ?thesis using subtree_def tRAG_trancl_eq by fastforce
+ qed (insert h, auto simp:subtree_def)
+ } ultimately show ?thesis by auto
+qed
+
+lemma threads_set_eq:
+ "the_thread ` (subtree (tRAG s) (Th th)) =
+ {th'. Th th' \<in> (subtree (RAG s) (Th th))}" (is "?L = ?R")
+ by (auto intro:rev_image_eqI simp:tRAG_subtree_eq)
+
+lemma cp_alt_def1:
+ "cp s th = Max ((the_preced s o the_thread) ` (subtree (tRAG s) (Th th)))"
+proof -
+ have "(the_preced s ` the_thread ` subtree (tRAG s) (Th th)) =
+ ((the_preced s \<circ> the_thread) ` subtree (tRAG s) (Th th))"
+ by auto
+ thus ?thesis by (unfold cp_alt_def, fold threads_set_eq, auto)
+qed
+
+lemma cp_gen_def_cond:
+ assumes "x = Th th"
+ shows "cp s th = cp_gen s (Th th)"
+by (unfold cp_alt_def1 cp_gen_def, simp)
+
+lemma cp_gen_over_set:
+ assumes "\<forall> x \<in> A. \<exists> th. x = Th th"
+ shows "cp_gen s ` A = (cp s \<circ> the_thread) ` A"
+proof(rule f_image_eq)
+ fix a
+ assume "a \<in> A"
+ from assms[rule_format, OF this]
+ obtain th where eq_a: "a = Th th" by auto
+ show "cp_gen s a = (cp s \<circ> the_thread) a"
+ by (unfold eq_a, simp, unfold cp_gen_def_cond[OF refl[of "Th th"]], simp)
+qed
+
+
+context valid_trace
+begin
+
+lemma RAG_threads:
+ assumes "(Th th) \<in> Field (RAG s)"
+ shows "th \<in> threads s"
+ using assms
+ by (metis Field_def UnE dm_RAG_threads range_in vt)
+
+lemma subtree_tRAG_thread:
+ assumes "th \<in> threads s"
+ shows "subtree (tRAG s) (Th th) \<subseteq> Th ` threads s" (is "?L \<subseteq> ?R")
+proof -
+ have "?L = {Th th' |th'. Th th' \<in> subtree (RAG s) (Th th)}"
+ by (unfold tRAG_subtree_eq, simp)
+ also have "... \<subseteq> ?R"
+ proof
+ fix x
+ assume "x \<in> {Th th' |th'. Th th' \<in> subtree (RAG s) (Th th)}"
+ then obtain th' where h: "x = Th th'" "Th th' \<in> subtree (RAG s) (Th th)" by auto
+ from this(2)
+ show "x \<in> ?R"
+ proof(cases rule:subtreeE)
+ case 1
+ thus ?thesis by (simp add: assms h(1))
+ next
+ case 2
+ thus ?thesis by (metis ancestors_Field dm_RAG_threads h(1) image_eqI)
+ qed
+ qed
+ finally show ?thesis .
+qed
+
+lemma readys_root:
+ assumes "th \<in> readys s"
+ shows "root (RAG s) (Th th)"
+proof -
+ { fix x
+ assume "x \<in> ancestors (RAG s) (Th th)"
+ hence h: "(Th th, x) \<in> (RAG s)^+" by (auto simp:ancestors_def)
+ from tranclD[OF this]
+ obtain z where "(Th th, z) \<in> RAG s" by auto
+ with assms(1) have False
+ apply (case_tac z, auto simp:readys_def s_RAG_def s_waiting_def cs_waiting_def)
+ by (fold wq_def, blast)
+ } thus ?thesis by (unfold root_def, auto)
+qed
+
+lemma readys_in_no_subtree:
+ assumes "th \<in> readys s"
+ and "th' \<noteq> th"
+ shows "Th th \<notin> subtree (RAG s) (Th th')"
+proof
+ assume "Th th \<in> subtree (RAG s) (Th th')"
+ thus False
+ proof(cases rule:subtreeE)
+ case 1
+ with assms show ?thesis by auto
+ next
+ case 2
+ with readys_root[OF assms(1)]
+ show ?thesis by (auto simp:root_def)
+ qed
+qed
+
+lemma not_in_thread_isolated:
+ assumes "th \<notin> threads s"
+ shows "(Th th) \<notin> Field (RAG s)"
+proof
+ assume "(Th th) \<in> Field (RAG s)"
+ with dm_RAG_threads and range_in assms
+ show False by (unfold Field_def, blast)
+qed
+
+lemma wf_RAG: "wf (RAG s)"
+proof(rule finite_acyclic_wf)
+ from finite_RAG show "finite (RAG s)" .
+next
+ from acyclic_RAG show "acyclic (RAG s)" .
+qed
+
+lemma sgv_wRAG: "single_valued (wRAG s)"
+ using waiting_unique
+ by (unfold single_valued_def wRAG_def, auto)
+
+lemma sgv_hRAG: "single_valued (hRAG s)"
+ using holding_unique
+ by (unfold single_valued_def hRAG_def, auto)
+
+lemma sgv_tRAG: "single_valued (tRAG s)"
+ by (unfold tRAG_def, rule single_valued_relcomp,
+ insert sgv_wRAG sgv_hRAG, auto)
+
+lemma acyclic_tRAG: "acyclic (tRAG s)"
+proof(unfold tRAG_def, rule acyclic_compose)
+ show "acyclic (RAG s)" using acyclic_RAG .
+next
+ show "wRAG s \<subseteq> RAG s" unfolding RAG_split by auto
+next
+ show "hRAG s \<subseteq> RAG s" unfolding RAG_split by auto
+qed
+
+lemma sgv_RAG: "single_valued (RAG s)"
+ using unique_RAG by (auto simp:single_valued_def)
+
+lemma rtree_RAG: "rtree (RAG s)"
+ using sgv_RAG acyclic_RAG
+ by (unfold rtree_def rtree_axioms_def sgv_def, auto)
+
+end
+
+sublocale valid_trace < rtree_RAG: rtree "RAG s"
+proof
+ show "single_valued (RAG s)"
+ apply (intro_locales)
+ by (unfold single_valued_def,
+ auto intro:unique_RAG)
+
+ show "acyclic (RAG s)"
+ by (rule acyclic_RAG)
+qed
+
+sublocale valid_trace < rtree_s: rtree "tRAG s"
+proof(unfold_locales)
+ from sgv_tRAG show "single_valued (tRAG s)" .
+next
+ from acyclic_tRAG show "acyclic (tRAG s)" .
+qed
+
+sublocale valid_trace < fsbtRAGs : fsubtree "RAG s"
+proof -
+ show "fsubtree (RAG s)"
+ proof(intro_locales)
+ show "fbranch (RAG s)" using finite_fbranchI[OF finite_RAG] .
+ next
+ show "fsubtree_axioms (RAG s)"
+ proof(unfold fsubtree_axioms_def)
+ from wf_RAG show "wf (RAG s)" .
+ qed
+ qed
+qed
+
+sublocale valid_trace < fsbttRAGs: fsubtree "tRAG s"
+proof -
+ have "fsubtree (tRAG s)"
+ proof -
+ have "fbranch (tRAG s)"
+ proof(unfold tRAG_def, rule fbranch_compose)
+ show "fbranch (wRAG s)"
+ proof(rule finite_fbranchI)
+ from finite_RAG show "finite (wRAG s)"
+ by (unfold RAG_split, auto)
+ qed
+ next
+ show "fbranch (hRAG s)"
+ proof(rule finite_fbranchI)
+ from finite_RAG
+ show "finite (hRAG s)" by (unfold RAG_split, auto)
+ qed
+ qed
+ moreover have "wf (tRAG s)"
+ proof(rule wf_subset)
+ show "wf (RAG s O RAG s)" using wf_RAG
+ by (fold wf_comp_self, simp)
+ next
+ show "tRAG s \<subseteq> (RAG s O RAG s)"
+ by (unfold tRAG_alt_def, auto)
+ qed
+ ultimately show ?thesis
+ by (unfold fsubtree_def fsubtree_axioms_def,auto)
+ qed
+ from this[folded tRAG_def] show "fsubtree (tRAG s)" .
+qed
+
+lemma Max_UNION:
+ assumes "finite A"
+ and "A \<noteq> {}"
+ and "\<forall> M \<in> f ` A. finite M"
+ and "\<forall> M \<in> f ` A. M \<noteq> {}"
+ shows "Max (\<Union>x\<in> A. f x) = Max (Max ` f ` A)" (is "?L = ?R")
+ using assms[simp]
+proof -
+ have "?L = Max (\<Union>(f ` A))"
+ by (fold Union_image_eq, simp)
+ also have "... = ?R"
+ by (subst Max_Union, simp+)
+ finally show ?thesis .
+qed
+
+lemma max_Max_eq:
+ assumes "finite A"
+ and "A \<noteq> {}"
+ and "x = y"
+ shows "max x (Max A) = Max ({y} \<union> A)" (is "?L = ?R")
+proof -
+ have "?R = Max (insert y A)" by simp
+ also from assms have "... = ?L"
+ by (subst Max.insert, simp+)
+ finally show ?thesis by simp
+qed
+
+context valid_trace
+begin
+
+(* ddd *)
+lemma cp_gen_rec:
+ assumes "x = Th th"
+ shows "cp_gen s x = Max ({the_preced s th} \<union> (cp_gen s) ` children (tRAG s) x)"
+proof(cases "children (tRAG s) x = {}")
+ case True
+ show ?thesis
+ by (unfold True cp_gen_def subtree_children, simp add:assms)
+next
+ case False
+ hence [simp]: "children (tRAG s) x \<noteq> {}" by auto
+ note fsbttRAGs.finite_subtree[simp]
+ have [simp]: "finite (children (tRAG s) x)"
+ by (intro rev_finite_subset[OF fsbttRAGs.finite_subtree],
+ rule children_subtree)
+ { fix r x
+ have "subtree r x \<noteq> {}" by (auto simp:subtree_def)
+ } note this[simp]
+ have [simp]: "\<exists>x\<in>children (tRAG s) x. subtree (tRAG s) x \<noteq> {}"
+ proof -
+ from False obtain q where "q \<in> children (tRAG s) x" by blast
+ moreover have "subtree (tRAG s) q \<noteq> {}" by simp
+ ultimately show ?thesis by blast
+ qed
+ have h: "Max ((the_preced s \<circ> the_thread) `
+ ({x} \<union> \<Union>(subtree (tRAG s) ` children (tRAG s) x))) =
+ Max ({the_preced s th} \<union> cp_gen s ` children (tRAG s) x)"
+ (is "?L = ?R")
+ proof -
+ let "Max (?f ` (?A \<union> \<Union> (?g ` ?B)))" = ?L
+ let "Max (_ \<union> (?h ` ?B))" = ?R
+ let ?L1 = "?f ` \<Union>(?g ` ?B)"
+ have eq_Max_L1: "Max ?L1 = Max (?h ` ?B)"
+ proof -
+ have "?L1 = ?f ` (\<Union> x \<in> ?B.(?g x))" by simp
+ also have "... = (\<Union> x \<in> ?B. ?f ` (?g x))" by auto
+ finally have "Max ?L1 = Max ..." by simp
+ also have "... = Max (Max ` (\<lambda>x. ?f ` subtree (tRAG s) x) ` ?B)"
+ by (subst Max_UNION, simp+)
+ also have "... = Max (cp_gen s ` children (tRAG s) x)"
+ by (unfold image_comp cp_gen_alt_def, simp)
+ finally show ?thesis .
+ qed
+ show ?thesis
+ proof -
+ have "?L = Max (?f ` ?A \<union> ?L1)" by simp
+ also have "... = max (the_preced s (the_thread x)) (Max ?L1)"
+ by (subst Max_Un, simp+)
+ also have "... = max (?f x) (Max (?h ` ?B))"
+ by (unfold eq_Max_L1, simp)
+ also have "... =?R"
+ by (rule max_Max_eq, (simp)+, unfold assms, simp)
+ finally show ?thesis .
+ qed
+ qed thus ?thesis
+ by (fold h subtree_children, unfold cp_gen_def, simp)
+qed
+
+lemma cp_rec:
+ "cp s th = Max ({the_preced s th} \<union>
+ (cp s o the_thread) ` children (tRAG s) (Th th))"
+proof -
+ have "Th th = Th th" by simp
+ note h = cp_gen_def_cond[OF this] cp_gen_rec[OF this]
+ show ?thesis
+ proof -
+ have "cp_gen s ` children (tRAG s) (Th th) =
+ (cp s \<circ> the_thread) ` children (tRAG s) (Th th)"
+ proof(rule cp_gen_over_set)
+ show " \<forall>x\<in>children (tRAG s) (Th th). \<exists>th. x = Th th"
+ by (unfold tRAG_alt_def, auto simp:children_def)
+ qed
+ thus ?thesis by (subst (1) h(1), unfold h(2), simp)
+ qed
+qed
+
+end
+
+(* keep *)
+lemma next_th_holding:
+ assumes vt: "vt s"
+ and nxt: "next_th s th cs th'"
+ shows "holding (wq s) th cs"
+proof -
+ from nxt[unfolded next_th_def]
+ obtain rest where h: "wq s cs = th # rest"
+ "rest \<noteq> []"
+ "th' = hd (SOME q. distinct q \<and> set q = set rest)" by auto
+ thus ?thesis
+ by (unfold cs_holding_def, auto)
+qed
+
+context valid_trace
+begin
+
+lemma next_th_waiting:
+ assumes nxt: "next_th s th cs th'"
+ shows "waiting (wq s) th' cs"
+proof -
+ from nxt[unfolded next_th_def]
+ obtain rest where h: "wq s cs = th # rest"
+ "rest \<noteq> []"
+ "th' = hd (SOME q. distinct q \<and> set q = set rest)" by auto
+ from wq_distinct[of cs, unfolded h]
+ have dst: "distinct (th # rest)" .
+ have in_rest: "th' \<in> set rest"
+ proof(unfold h, rule someI2)
+ show "distinct rest \<and> set rest = set rest" using dst by auto
+ next
+ fix x assume "distinct x \<and> set x = set rest"
+ with h(2)
+ show "hd x \<in> set (rest)" by (cases x, auto)
+ qed
+ hence "th' \<in> set (wq s cs)" by (unfold h(1), auto)
+ moreover have "th' \<noteq> hd (wq s cs)"
+ by (unfold h(1), insert in_rest dst, auto)
+ ultimately show ?thesis by (auto simp:cs_waiting_def)
+qed
+
+lemma next_th_RAG:
+ assumes nxt: "next_th (s::event list) th cs th'"
+ shows "{(Cs cs, Th th), (Th th', Cs cs)} \<subseteq> RAG s"
+ using vt assms next_th_holding next_th_waiting
+ by (unfold s_RAG_def, simp)
+
+end
+
+-- {* A useless definition *}
+definition cps:: "state \<Rightarrow> (thread \<times> precedence) set"
+where "cps s = {(th, cp s th) | th . th \<in> threads s}"
+
+lemma "wq (V th cs # s) cs1 = ttt"
+ apply (unfold wq_def, auto simp:Let_def)
+
+end
+
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Attic/CpsG_2.thy Tue Jun 14 15:06:16 2016 +0100
@@ -0,0 +1,3557 @@
+theory CpsG
+imports PIPDefs
+begin
+
+lemma Max_fg_mono:
+ assumes "finite A"
+ and "\<forall> a \<in> A. f a \<le> g a"
+ shows "Max (f ` A) \<le> Max (g ` A)"
+proof(cases "A = {}")
+ case True
+ thus ?thesis by auto
+next
+ case False
+ show ?thesis
+ proof(rule Max.boundedI)
+ from assms show "finite (f ` A)" by auto
+ next
+ from False show "f ` A \<noteq> {}" by auto
+ next
+ fix fa
+ assume "fa \<in> f ` A"
+ then obtain a where h_fa: "a \<in> A" "fa = f a" by auto
+ show "fa \<le> Max (g ` A)"
+ proof(rule Max_ge_iff[THEN iffD2])
+ from assms show "finite (g ` A)" by auto
+ next
+ from False show "g ` A \<noteq> {}" by auto
+ next
+ from h_fa have "g a \<in> g ` A" by auto
+ moreover have "fa \<le> g a" using h_fa assms(2) by auto
+ ultimately show "\<exists>a\<in>g ` A. fa \<le> a" by auto
+ qed
+ qed
+qed
+
+lemma Max_f_mono:
+ assumes seq: "A \<subseteq> B"
+ and np: "A \<noteq> {}"
+ and fnt: "finite B"
+ shows "Max (f ` A) \<le> Max (f ` B)"
+proof(rule Max_mono)
+ from seq show "f ` A \<subseteq> f ` B" by auto
+next
+ from np show "f ` A \<noteq> {}" by auto
+next
+ from fnt and seq show "finite (f ` B)" by auto
+qed
+
+lemma eq_RAG:
+ "RAG (wq s) = RAG s"
+ by (unfold cs_RAG_def s_RAG_def, auto)
+
+lemma waiting_holding:
+ assumes "waiting (s::state) th cs"
+ obtains th' where "holding s th' cs"
+proof -
+ from assms[unfolded s_waiting_def, folded wq_def]
+ obtain th' where "th' \<in> set (wq s cs)" "th' = hd (wq s cs)"
+ by (metis empty_iff hd_in_set list.set(1))
+ hence "holding s th' cs"
+ by (unfold s_holding_def, fold wq_def, auto)
+ from that[OF this] show ?thesis .
+qed
+
+lemma cp_eq_cpreced: "cp s th = cpreced (wq s) s th"
+unfolding cp_def wq_def
+apply(induct s rule: schs.induct)
+apply(simp add: Let_def cpreced_initial)
+apply(simp add: Let_def)
+apply(simp add: Let_def)
+apply(simp add: Let_def)
+apply(subst (2) schs.simps)
+apply(simp add: Let_def)
+apply(subst (2) schs.simps)
+apply(simp add: Let_def)
+done
+
+lemma cp_alt_def:
+ "cp s th =
+ Max ((the_preced s) ` {th'. Th th' \<in> (subtree (RAG s) (Th th))})"
+proof -
+ have "Max (the_preced s ` ({th} \<union> dependants (wq s) th)) =
+ Max (the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th)})"
+ (is "Max (_ ` ?L) = Max (_ ` ?R)")
+ proof -
+ have "?L = ?R"
+ by (auto dest:rtranclD simp:cs_dependants_def cs_RAG_def s_RAG_def subtree_def)
+ thus ?thesis by simp
+ qed
+ thus ?thesis by (unfold cp_eq_cpreced cpreced_def, fold the_preced_def, simp)
+qed
+
+(* ccc *)
+
+
+locale valid_trace =
+ fixes s
+ assumes vt : "vt s"
+
+locale valid_trace_e = valid_trace +
+ fixes e
+ assumes vt_e: "vt (e#s)"
+begin
+
+lemma pip_e: "PIP s e"
+ using vt_e by (cases, simp)
+
+end
+
+locale valid_trace_create = valid_trace_e +
+ fixes th prio
+ assumes is_create: "e = Create th prio"
+
+locale valid_trace_exit = valid_trace_e +
+ fixes th
+ assumes is_exit: "e = Exit th"
+
+locale valid_trace_p = valid_trace_e +
+ fixes th cs
+ assumes is_p: "e = P th cs"
+
+locale valid_trace_v = valid_trace_e +
+ fixes th cs
+ assumes is_v: "e = V th cs"
+begin
+ definition "rest = tl (wq s cs)"
+ definition "wq' = (SOME q. distinct q \<and> set q = set rest)"
+end
+
+locale valid_trace_v_n = valid_trace_v +
+ assumes rest_nnl: "rest \<noteq> []"
+
+locale valid_trace_v_e = valid_trace_v +
+ assumes rest_nil: "rest = []"
+
+locale valid_trace_set= valid_trace_e +
+ fixes th prio
+ assumes is_set: "e = Set th prio"
+
+context valid_trace
+begin
+
+lemma ind [consumes 0, case_names Nil Cons, induct type]:
+ assumes "PP []"
+ and "(\<And>s e. valid_trace_e s e \<Longrightarrow>
+ PP s \<Longrightarrow> PIP s e \<Longrightarrow> PP (e # s))"
+ shows "PP s"
+proof(induct rule:vt.induct[OF vt, case_names Init Step])
+ case Init
+ from assms(1) show ?case .
+next
+ case (Step s e)
+ show ?case
+ proof(rule assms(2))
+ show "valid_trace_e s e" using Step by (unfold_locales, auto)
+ next
+ show "PP s" using Step by simp
+ next
+ show "PIP s e" using Step by simp
+ qed
+qed
+
+lemma vt_moment: "\<And> t. vt (moment t s)"
+proof(induct rule:ind)
+ case Nil
+ thus ?case by (simp add:vt_nil)
+next
+ case (Cons s e t)
+ show ?case
+ proof(cases "t \<ge> length (e#s)")
+ case True
+ from True have "moment t (e#s) = e#s" by simp
+ thus ?thesis using Cons
+ by (simp add:valid_trace_def valid_trace_e_def, auto)
+ next
+ case False
+ from Cons have "vt (moment t s)" by simp
+ moreover have "moment t (e#s) = moment t s"
+ proof -
+ from False have "t \<le> length s" by simp
+ from moment_app [OF this, of "[e]"]
+ show ?thesis by simp
+ qed
+ ultimately show ?thesis by simp
+ qed
+qed
+
+lemma finite_threads:
+ shows "finite (threads s)"
+using vt by (induct) (auto elim: step.cases)
+
+end
+
+lemma RAG_target_th: "(Th th, x) \<in> RAG (s::state) \<Longrightarrow> \<exists> cs. x = Cs cs"
+ by (unfold s_RAG_def, auto)
+
+locale valid_moment = valid_trace +
+ fixes i :: nat
+
+sublocale valid_moment < vat_moment: valid_trace "(moment i s)"
+ by (unfold_locales, insert vt_moment, auto)
+
+lemma waiting_eq: "waiting s th cs = waiting (wq s) th cs"
+ by (unfold s_waiting_def cs_waiting_def wq_def, auto)
+
+lemma holding_eq: "holding (s::state) th cs = holding (wq s) th cs"
+ by (unfold s_holding_def wq_def cs_holding_def, simp)
+
+lemma runing_ready:
+ shows "runing s \<subseteq> readys s"
+ unfolding runing_def readys_def
+ by auto
+
+lemma readys_threads:
+ shows "readys s \<subseteq> threads s"
+ unfolding readys_def
+ by auto
+
+lemma wq_v_neq [simp]:
+ "cs \<noteq> cs' \<Longrightarrow> wq (V thread cs#s) cs' = wq s cs'"
+ by (auto simp:wq_def Let_def cp_def split:list.splits)
+
+lemma runing_head:
+ assumes "th \<in> runing s"
+ and "th \<in> set (wq_fun (schs s) cs)"
+ shows "th = hd (wq_fun (schs s) cs)"
+ using assms
+ by (simp add:runing_def readys_def s_waiting_def wq_def)
+
+context valid_trace
+begin
+
+lemma runing_wqE:
+ assumes "th \<in> runing s"
+ and "th \<in> set (wq s cs)"
+ obtains rest where "wq s cs = th#rest"
+proof -
+ from assms(2) obtain th' rest where eq_wq: "wq s cs = th'#rest"
+ by (meson list.set_cases)
+ have "th' = th"
+ proof(rule ccontr)
+ assume "th' \<noteq> th"
+ hence "th \<noteq> hd (wq s cs)" using eq_wq by auto
+ with assms(2)
+ have "waiting s th cs"
+ by (unfold s_waiting_def, fold wq_def, auto)
+ with assms show False
+ by (unfold runing_def readys_def, auto)
+ qed
+ with eq_wq that show ?thesis by metis
+qed
+
+end
+
+context valid_trace_create
+begin
+
+lemma wq_neq_simp [simp]:
+ shows "wq (e#s) cs' = wq s cs'"
+ using assms unfolding is_create wq_def
+ by (auto simp:Let_def)
+
+lemma wq_distinct_kept:
+ assumes "distinct (wq s cs')"
+ shows "distinct (wq (e#s) cs')"
+ using assms by simp
+end
+
+context valid_trace_exit
+begin
+
+lemma wq_neq_simp [simp]:
+ shows "wq (e#s) cs' = wq s cs'"
+ using assms unfolding is_exit wq_def
+ by (auto simp:Let_def)
+
+lemma wq_distinct_kept:
+ assumes "distinct (wq s cs')"
+ shows "distinct (wq (e#s) cs')"
+ using assms by simp
+end
+
+context valid_trace_p
+begin
+
+lemma wq_neq_simp [simp]:
+ assumes "cs' \<noteq> cs"
+ shows "wq (e#s) cs' = wq s cs'"
+ using assms unfolding is_p wq_def
+ by (auto simp:Let_def)
+
+lemma runing_th_s:
+ shows "th \<in> runing s"
+proof -
+ from pip_e[unfolded is_p]
+ show ?thesis by (cases, simp)
+qed
+
+lemma ready_th_s: "th \<in> readys s"
+ using runing_th_s
+ by (unfold runing_def, auto)
+
+lemma live_th_s: "th \<in> threads s"
+ using readys_threads ready_th_s by auto
+
+lemma live_th_es: "th \<in> threads (e#s)"
+ using live_th_s
+ by (unfold is_p, simp)
+
+lemma th_not_waiting:
+ "\<not> waiting s th c"
+proof -
+ have "th \<in> readys s"
+ using runing_ready runing_th_s by blast
+ thus ?thesis
+ by (unfold readys_def, auto)
+qed
+
+lemma waiting_neq_th:
+ assumes "waiting s t c"
+ shows "t \<noteq> th"
+ using assms using th_not_waiting by blast
+
+lemma th_not_in_wq:
+ shows "th \<notin> set (wq s cs)"
+proof
+ assume otherwise: "th \<in> set (wq s cs)"
+ from runing_wqE[OF runing_th_s this]
+ obtain rest where eq_wq: "wq s cs = th#rest" by blast
+ with otherwise
+ have "holding s th cs"
+ by (unfold s_holding_def, fold wq_def, simp)
+ hence cs_th_RAG: "(Cs cs, Th th) \<in> RAG s"
+ by (unfold s_RAG_def, fold holding_eq, auto)
+ from pip_e[unfolded is_p]
+ show False
+ proof(cases)
+ case (thread_P)
+ with cs_th_RAG show ?thesis by auto
+ qed
+qed
+
+lemma wq_es_cs:
+ "wq (e#s) cs = wq s cs @ [th]"
+ by (unfold is_p wq_def, auto simp:Let_def)
+
+lemma wq_distinct_kept:
+ assumes "distinct (wq s cs')"
+ shows "distinct (wq (e#s) cs')"
+proof(cases "cs' = cs")
+ case True
+ show ?thesis using True assms th_not_in_wq
+ by (unfold True wq_es_cs, auto)
+qed (insert assms, simp)
+
+end
+
+context valid_trace_v
+begin
+
+lemma wq_neq_simp [simp]:
+ assumes "cs' \<noteq> cs"
+ shows "wq (e#s) cs' = wq s cs'"
+ using assms unfolding is_v wq_def
+ by (auto simp:Let_def)
+
+lemma runing_th_s:
+ shows "th \<in> runing s"
+proof -
+ from pip_e[unfolded is_v]
+ show ?thesis by (cases, simp)
+qed
+
+lemma th_not_waiting:
+ "\<not> waiting s th c"
+proof -
+ have "th \<in> readys s"
+ using runing_ready runing_th_s by blast
+ thus ?thesis
+ by (unfold readys_def, auto)
+qed
+
+lemma waiting_neq_th:
+ assumes "waiting s t c"
+ shows "t \<noteq> th"
+ using assms using th_not_waiting by blast
+
+lemma wq_s_cs:
+ "wq s cs = th#rest"
+proof -
+ from pip_e[unfolded is_v]
+ show ?thesis
+ proof(cases)
+ case (thread_V)
+ from this(2) show ?thesis
+ by (unfold rest_def s_holding_def, fold wq_def,
+ metis empty_iff list.collapse list.set(1))
+ qed
+qed
+
+lemma wq_es_cs:
+ "wq (e#s) cs = wq'"
+ using wq_s_cs[unfolded wq_def]
+ by (auto simp:Let_def wq_def rest_def wq'_def is_v, simp)
+
+lemma wq_distinct_kept:
+ assumes "distinct (wq s cs')"
+ shows "distinct (wq (e#s) cs')"
+proof(cases "cs' = cs")
+ case True
+ show ?thesis
+ proof(unfold True wq_es_cs wq'_def, rule someI2)
+ show "distinct rest \<and> set rest = set rest"
+ using assms[unfolded True wq_s_cs] by auto
+ qed simp
+qed (insert assms, simp)
+
+end
+
+context valid_trace_set
+begin
+
+lemma wq_neq_simp [simp]:
+ shows "wq (e#s) cs' = wq s cs'"
+ using assms unfolding is_set wq_def
+ by (auto simp:Let_def)
+
+lemma wq_distinct_kept:
+ assumes "distinct (wq s cs')"
+ shows "distinct (wq (e#s) cs')"
+ using assms by simp
+end
+
+context valid_trace
+begin
+
+lemma actor_inv:
+ assumes "PIP s e"
+ and "\<not> isCreate e"
+ shows "actor e \<in> runing s"
+ using assms
+ by (induct, auto)
+
+lemma isP_E:
+ assumes "isP e"
+ obtains cs where "e = P (actor e) cs"
+ using assms by (cases e, auto)
+
+lemma isV_E:
+ assumes "isV e"
+ obtains cs where "e = V (actor e) cs"
+ using assms by (cases e, auto)
+
+lemma wq_distinct: "distinct (wq s cs)"
+proof(induct rule:ind)
+ case (Cons s e)
+ interpret vt_e: valid_trace_e s e using Cons by simp
+ show ?case
+ proof(cases e)
+ case (Create th prio)
+ interpret vt_create: valid_trace_create s e th prio
+ using Create by (unfold_locales, simp)
+ show ?thesis using Cons by (simp add: vt_create.wq_distinct_kept)
+ next
+ case (Exit th)
+ interpret vt_exit: valid_trace_exit s e th
+ using Exit by (unfold_locales, simp)
+ show ?thesis using Cons by (simp add: vt_exit.wq_distinct_kept)
+ next
+ case (P th cs)
+ interpret vt_p: valid_trace_p s e th cs using P by (unfold_locales, simp)
+ show ?thesis using Cons by (simp add: vt_p.wq_distinct_kept)
+ next
+ case (V th cs)
+ interpret vt_v: valid_trace_v s e th cs using V by (unfold_locales, simp)
+ show ?thesis using Cons by (simp add: vt_v.wq_distinct_kept)
+ next
+ case (Set th prio)
+ interpret vt_set: valid_trace_set s e th prio
+ using Set by (unfold_locales, simp)
+ show ?thesis using Cons by (simp add: vt_set.wq_distinct_kept)
+ qed
+qed (unfold wq_def Let_def, simp)
+
+end
+
+context valid_trace_e
+begin
+
+text {*
+ The following lemma shows that only the @{text "P"}
+ operation can add new thread into waiting queues.
+ Such kind of lemmas are very obvious, but need to be checked formally.
+ This is a kind of confirmation that our modelling is correct.
+*}
+
+lemma wq_in_inv:
+ assumes s_ni: "thread \<notin> set (wq s cs)"
+ and s_i: "thread \<in> set (wq (e#s) cs)"
+ shows "e = P thread cs"
+proof(cases e)
+ -- {* This is the only non-trivial case: *}
+ case (V th cs1)
+ have False
+ proof(cases "cs1 = cs")
+ case True
+ show ?thesis
+ proof(cases "(wq s cs1)")
+ case (Cons w_hd w_tl)
+ have "set (wq (e#s) cs) \<subseteq> set (wq s cs)"
+ proof -
+ have "(wq (e#s) cs) = (SOME q. distinct q \<and> set q = set w_tl)"
+ using Cons V by (auto simp:wq_def Let_def True split:if_splits)
+ moreover have "set ... \<subseteq> set (wq s cs)"
+ proof(rule someI2)
+ show "distinct w_tl \<and> set w_tl = set w_tl"
+ by (metis distinct.simps(2) local.Cons wq_distinct)
+ qed (insert Cons True, auto)
+ ultimately show ?thesis by simp
+ qed
+ with assms show ?thesis by auto
+ qed (insert assms V True, auto simp:wq_def Let_def split:if_splits)
+ qed (insert assms V, auto simp:wq_def Let_def split:if_splits)
+ thus ?thesis by auto
+qed (insert assms, auto simp:wq_def Let_def split:if_splits)
+
+lemma wq_out_inv:
+ assumes s_in: "thread \<in> set (wq s cs)"
+ and s_hd: "thread = hd (wq s cs)"
+ and s_i: "thread \<noteq> hd (wq (e#s) cs)"
+ shows "e = V thread cs"
+proof(cases e)
+-- {* There are only two non-trivial cases: *}
+ case (V th cs1)
+ show ?thesis
+ proof(cases "cs1 = cs")
+ case True
+ have "PIP s (V th cs)" using pip_e[unfolded V[unfolded True]] .
+ thus ?thesis
+ proof(cases)
+ case (thread_V)
+ moreover have "th = thread" using thread_V(2) s_hd
+ by (unfold s_holding_def wq_def, simp)
+ ultimately show ?thesis using V True by simp
+ qed
+ qed (insert assms V, auto simp:wq_def Let_def split:if_splits)
+next
+ case (P th cs1)
+ show ?thesis
+ proof(cases "cs1 = cs")
+ case True
+ with P have "wq (e#s) cs = wq_fun (schs s) cs @ [th]"
+ by (auto simp:wq_def Let_def split:if_splits)
+ with s_i s_hd s_in have False
+ by (metis empty_iff hd_append2 list.set(1) wq_def)
+ thus ?thesis by simp
+ qed (insert assms P, auto simp:wq_def Let_def split:if_splits)
+qed (insert assms, auto simp:wq_def Let_def split:if_splits)
+
+end
+
+
+context valid_trace
+begin
+
+
+text {* (* ddd *)
+ The nature of the work is like this: since it starts from a very simple and basic
+ model, even intuitively very `basic` and `obvious` properties need to derived from scratch.
+ For instance, the fact
+ that one thread can not be blocked by two critical resources at the same time
+ is obvious, because only running threads can make new requests, if one is waiting for
+ a critical resource and get blocked, it can not make another resource request and get
+ blocked the second time (because it is not running).
+
+ To derive this fact, one needs to prove by contraction and
+ reason about time (or @{text "moement"}). The reasoning is based on a generic theorem
+ named @{text "p_split"}, which is about status changing along the time axis. It says if
+ a condition @{text "Q"} is @{text "True"} at a state @{text "s"},
+ but it was @{text "False"} at the very beginning, then there must exits a moment @{text "t"}
+ in the history of @{text "s"} (notice that @{text "s"} itself is essentially the history
+ of events leading to it), such that @{text "Q"} switched
+ from being @{text "False"} to @{text "True"} and kept being @{text "True"}
+ till the last moment of @{text "s"}.
+
+ Suppose a thread @{text "th"} is blocked
+ on @{text "cs1"} and @{text "cs2"} in some state @{text "s"},
+ since no thread is blocked at the very beginning, by applying
+ @{text "p_split"} to these two blocking facts, there exist
+ two moments @{text "t1"} and @{text "t2"} in @{text "s"}, such that
+ @{text "th"} got blocked on @{text "cs1"} and @{text "cs2"}
+ and kept on blocked on them respectively ever since.
+
+ Without lost of generality, we assume @{text "t1"} is earlier than @{text "t2"}.
+ However, since @{text "th"} was blocked ever since memonent @{text "t1"}, so it was still
+ in blocked state at moment @{text "t2"} and could not
+ make any request and get blocked the second time: Contradiction.
+*}
+
+lemma waiting_unique_pre: (* ddd *)
+ assumes h11: "thread \<in> set (wq s cs1)"
+ and h12: "thread \<noteq> hd (wq s cs1)"
+ assumes h21: "thread \<in> set (wq s cs2)"
+ and h22: "thread \<noteq> hd (wq s cs2)"
+ and neq12: "cs1 \<noteq> cs2"
+ shows "False"
+proof -
+ let "?Q" = "\<lambda> cs s. thread \<in> set (wq s cs) \<and> thread \<noteq> hd (wq s cs)"
+ from h11 and h12 have q1: "?Q cs1 s" by simp
+ from h21 and h22 have q2: "?Q cs2 s" by simp
+ have nq1: "\<not> ?Q cs1 []" by (simp add:wq_def)
+ have nq2: "\<not> ?Q cs2 []" by (simp add:wq_def)
+ from p_split [of "?Q cs1", OF q1 nq1]
+ obtain t1 where lt1: "t1 < length s"
+ and np1: "\<not> ?Q cs1 (moment t1 s)"
+ and nn1: "(\<forall>i'>t1. ?Q cs1 (moment i' s))" by auto
+ from p_split [of "?Q cs2", OF q2 nq2]
+ obtain t2 where lt2: "t2 < length s"
+ and np2: "\<not> ?Q cs2 (moment t2 s)"
+ and nn2: "(\<forall>i'>t2. ?Q cs2 (moment i' s))" by auto
+ { fix s cs
+ assume q: "?Q cs s"
+ have "thread \<notin> runing s"
+ proof
+ assume "thread \<in> runing s"
+ hence " \<forall>cs. \<not> (thread \<in> set (wq_fun (schs s) cs) \<and>
+ thread \<noteq> hd (wq_fun (schs s) cs))"
+ by (unfold runing_def s_waiting_def readys_def, auto)
+ from this[rule_format, of cs] q
+ show False by (simp add: wq_def)
+ qed
+ } note q_not_runing = this
+ { fix t1 t2 cs1 cs2
+ assume lt1: "t1 < length s"
+ and np1: "\<not> ?Q cs1 (moment t1 s)"
+ and nn1: "(\<forall>i'>t1. ?Q cs1 (moment i' s))"
+ and lt2: "t2 < length s"
+ and np2: "\<not> ?Q cs2 (moment t2 s)"
+ and nn2: "(\<forall>i'>t2. ?Q cs2 (moment i' s))"
+ and lt12: "t1 < t2"
+ let ?t3 = "Suc t2"
+ from lt2 have le_t3: "?t3 \<le> length s" by auto
+ from moment_plus [OF this]
+ obtain e where eq_m: "moment ?t3 s = e#moment t2 s" by auto
+ have "t2 < ?t3" by simp
+ from nn2 [rule_format, OF this] and eq_m
+ have h1: "thread \<in> set (wq (e#moment t2 s) cs2)" and
+ h2: "thread \<noteq> hd (wq (e#moment t2 s) cs2)" by auto
+ have "vt (e#moment t2 s)"
+ proof -
+ from vt_moment
+ have "vt (moment ?t3 s)" .
+ with eq_m show ?thesis by simp
+ qed
+ then interpret vt_e: valid_trace_e "moment t2 s" "e"
+ by (unfold_locales, auto, cases, simp)
+ have ?thesis
+ proof -
+ have "thread \<in> runing (moment t2 s)"
+ proof(cases "thread \<in> set (wq (moment t2 s) cs2)")
+ case True
+ have "e = V thread cs2"
+ proof -
+ have eq_th: "thread = hd (wq (moment t2 s) cs2)"
+ using True and np2 by auto
+ from vt_e.wq_out_inv[OF True this h2]
+ show ?thesis .
+ qed
+ thus ?thesis using vt_e.actor_inv[OF vt_e.pip_e] by auto
+ next
+ case False
+ have "e = P thread cs2" using vt_e.wq_in_inv[OF False h1] .
+ with vt_e.actor_inv[OF vt_e.pip_e]
+ show ?thesis by auto
+ qed
+ moreover have "thread \<notin> runing (moment t2 s)"
+ by (rule q_not_runing[OF nn1[rule_format, OF lt12]])
+ ultimately show ?thesis by simp
+ qed
+ } note lt_case = this
+ show ?thesis
+ proof -
+ { assume "t1 < t2"
+ from lt_case[OF lt1 np1 nn1 lt2 np2 nn2 this]
+ have ?thesis .
+ } moreover {
+ assume "t2 < t1"
+ from lt_case[OF lt2 np2 nn2 lt1 np1 nn1 this]
+ have ?thesis .
+ } moreover {
+ assume eq_12: "t1 = t2"
+ let ?t3 = "Suc t2"
+ from lt2 have le_t3: "?t3 \<le> length s" by auto
+ from moment_plus [OF this]
+ obtain e where eq_m: "moment ?t3 s = e#moment t2 s" by auto
+ have lt_2: "t2 < ?t3" by simp
+ from nn2 [rule_format, OF this] and eq_m
+ have h1: "thread \<in> set (wq (e#moment t2 s) cs2)" and
+ h2: "thread \<noteq> hd (wq (e#moment t2 s) cs2)" by auto
+ from nn1[rule_format, OF lt_2[folded eq_12]] eq_m[folded eq_12]
+ have g1: "thread \<in> set (wq (e#moment t1 s) cs1)" and
+ g2: "thread \<noteq> hd (wq (e#moment t1 s) cs1)" by auto
+ have "vt (e#moment t2 s)"
+ proof -
+ from vt_moment
+ have "vt (moment ?t3 s)" .
+ with eq_m show ?thesis by simp
+ qed
+ then interpret vt_e: valid_trace_e "moment t2 s" "e"
+ by (unfold_locales, auto, cases, simp)
+ have "e = V thread cs2 \<or> e = P thread cs2"
+ proof(cases "thread \<in> set (wq (moment t2 s) cs2)")
+ case True
+ have "e = V thread cs2"
+ proof -
+ have eq_th: "thread = hd (wq (moment t2 s) cs2)"
+ using True and np2 by auto
+ from vt_e.wq_out_inv[OF True this h2]
+ show ?thesis .
+ qed
+ thus ?thesis by auto
+ next
+ case False
+ have "e = P thread cs2" using vt_e.wq_in_inv[OF False h1] .
+ thus ?thesis by auto
+ qed
+ moreover have "e = V thread cs1 \<or> e = P thread cs1"
+ proof(cases "thread \<in> set (wq (moment t1 s) cs1)")
+ case True
+ have eq_th: "thread = hd (wq (moment t1 s) cs1)"
+ using True and np1 by auto
+ from vt_e.wq_out_inv[folded eq_12, OF True this g2]
+ have "e = V thread cs1" .
+ thus ?thesis by auto
+ next
+ case False
+ have "e = P thread cs1" using vt_e.wq_in_inv[folded eq_12, OF False g1] .
+ thus ?thesis by auto
+ qed
+ ultimately have ?thesis using neq12 by auto
+ } ultimately show ?thesis using nat_neq_iff by blast
+ qed
+qed
+
+text {*
+ This lemma is a simple corrolary of @{text "waiting_unique_pre"}.
+*}
+
+lemma waiting_unique:
+ assumes "waiting s th cs1"
+ and "waiting s th cs2"
+ shows "cs1 = cs2"
+ using waiting_unique_pre assms
+ unfolding wq_def s_waiting_def
+ by auto
+
+end
+
+(* not used *)
+text {*
+ Every thread can only be blocked on one critical resource,
+ symmetrically, every critical resource can only be held by one thread.
+ This fact is much more easier according to our definition.
+*}
+lemma held_unique:
+ assumes "holding (s::event list) th1 cs"
+ and "holding s th2 cs"
+ shows "th1 = th2"
+ by (insert assms, unfold s_holding_def, auto)
+
+lemma last_set_lt: "th \<in> threads s \<Longrightarrow> last_set th s < length s"
+ apply (induct s, auto)
+ by (case_tac a, auto split:if_splits)
+
+lemma last_set_unique:
+ "\<lbrakk>last_set th1 s = last_set th2 s; th1 \<in> threads s; th2 \<in> threads s\<rbrakk>
+ \<Longrightarrow> th1 = th2"
+ apply (induct s, auto)
+ by (case_tac a, auto split:if_splits dest:last_set_lt)
+
+lemma preced_unique :
+ assumes pcd_eq: "preced th1 s = preced th2 s"
+ and th_in1: "th1 \<in> threads s"
+ and th_in2: " th2 \<in> threads s"
+ shows "th1 = th2"
+proof -
+ from pcd_eq have "last_set th1 s = last_set th2 s" by (simp add:preced_def)
+ from last_set_unique [OF this th_in1 th_in2]
+ show ?thesis .
+qed
+
+lemma preced_linorder:
+ assumes neq_12: "th1 \<noteq> th2"
+ and th_in1: "th1 \<in> threads s"
+ and th_in2: " th2 \<in> threads s"
+ shows "preced th1 s < preced th2 s \<or> preced th1 s > preced th2 s"
+proof -
+ from preced_unique [OF _ th_in1 th_in2] and neq_12
+ have "preced th1 s \<noteq> preced th2 s" by auto
+ thus ?thesis by auto
+qed
+
+text {*
+ The following three lemmas show that @{text "RAG"} does not change
+ by the happening of @{text "Set"}, @{text "Create"} and @{text "Exit"}
+ events, respectively.
+*}
+
+lemma RAG_set_unchanged: "(RAG (Set th prio # s)) = RAG s"
+apply (unfold s_RAG_def s_waiting_def wq_def)
+by (simp add:Let_def)
+
+lemma (in valid_trace_set)
+ RAG_unchanged: "(RAG (e # s)) = RAG s"
+ by (unfold is_set RAG_set_unchanged, simp)
+
+lemma RAG_create_unchanged: "(RAG (Create th prio # s)) = RAG s"
+apply (unfold s_RAG_def s_waiting_def wq_def)
+by (simp add:Let_def)
+
+lemma (in valid_trace_create)
+ RAG_unchanged: "(RAG (e # s)) = RAG s"
+ by (unfold is_create RAG_create_unchanged, simp)
+
+lemma RAG_exit_unchanged: "(RAG (Exit th # s)) = RAG s"
+apply (unfold s_RAG_def s_waiting_def wq_def)
+by (simp add:Let_def)
+
+lemma (in valid_trace_exit)
+ RAG_unchanged: "(RAG (e # s)) = RAG s"
+ by (unfold is_exit RAG_exit_unchanged, simp)
+
+context valid_trace_v
+begin
+
+lemma distinct_rest: "distinct rest"
+ by (simp add: distinct_tl rest_def wq_distinct)
+
+lemma holding_cs_eq_th:
+ assumes "holding s t cs"
+ shows "t = th"
+proof -
+ from pip_e[unfolded is_v]
+ show ?thesis
+ proof(cases)
+ case (thread_V)
+ from held_unique[OF this(2) assms]
+ show ?thesis by simp
+ qed
+qed
+
+lemma distinct_wq': "distinct wq'"
+ by (metis (mono_tags, lifting) distinct_rest some_eq_ex wq'_def)
+
+lemma set_wq': "set wq' = set rest"
+ by (metis (mono_tags, lifting) distinct_rest rest_def
+ some_eq_ex wq'_def)
+
+lemma th'_in_inv:
+ assumes "th' \<in> set wq'"
+ shows "th' \<in> set rest"
+ using assms set_wq' by simp
+
+lemma neq_t_th:
+ assumes "waiting (e#s) t c"
+ shows "t \<noteq> th"
+proof
+ assume otherwise: "t = th"
+ show False
+ proof(cases "c = cs")
+ case True
+ have "t \<in> set wq'"
+ using assms[unfolded True s_waiting_def, folded wq_def, unfolded wq_es_cs]
+ by simp
+ from th'_in_inv[OF this] have "t \<in> set rest" .
+ with wq_s_cs[folded otherwise] wq_distinct[of cs]
+ show ?thesis by simp
+ next
+ case False
+ have "wq (e#s) c = wq s c" using False
+ by (unfold is_v, simp)
+ hence "waiting s t c" using assms
+ by (simp add: cs_waiting_def waiting_eq)
+ hence "t \<notin> readys s" by (unfold readys_def, auto)
+ hence "t \<notin> runing s" using runing_ready by auto
+ with runing_th_s[folded otherwise] show ?thesis by auto
+ qed
+qed
+
+lemma waiting_esI1:
+ assumes "waiting s t c"
+ and "c \<noteq> cs"
+ shows "waiting (e#s) t c"
+proof -
+ have "wq (e#s) c = wq s c"
+ using assms(2) is_v by auto
+ with assms(1) show ?thesis
+ using cs_waiting_def waiting_eq by auto
+qed
+
+lemma holding_esI2:
+ assumes "c \<noteq> cs"
+ and "holding s t c"
+ shows "holding (e#s) t c"
+proof -
+ from assms(1) have "wq (e#s) c = wq s c" using is_v by auto
+ from assms(2)[unfolded s_holding_def, folded wq_def,
+ folded this, unfolded wq_def, folded s_holding_def]
+ show ?thesis .
+qed
+
+lemma holding_esI1:
+ assumes "holding s t c"
+ and "t \<noteq> th"
+ shows "holding (e#s) t c"
+proof -
+ have "c \<noteq> cs" using assms using holding_cs_eq_th by blast
+ from holding_esI2[OF this assms(1)]
+ show ?thesis .
+qed
+
+end
+
+context valid_trace_v_n
+begin
+
+lemma neq_wq': "wq' \<noteq> []"
+proof (unfold wq'_def, rule someI2)
+ show "distinct rest \<and> set rest = set rest"
+ by (simp add: distinct_rest)
+next
+ fix x
+ assume " distinct x \<and> set x = set rest"
+ thus "x \<noteq> []" using rest_nnl by auto
+qed
+
+definition "taker = hd wq'"
+
+definition "rest' = tl wq'"
+
+lemma eq_wq': "wq' = taker # rest'"
+ by (simp add: neq_wq' rest'_def taker_def)
+
+lemma next_th_taker:
+ shows "next_th s th cs taker"
+ using rest_nnl taker_def wq'_def wq_s_cs
+ by (auto simp:next_th_def)
+
+lemma taker_unique:
+ assumes "next_th s th cs taker'"
+ shows "taker' = taker"
+proof -
+ from assms
+ obtain rest' where
+ h: "wq s cs = th # rest'"
+ "taker' = hd (SOME q. distinct q \<and> set q = set rest')"
+ by (unfold next_th_def, auto)
+ with wq_s_cs have "rest' = rest" by auto
+ thus ?thesis using h(2) taker_def wq'_def by auto
+qed
+
+lemma waiting_set_eq:
+ "{(Th th', Cs cs) |th'. next_th s th cs th'} = {(Th taker, Cs cs)}"
+ by (smt all_not_in_conv bot.extremum insertI1 insert_subset
+ mem_Collect_eq next_th_taker subsetI subset_antisym taker_def taker_unique)
+
+lemma holding_set_eq:
+ "{(Cs cs, Th th') |th'. next_th s th cs th'} = {(Cs cs, Th taker)}"
+ using next_th_taker taker_def waiting_set_eq
+ by fastforce
+
+lemma holding_taker:
+ shows "holding (e#s) taker cs"
+ by (unfold s_holding_def, fold wq_def, unfold wq_es_cs,
+ auto simp:neq_wq' taker_def)
+
+lemma waiting_esI2:
+ assumes "waiting s t cs"
+ and "t \<noteq> taker"
+ shows "waiting (e#s) t cs"
+proof -
+ have "t \<in> set wq'"
+ proof(unfold wq'_def, rule someI2)
+ show "distinct rest \<and> set rest = set rest"
+ by (simp add: distinct_rest)
+ next
+ fix x
+ assume "distinct x \<and> set x = set rest"
+ moreover have "t \<in> set rest"
+ using assms(1) cs_waiting_def waiting_eq wq_s_cs by auto
+ ultimately show "t \<in> set x" by simp
+ qed
+ moreover have "t \<noteq> hd wq'"
+ using assms(2) taker_def by auto
+ ultimately show ?thesis
+ by (unfold s_waiting_def, fold wq_def, unfold wq_es_cs, simp)
+qed
+
+lemma waiting_esE:
+ assumes "waiting (e#s) t c"
+ obtains "c \<noteq> cs" "waiting s t c"
+ | "c = cs" "t \<noteq> taker" "waiting s t cs" "t \<in> set rest'"
+proof(cases "c = cs")
+ case False
+ hence "wq (e#s) c = wq s c" using is_v by auto
+ with assms have "waiting s t c" using cs_waiting_def waiting_eq by auto
+ from that(1)[OF False this] show ?thesis .
+next
+ case True
+ from assms[unfolded s_waiting_def True, folded wq_def, unfolded wq_es_cs]
+ have "t \<noteq> hd wq'" "t \<in> set wq'" by auto
+ hence "t \<noteq> taker" by (simp add: taker_def)
+ moreover hence "t \<noteq> th" using assms neq_t_th by blast
+ moreover have "t \<in> set rest" by (simp add: `t \<in> set wq'` th'_in_inv)
+ ultimately have "waiting s t cs"
+ by (metis cs_waiting_def list.distinct(2) list.sel(1)
+ list.set_sel(2) rest_def waiting_eq wq_s_cs)
+ show ?thesis using that(2)
+ using True `t \<in> set wq'` `t \<noteq> taker` `waiting s t cs` eq_wq' by auto
+qed
+
+lemma holding_esI1:
+ assumes "c = cs"
+ and "t = taker"
+ shows "holding (e#s) t c"
+ by (unfold assms, simp add: holding_taker)
+
+lemma holding_esE:
+ assumes "holding (e#s) t c"
+ obtains "c = cs" "t = taker"
+ | "c \<noteq> cs" "holding s t c"
+proof(cases "c = cs")
+ case True
+ from assms[unfolded True, unfolded s_holding_def,
+ folded wq_def, unfolded wq_es_cs]
+ have "t = taker" by (simp add: taker_def)
+ from that(1)[OF True this] show ?thesis .
+next
+ case False
+ hence "wq (e#s) c = wq s c" using is_v by auto
+ from assms[unfolded s_holding_def, folded wq_def,
+ unfolded this, unfolded wq_def, folded s_holding_def]
+ have "holding s t c" .
+ from that(2)[OF False this] show ?thesis .
+qed
+
+end
+
+
+context valid_trace_v_e
+begin
+
+lemma nil_wq': "wq' = []"
+proof (unfold wq'_def, rule someI2)
+ show "distinct rest \<and> set rest = set rest"
+ by (simp add: distinct_rest)
+next
+ fix x
+ assume " distinct x \<and> set x = set rest"
+ thus "x = []" using rest_nil by auto
+qed
+
+lemma no_taker:
+ assumes "next_th s th cs taker"
+ shows "False"
+proof -
+ from assms[unfolded next_th_def]
+ obtain rest' where "wq s cs = th # rest'" "rest' \<noteq> []"
+ by auto
+ thus ?thesis using rest_def rest_nil by auto
+qed
+
+lemma waiting_set_eq:
+ "{(Th th', Cs cs) |th'. next_th s th cs th'} = {}"
+ using no_taker by auto
+
+lemma holding_set_eq:
+ "{(Cs cs, Th th') |th'. next_th s th cs th'} = {}"
+ using no_taker by auto
+
+lemma no_holding:
+ assumes "holding (e#s) taker cs"
+ shows False
+proof -
+ from wq_es_cs[unfolded nil_wq']
+ have " wq (e # s) cs = []" .
+ from assms[unfolded s_holding_def, folded wq_def, unfolded this]
+ show ?thesis by auto
+qed
+
+lemma no_waiting:
+ assumes "waiting (e#s) t cs"
+ shows False
+proof -
+ from wq_es_cs[unfolded nil_wq']
+ have " wq (e # s) cs = []" .
+ from assms[unfolded s_waiting_def, folded wq_def, unfolded this]
+ show ?thesis by auto
+qed
+
+lemma waiting_esI2:
+ assumes "waiting s t c"
+ shows "waiting (e#s) t c"
+proof -
+ have "c \<noteq> cs" using assms
+ using cs_waiting_def rest_nil waiting_eq wq_s_cs by auto
+ from waiting_esI1[OF assms this]
+ show ?thesis .
+qed
+
+lemma waiting_esE:
+ assumes "waiting (e#s) t c"
+ obtains "c \<noteq> cs" "waiting s t c"
+proof(cases "c = cs")
+ case False
+ hence "wq (e#s) c = wq s c" using is_v by auto
+ with assms have "waiting s t c" using cs_waiting_def waiting_eq by auto
+ from that(1)[OF False this] show ?thesis .
+next
+ case True
+ from no_waiting[OF assms[unfolded True]]
+ show ?thesis by auto
+qed
+
+lemma holding_esE:
+ assumes "holding (e#s) t c"
+ obtains "c \<noteq> cs" "holding s t c"
+proof(cases "c = cs")
+ case True
+ from no_holding[OF assms[unfolded True]]
+ show ?thesis by auto
+next
+ case False
+ hence "wq (e#s) c = wq s c" using is_v by auto
+ from assms[unfolded s_holding_def, folded wq_def,
+ unfolded this, unfolded wq_def, folded s_holding_def]
+ have "holding s t c" .
+ from that[OF False this] show ?thesis .
+qed
+
+end
+
+lemma rel_eqI:
+ assumes "\<And> x y. (x,y) \<in> A \<Longrightarrow> (x,y) \<in> B"
+ and "\<And> x y. (x,y) \<in> B \<Longrightarrow> (x, y) \<in> A"
+ shows "A = B"
+ using assms by auto
+
+lemma in_RAG_E:
+ assumes "(n1, n2) \<in> RAG (s::state)"
+ obtains (waiting) th cs where "n1 = Th th" "n2 = Cs cs" "waiting s th cs"
+ | (holding) th cs where "n1 = Cs cs" "n2 = Th th" "holding s th cs"
+ using assms[unfolded s_RAG_def, folded waiting_eq holding_eq]
+ by auto
+
+context valid_trace_v
+begin
+
+lemma RAG_es:
+ "RAG (e # s) =
+ RAG s - {(Cs cs, Th th)} -
+ {(Th th', Cs cs) |th'. next_th s th cs th'} \<union>
+ {(Cs cs, Th th') |th'. next_th s th cs th'}" (is "?L = ?R")
+proof(rule rel_eqI)
+ fix n1 n2
+ assume "(n1, n2) \<in> ?L"
+ thus "(n1, n2) \<in> ?R"
+ proof(cases rule:in_RAG_E)
+ case (waiting th' cs')
+ show ?thesis
+ proof(cases "rest = []")
+ case False
+ interpret h_n: valid_trace_v_n s e th cs
+ by (unfold_locales, insert False, simp)
+ from waiting(3)
+ show ?thesis
+ proof(cases rule:h_n.waiting_esE)
+ case 1
+ with waiting(1,2)
+ show ?thesis
+ by (unfold h_n.waiting_set_eq h_n.holding_set_eq s_RAG_def,
+ fold waiting_eq, auto)
+ next
+ case 2
+ with waiting(1,2)
+ show ?thesis
+ by (unfold h_n.waiting_set_eq h_n.holding_set_eq s_RAG_def,
+ fold waiting_eq, auto)
+ qed
+ next
+ case True
+ interpret h_e: valid_trace_v_e s e th cs
+ by (unfold_locales, insert True, simp)
+ from waiting(3)
+ show ?thesis
+ proof(cases rule:h_e.waiting_esE)
+ case 1
+ with waiting(1,2)
+ show ?thesis
+ by (unfold h_e.waiting_set_eq h_e.holding_set_eq s_RAG_def,
+ fold waiting_eq, auto)
+ qed
+ qed
+ next
+ case (holding th' cs')
+ show ?thesis
+ proof(cases "rest = []")
+ case False
+ interpret h_n: valid_trace_v_n s e th cs
+ by (unfold_locales, insert False, simp)
+ from holding(3)
+ show ?thesis
+ proof(cases rule:h_n.holding_esE)
+ case 1
+ with holding(1,2)
+ show ?thesis
+ by (unfold h_n.waiting_set_eq h_n.holding_set_eq s_RAG_def,
+ fold waiting_eq, auto)
+ next
+ case 2
+ with holding(1,2)
+ show ?thesis
+ by (unfold h_n.waiting_set_eq h_n.holding_set_eq s_RAG_def,
+ fold holding_eq, auto)
+ qed
+ next
+ case True
+ interpret h_e: valid_trace_v_e s e th cs
+ by (unfold_locales, insert True, simp)
+ from holding(3)
+ show ?thesis
+ proof(cases rule:h_e.holding_esE)
+ case 1
+ with holding(1,2)
+ show ?thesis
+ by (unfold h_e.waiting_set_eq h_e.holding_set_eq s_RAG_def,
+ fold holding_eq, auto)
+ qed
+ qed
+ qed
+next
+ fix n1 n2
+ assume h: "(n1, n2) \<in> ?R"
+ show "(n1, n2) \<in> ?L"
+ proof(cases "rest = []")
+ case False
+ interpret h_n: valid_trace_v_n s e th cs
+ by (unfold_locales, insert False, simp)
+ from h[unfolded h_n.waiting_set_eq h_n.holding_set_eq]
+ have "((n1, n2) \<in> RAG s \<and> (n1 \<noteq> Cs cs \<or> n2 \<noteq> Th th)
+ \<and> (n1 \<noteq> Th h_n.taker \<or> n2 \<noteq> Cs cs)) \<or>
+ (n2 = Th h_n.taker \<and> n1 = Cs cs)"
+ by auto
+ thus ?thesis
+ proof
+ assume "n2 = Th h_n.taker \<and> n1 = Cs cs"
+ with h_n.holding_taker
+ show ?thesis
+ by (unfold s_RAG_def, fold holding_eq, auto)
+ next
+ assume h: "(n1, n2) \<in> RAG s \<and>
+ (n1 \<noteq> Cs cs \<or> n2 \<noteq> Th th) \<and> (n1 \<noteq> Th h_n.taker \<or> n2 \<noteq> Cs cs)"
+ hence "(n1, n2) \<in> RAG s" by simp
+ thus ?thesis
+ proof(cases rule:in_RAG_E)
+ case (waiting th' cs')
+ from h and this(1,2)
+ have "th' \<noteq> h_n.taker \<or> cs' \<noteq> cs" by auto
+ hence "waiting (e#s) th' cs'"
+ proof
+ assume "cs' \<noteq> cs"
+ from waiting_esI1[OF waiting(3) this]
+ show ?thesis .
+ next
+ assume neq_th': "th' \<noteq> h_n.taker"
+ show ?thesis
+ proof(cases "cs' = cs")
+ case False
+ from waiting_esI1[OF waiting(3) this]
+ show ?thesis .
+ next
+ case True
+ from h_n.waiting_esI2[OF waiting(3)[unfolded True] neq_th', folded True]
+ show ?thesis .
+ qed
+ qed
+ thus ?thesis using waiting(1,2)
+ by (unfold s_RAG_def, fold waiting_eq, auto)
+ next
+ case (holding th' cs')
+ from h this(1,2)
+ have "cs' \<noteq> cs \<or> th' \<noteq> th" by auto
+ hence "holding (e#s) th' cs'"
+ proof
+ assume "cs' \<noteq> cs"
+ from holding_esI2[OF this holding(3)]
+ show ?thesis .
+ next
+ assume "th' \<noteq> th"
+ from holding_esI1[OF holding(3) this]
+ show ?thesis .
+ qed
+ thus ?thesis using holding(1,2)
+ by (unfold s_RAG_def, fold holding_eq, auto)
+ qed
+ qed
+ next
+ case True
+ interpret h_e: valid_trace_v_e s e th cs
+ by (unfold_locales, insert True, simp)
+ from h[unfolded h_e.waiting_set_eq h_e.holding_set_eq]
+ have h_s: "(n1, n2) \<in> RAG s" "(n1, n2) \<noteq> (Cs cs, Th th)"
+ by auto
+ from h_s(1)
+ show ?thesis
+ proof(cases rule:in_RAG_E)
+ case (waiting th' cs')
+ from h_e.waiting_esI2[OF this(3)]
+ show ?thesis using waiting(1,2)
+ by (unfold s_RAG_def, fold waiting_eq, auto)
+ next
+ case (holding th' cs')
+ with h_s(2)
+ have "cs' \<noteq> cs \<or> th' \<noteq> th" by auto
+ thus ?thesis
+ proof
+ assume neq_cs: "cs' \<noteq> cs"
+ from holding_esI2[OF this holding(3)]
+ show ?thesis using holding(1,2)
+ by (unfold s_RAG_def, fold holding_eq, auto)
+ next
+ assume "th' \<noteq> th"
+ from holding_esI1[OF holding(3) this]
+ show ?thesis using holding(1,2)
+ by (unfold s_RAG_def, fold holding_eq, auto)
+ qed
+ qed
+ qed
+qed
+
+end
+
+lemma step_RAG_v:
+assumes vt:
+ "vt (V th cs#s)"
+shows "
+ RAG (V th cs # s) =
+ RAG s - {(Cs cs, Th th)} -
+ {(Th th', Cs cs) |th'. next_th s th cs th'} \<union>
+ {(Cs cs, Th th') |th'. next_th s th cs th'}" (is "?L = ?R")
+proof -
+ interpret vt_v: valid_trace_v s "V th cs"
+ using assms step_back_vt by (unfold_locales, auto)
+ show ?thesis using vt_v.RAG_es .
+qed
+
+lemma (in valid_trace_create)
+ th_not_in_threads: "th \<notin> threads s"
+proof -
+ from pip_e[unfolded is_create]
+ show ?thesis by (cases, simp)
+qed
+
+lemma (in valid_trace_create)
+ threads_es [simp]: "threads (e#s) = threads s \<union> {th}"
+ by (unfold is_create, simp)
+
+lemma (in valid_trace_exit)
+ threads_es [simp]: "threads (e#s) = threads s - {th}"
+ by (unfold is_exit, simp)
+
+lemma (in valid_trace_p)
+ threads_es [simp]: "threads (e#s) = threads s"
+ by (unfold is_p, simp)
+
+lemma (in valid_trace_v)
+ threads_es [simp]: "threads (e#s) = threads s"
+ by (unfold is_v, simp)
+
+lemma (in valid_trace_v)
+ th_not_in_rest[simp]: "th \<notin> set rest"
+proof
+ assume otherwise: "th \<in> set rest"
+ have "distinct (wq s cs)" by (simp add: wq_distinct)
+ from this[unfolded wq_s_cs] and otherwise
+ show False by auto
+qed
+
+lemma (in valid_trace_v)
+ set_wq_es_cs [simp]: "set (wq (e#s) cs) = set (wq s cs) - {th}"
+proof(unfold wq_es_cs wq'_def, rule someI2)
+ show "distinct rest \<and> set rest = set rest"
+ by (simp add: distinct_rest)
+next
+ fix x
+ assume "distinct x \<and> set x = set rest"
+ thus "set x = set (wq s cs) - {th}"
+ by (unfold wq_s_cs, simp)
+qed
+
+lemma (in valid_trace_exit)
+ th_not_in_wq: "th \<notin> set (wq s cs)"
+proof -
+ from pip_e[unfolded is_exit]
+ show ?thesis
+ by (cases, unfold holdents_def s_holding_def, fold wq_def,
+ auto elim!:runing_wqE)
+qed
+
+lemma (in valid_trace) wq_threads:
+ assumes "th \<in> set (wq s cs)"
+ shows "th \<in> threads s"
+ using assms
+proof(induct rule:ind)
+ case (Nil)
+ thus ?case by (auto simp:wq_def)
+next
+ case (Cons s e)
+ interpret vt_e: valid_trace_e s e using Cons by simp
+ show ?case
+ proof(cases e)
+ case (Create th' prio')
+ interpret vt: valid_trace_create s e th' prio'
+ using Create by (unfold_locales, simp)
+ show ?thesis
+ using Cons.hyps(2) Cons.prems by auto
+ next
+ case (Exit th')
+ interpret vt: valid_trace_exit s e th'
+ using Exit by (unfold_locales, simp)
+ show ?thesis
+ using Cons.hyps(2) Cons.prems vt.th_not_in_wq by auto
+ next
+ case (P th' cs')
+ interpret vt: valid_trace_p s e th' cs'
+ using P by (unfold_locales, simp)
+ show ?thesis
+ using Cons.hyps(2) Cons.prems readys_threads
+ runing_ready vt.is_p vt.runing_th_s vt_e.wq_in_inv
+ by fastforce
+ next
+ case (V th' cs')
+ interpret vt: valid_trace_v s e th' cs'
+ using V by (unfold_locales, simp)
+ show ?thesis using Cons
+ using vt.is_v vt.threads_es vt_e.wq_in_inv by blast
+ next
+ case (Set th' prio)
+ interpret vt: valid_trace_set s e th' prio
+ using Set by (unfold_locales, simp)
+ show ?thesis using Cons.hyps(2) Cons.prems vt.is_set
+ by (auto simp:wq_def Let_def)
+ qed
+qed
+
+context valid_trace
+begin
+
+lemma dm_RAG_threads:
+ assumes in_dom: "(Th th) \<in> Domain (RAG s)"
+ shows "th \<in> threads s"
+proof -
+ from in_dom obtain n where "(Th th, n) \<in> RAG s" by auto
+ moreover from RAG_target_th[OF this] obtain cs where "n = Cs cs" by auto
+ ultimately have "(Th th, Cs cs) \<in> RAG s" by simp
+ hence "th \<in> set (wq s cs)"
+ by (unfold s_RAG_def, auto simp:cs_waiting_def)
+ from wq_threads [OF this] show ?thesis .
+qed
+
+lemma rg_RAG_threads:
+ assumes "(Th th) \<in> Range (RAG s)"
+ shows "th \<in> threads s"
+ using assms
+ by (unfold s_RAG_def cs_waiting_def cs_holding_def,
+ auto intro:wq_threads)
+
+end
+
+
+
+
+lemma preced_v [simp]: "preced th' (V th cs#s) = preced th' s"
+ by (unfold preced_def, simp)
+
+lemma (in valid_trace_v)
+ preced_es: "preced th (e#s) = preced th s"
+ by (unfold is_v preced_def, simp)
+
+lemma the_preced_v[simp]: "the_preced (V th cs#s) = the_preced s"
+proof
+ fix th'
+ show "the_preced (V th cs # s) th' = the_preced s th'"
+ by (unfold the_preced_def preced_def, simp)
+qed
+
+lemma (in valid_trace_v)
+ the_preced_es: "the_preced (e#s) = the_preced s"
+ by (unfold is_v preced_def, simp)
+
+context valid_trace_p
+begin
+
+lemma not_holding_s_th_cs: "\<not> holding s th cs"
+proof
+ assume otherwise: "holding s th cs"
+ from pip_e[unfolded is_p]
+ show False
+ proof(cases)
+ case (thread_P)
+ moreover have "(Cs cs, Th th) \<in> RAG s"
+ using otherwise cs_holding_def
+ holding_eq th_not_in_wq by auto
+ ultimately show ?thesis by auto
+ qed
+qed
+
+lemma waiting_kept:
+ assumes "waiting s th' cs'"
+ shows "waiting (e#s) th' cs'"
+ using assms
+ by (metis cs_waiting_def hd_append2 list.sel(1) list.set_intros(2)
+ rotate1.simps(2) self_append_conv2 set_rotate1
+ th_not_in_wq waiting_eq wq_es_cs wq_neq_simp)
+
+lemma holding_kept:
+ assumes "holding s th' cs'"
+ shows "holding (e#s) th' cs'"
+proof(cases "cs' = cs")
+ case False
+ hence "wq (e#s) cs' = wq s cs'" by simp
+ with assms show ?thesis using cs_holding_def holding_eq by auto
+next
+ case True
+ from assms[unfolded s_holding_def, folded wq_def]
+ obtain rest where eq_wq: "wq s cs' = th'#rest"
+ by (metis empty_iff list.collapse list.set(1))
+ hence "wq (e#s) cs' = th'#(rest@[th])"
+ by (simp add: True wq_es_cs)
+ thus ?thesis
+ by (simp add: cs_holding_def holding_eq)
+qed
+
+end
+
+locale valid_trace_p_h = valid_trace_p +
+ assumes we: "wq s cs = []"
+
+locale valid_trace_p_w = valid_trace_p +
+ assumes wne: "wq s cs \<noteq> []"
+begin
+
+definition "holder = hd (wq s cs)"
+definition "waiters = tl (wq s cs)"
+definition "waiters' = waiters @ [th]"
+
+lemma wq_s_cs: "wq s cs = holder#waiters"
+ by (simp add: holder_def waiters_def wne)
+
+lemma wq_es_cs': "wq (e#s) cs = holder#waiters@[th]"
+ by (simp add: wq_es_cs wq_s_cs)
+
+lemma waiting_es_th_cs: "waiting (e#s) th cs"
+ using cs_waiting_def th_not_in_wq waiting_eq wq_es_cs' wq_s_cs by auto
+
+lemma RAG_edge: "(Th th, Cs cs) \<in> RAG (e#s)"
+ by (unfold s_RAG_def, fold waiting_eq, insert waiting_es_th_cs, auto)
+
+lemma holding_esE:
+ assumes "holding (e#s) th' cs'"
+ obtains "holding s th' cs'"
+ using assms
+proof(cases "cs' = cs")
+ case False
+ hence "wq (e#s) cs' = wq s cs'" by simp
+ with assms show ?thesis
+ using cs_holding_def holding_eq that by auto
+next
+ case True
+ with assms show ?thesis
+ by (metis cs_holding_def holding_eq list.sel(1) list.set_intros(1) that
+ wq_es_cs' wq_s_cs)
+qed
+
+lemma waiting_esE:
+ assumes "waiting (e#s) th' cs'"
+ obtains "th' \<noteq> th" "waiting s th' cs'"
+ | "th' = th" "cs' = cs"
+proof(cases "waiting s th' cs'")
+ case True
+ have "th' \<noteq> th"
+ proof
+ assume otherwise: "th' = th"
+ from True[unfolded this]
+ show False by (simp add: th_not_waiting)
+ qed
+ from that(1)[OF this True] show ?thesis .
+next
+ case False
+ hence "th' = th \<and> cs' = cs"
+ by (metis assms cs_waiting_def holder_def list.sel(1) rotate1.simps(2)
+ set_ConsD set_rotate1 waiting_eq wq_es_cs wq_es_cs' wq_neq_simp)
+ with that(2) show ?thesis by metis
+qed
+
+lemma RAG_es: "RAG (e # s) = RAG s \<union> {(Th th, Cs cs)}" (is "?L = ?R")
+proof(rule rel_eqI)
+ fix n1 n2
+ assume "(n1, n2) \<in> ?L"
+ thus "(n1, n2) \<in> ?R"
+ proof(cases rule:in_RAG_E)
+ case (waiting th' cs')
+ from this(3)
+ show ?thesis
+ proof(cases rule:waiting_esE)
+ case 1
+ thus ?thesis using waiting(1,2)
+ by (unfold s_RAG_def, fold waiting_eq, auto)
+ next
+ case 2
+ thus ?thesis using waiting(1,2) by auto
+ qed
+ next
+ case (holding th' cs')
+ from this(3)
+ show ?thesis
+ proof(cases rule:holding_esE)
+ case 1
+ with holding(1,2)
+ show ?thesis by (unfold s_RAG_def, fold holding_eq, auto)
+ qed
+ qed
+next
+ fix n1 n2
+ assume "(n1, n2) \<in> ?R"
+ hence "(n1, n2) \<in> RAG s \<or> (n1 = Th th \<and> n2 = Cs cs)" by auto
+ thus "(n1, n2) \<in> ?L"
+ proof
+ assume "(n1, n2) \<in> RAG s"
+ thus ?thesis
+ proof(cases rule:in_RAG_E)
+ case (waiting th' cs')
+ from waiting_kept[OF this(3)]
+ show ?thesis using waiting(1,2)
+ by (unfold s_RAG_def, fold waiting_eq, auto)
+ next
+ case (holding th' cs')
+ from holding_kept[OF this(3)]
+ show ?thesis using holding(1,2)
+ by (unfold s_RAG_def, fold holding_eq, auto)
+ qed
+ next
+ assume "n1 = Th th \<and> n2 = Cs cs"
+ thus ?thesis using RAG_edge by auto
+ qed
+qed
+
+end
+
+context valid_trace_p_h
+begin
+
+lemma wq_es_cs': "wq (e#s) cs = [th]"
+ using wq_es_cs[unfolded we] by simp
+
+lemma holding_es_th_cs:
+ shows "holding (e#s) th cs"
+proof -
+ from wq_es_cs'
+ have "th \<in> set (wq (e#s) cs)" "th = hd (wq (e#s) cs)" by auto
+ thus ?thesis using cs_holding_def holding_eq by blast
+qed
+
+lemma RAG_edge: "(Cs cs, Th th) \<in> RAG (e#s)"
+ by (unfold s_RAG_def, fold holding_eq, insert holding_es_th_cs, auto)
+
+lemma waiting_esE:
+ assumes "waiting (e#s) th' cs'"
+ obtains "waiting s th' cs'"
+ using assms
+ by (metis cs_waiting_def event.distinct(15) is_p list.sel(1)
+ set_ConsD waiting_eq we wq_es_cs' wq_neq_simp wq_out_inv)
+
+lemma holding_esE:
+ assumes "holding (e#s) th' cs'"
+ obtains "cs' \<noteq> cs" "holding s th' cs'"
+ | "cs' = cs" "th' = th"
+proof(cases "cs' = cs")
+ case True
+ from held_unique[OF holding_es_th_cs assms[unfolded True]]
+ have "th' = th" by simp
+ from that(2)[OF True this] show ?thesis .
+next
+ case False
+ have "holding s th' cs'" using assms
+ using False cs_holding_def holding_eq by auto
+ from that(1)[OF False this] show ?thesis .
+qed
+
+lemma RAG_es: "RAG (e # s) = RAG s \<union> {(Cs cs, Th th)}" (is "?L = ?R")
+proof(rule rel_eqI)
+ fix n1 n2
+ assume "(n1, n2) \<in> ?L"
+ thus "(n1, n2) \<in> ?R"
+ proof(cases rule:in_RAG_E)
+ case (waiting th' cs')
+ from this(3)
+ show ?thesis
+ proof(cases rule:waiting_esE)
+ case 1
+ thus ?thesis using waiting(1,2)
+ by (unfold s_RAG_def, fold waiting_eq, auto)
+ qed
+ next
+ case (holding th' cs')
+ from this(3)
+ show ?thesis
+ proof(cases rule:holding_esE)
+ case 1
+ with holding(1,2)
+ show ?thesis by (unfold s_RAG_def, fold holding_eq, auto)
+ next
+ case 2
+ with holding(1,2) show ?thesis by auto
+ qed
+ qed
+next
+ fix n1 n2
+ assume "(n1, n2) \<in> ?R"
+ hence "(n1, n2) \<in> RAG s \<or> (n1 = Cs cs \<and> n2 = Th th)" by auto
+ thus "(n1, n2) \<in> ?L"
+ proof
+ assume "(n1, n2) \<in> RAG s"
+ thus ?thesis
+ proof(cases rule:in_RAG_E)
+ case (waiting th' cs')
+ from waiting_kept[OF this(3)]
+ show ?thesis using waiting(1,2)
+ by (unfold s_RAG_def, fold waiting_eq, auto)
+ next
+ case (holding th' cs')
+ from holding_kept[OF this(3)]
+ show ?thesis using holding(1,2)
+ by (unfold s_RAG_def, fold holding_eq, auto)
+ qed
+ next
+ assume "n1 = Cs cs \<and> n2 = Th th"
+ with holding_es_th_cs
+ show ?thesis
+ by (unfold s_RAG_def, fold holding_eq, auto)
+ qed
+qed
+
+end
+
+context valid_trace_p
+begin
+
+lemma RAG_es': "RAG (e # s) = (if (wq s cs = []) then RAG s \<union> {(Cs cs, Th th)}
+ else RAG s \<union> {(Th th, Cs cs)})"
+proof(cases "wq s cs = []")
+ case True
+ interpret vt_p: valid_trace_p_h using True
+ by (unfold_locales, simp)
+ show ?thesis by (simp add: vt_p.RAG_es vt_p.we)
+next
+ case False
+ interpret vt_p: valid_trace_p_w using False
+ by (unfold_locales, simp)
+ show ?thesis by (simp add: vt_p.RAG_es vt_p.wne)
+qed
+
+end
+
+lemma (in valid_trace_v_n) finite_waiting_set:
+ "finite {(Th th', Cs cs) |th'. next_th s th cs th'}"
+ by (simp add: waiting_set_eq)
+
+lemma (in valid_trace_v_n) finite_holding_set:
+ "finite {(Cs cs, Th th') |th'. next_th s th cs th'}"
+ by (simp add: holding_set_eq)
+
+lemma (in valid_trace_v_e) finite_waiting_set:
+ "finite {(Th th', Cs cs) |th'. next_th s th cs th'}"
+ by (simp add: waiting_set_eq)
+
+lemma (in valid_trace_v_e) finite_holding_set:
+ "finite {(Cs cs, Th th') |th'. next_th s th cs th'}"
+ by (simp add: holding_set_eq)
+
+context valid_trace_v
+begin
+
+lemma
+ finite_RAG_kept:
+ assumes "finite (RAG s)"
+ shows "finite (RAG (e#s))"
+proof(cases "rest = []")
+ case True
+ interpret vt: valid_trace_v_e using True
+ by (unfold_locales, simp)
+ show ?thesis using assms
+ by (unfold RAG_es vt.waiting_set_eq vt.holding_set_eq, simp)
+next
+ case False
+ interpret vt: valid_trace_v_n using False
+ by (unfold_locales, simp)
+ show ?thesis using assms
+ by (unfold RAG_es vt.waiting_set_eq vt.holding_set_eq, simp)
+qed
+
+end
+
+context valid_trace_v_e
+begin
+
+lemma
+ acylic_RAG_kept:
+ assumes "acyclic (RAG s)"
+ shows "acyclic (RAG (e#s))"
+proof(rule acyclic_subset[OF assms])
+ show "RAG (e # s) \<subseteq> RAG s"
+ by (unfold RAG_es waiting_set_eq holding_set_eq, auto)
+qed
+
+end
+
+context valid_trace_v_n
+begin
+
+lemma waiting_taker: "waiting s taker cs"
+ apply (unfold s_waiting_def, fold wq_def, unfold wq_s_cs taker_def)
+ using eq_wq' th'_in_inv wq'_def by fastforce
+
+lemma
+ acylic_RAG_kept:
+ assumes "acyclic (RAG s)"
+ shows "acyclic (RAG (e#s))"
+proof -
+ have "acyclic ((RAG s - {(Cs cs, Th th)} - {(Th taker, Cs cs)}) \<union>
+ {(Cs cs, Th taker)})" (is "acyclic (?A \<union> _)")
+ proof -
+ from assms
+ have "acyclic ?A"
+ by (rule acyclic_subset, auto)
+ moreover have "(Th taker, Cs cs) \<notin> ?A^*"
+ proof
+ assume otherwise: "(Th taker, Cs cs) \<in> ?A^*"
+ hence "(Th taker, Cs cs) \<in> ?A^+"
+ by (unfold rtrancl_eq_or_trancl, auto)
+ from tranclD[OF this]
+ obtain cs' where h: "(Th taker, Cs cs') \<in> ?A"
+ "(Th taker, Cs cs') \<in> RAG s"
+ by (unfold s_RAG_def, auto)
+ from this(2) have "waiting s taker cs'"
+ by (unfold s_RAG_def, fold waiting_eq, auto)
+ from waiting_unique[OF this waiting_taker]
+ have "cs' = cs" .
+ from h(1)[unfolded this] show False by auto
+ qed
+ ultimately show ?thesis by auto
+ qed
+ thus ?thesis
+ by (unfold RAG_es waiting_set_eq holding_set_eq, simp)
+qed
+
+end
+
+context valid_trace_p_h
+begin
+
+lemma
+ acylic_RAG_kept:
+ assumes "acyclic (RAG s)"
+ shows "acyclic (RAG (e#s))"
+proof -
+ have "acyclic (RAG s \<union> {(Cs cs, Th th)})" (is "acyclic (?A \<union> _)")
+ proof -
+ from assms
+ have "acyclic ?A"
+ by (rule acyclic_subset, auto)
+ moreover have "(Th th, Cs cs) \<notin> ?A^*"
+ proof
+ assume otherwise: "(Th th, Cs cs) \<in> ?A^*"
+ hence "(Th th, Cs cs) \<in> ?A^+"
+ by (unfold rtrancl_eq_or_trancl, auto)
+ from tranclD[OF this]
+ obtain cs' where h: "(Th th, Cs cs') \<in> RAG s"
+ by (unfold s_RAG_def, auto)
+ hence "waiting s th cs'"
+ by (unfold s_RAG_def, fold waiting_eq, auto)
+ with th_not_waiting show False by auto
+ qed
+ ultimately show ?thesis by auto
+ qed
+ thus ?thesis by (unfold RAG_es, simp)
+qed
+
+end
+
+context valid_trace_p_w
+begin
+
+lemma
+ acylic_RAG_kept:
+ assumes "acyclic (RAG s)"
+ shows "acyclic (RAG (e#s))"
+proof -
+ have "acyclic (RAG s \<union> {(Th th, Cs cs)})" (is "acyclic (?A \<union> _)")
+ proof -
+ from assms
+ have "acyclic ?A"
+ by (rule acyclic_subset, auto)
+ moreover have "(Cs cs, Th th) \<notin> ?A^*"
+ proof
+ assume otherwise: "(Cs cs, Th th) \<in> ?A^*"
+ from pip_e[unfolded is_p]
+ show False
+ proof(cases)
+ case (thread_P)
+ moreover from otherwise have "(Cs cs, Th th) \<in> ?A^+"
+ by (unfold rtrancl_eq_or_trancl, auto)
+ ultimately show ?thesis by auto
+ qed
+ qed
+ ultimately show ?thesis by auto
+ qed
+ thus ?thesis by (unfold RAG_es, simp)
+qed
+
+end
+
+context valid_trace
+begin
+
+lemma finite_RAG:
+ shows "finite (RAG s)"
+proof(induct rule:ind)
+ case Nil
+ show ?case
+ by (auto simp: s_RAG_def cs_waiting_def
+ cs_holding_def wq_def acyclic_def)
+next
+ case (Cons s e)
+ interpret vt_e: valid_trace_e s e using Cons by simp
+ show ?case
+ proof(cases e)
+ case (Create th prio)
+ interpret vt: valid_trace_create s e th prio using Create
+ by (unfold_locales, simp)
+ show ?thesis using Cons by (simp add: vt.RAG_unchanged)
+ next
+ case (Exit th)
+ interpret vt: valid_trace_exit s e th using Exit
+ by (unfold_locales, simp)
+ show ?thesis using Cons by (simp add: vt.RAG_unchanged)
+ next
+ case (P th cs)
+ interpret vt: valid_trace_p s e th cs using P
+ by (unfold_locales, simp)
+ show ?thesis using Cons using vt.RAG_es' by auto
+ next
+ case (V th cs)
+ interpret vt: valid_trace_v s e th cs using V
+ by (unfold_locales, simp)
+ show ?thesis using Cons by (simp add: vt.finite_RAG_kept)
+ next
+ case (Set th prio)
+ interpret vt: valid_trace_set s e th prio using Set
+ by (unfold_locales, simp)
+ show ?thesis using Cons by (simp add: vt.RAG_unchanged)
+ qed
+qed
+
+lemma acyclic_RAG:
+ shows "acyclic (RAG s)"
+proof(induct rule:ind)
+ case Nil
+ show ?case
+ by (auto simp: s_RAG_def cs_waiting_def
+ cs_holding_def wq_def acyclic_def)
+next
+ case (Cons s e)
+ interpret vt_e: valid_trace_e s e using Cons by simp
+ show ?case
+ proof(cases e)
+ case (Create th prio)
+ interpret vt: valid_trace_create s e th prio using Create
+ by (unfold_locales, simp)
+ show ?thesis using Cons by (simp add: vt.RAG_unchanged)
+ next
+ case (Exit th)
+ interpret vt: valid_trace_exit s e th using Exit
+ by (unfold_locales, simp)
+ show ?thesis using Cons by (simp add: vt.RAG_unchanged)
+ next
+ case (P th cs)
+ interpret vt: valid_trace_p s e th cs using P
+ by (unfold_locales, simp)
+ show ?thesis
+ proof(cases "wq s cs = []")
+ case True
+ then interpret vt_h: valid_trace_p_h s e th cs
+ by (unfold_locales, simp)
+ show ?thesis using Cons by (simp add: vt_h.acylic_RAG_kept)
+ next
+ case False
+ then interpret vt_w: valid_trace_p_w s e th cs
+ by (unfold_locales, simp)
+ show ?thesis using Cons by (simp add: vt_w.acylic_RAG_kept)
+ qed
+ next
+ case (V th cs)
+ interpret vt: valid_trace_v s e th cs using V
+ by (unfold_locales, simp)
+ show ?thesis
+ proof(cases "vt.rest = []")
+ case True
+ then interpret vt_e: valid_trace_v_e s e th cs
+ by (unfold_locales, simp)
+ show ?thesis by (simp add: Cons.hyps(2) vt_e.acylic_RAG_kept)
+ next
+ case False
+ then interpret vt_n: valid_trace_v_n s e th cs
+ by (unfold_locales, simp)
+ show ?thesis by (simp add: Cons.hyps(2) vt_n.acylic_RAG_kept)
+ qed
+ next
+ case (Set th prio)
+ interpret vt: valid_trace_set s e th prio using Set
+ by (unfold_locales, simp)
+ show ?thesis using Cons by (simp add: vt.RAG_unchanged)
+ qed
+qed
+
+lemma wf_RAG: "wf (RAG s)"
+proof(rule finite_acyclic_wf)
+ from finite_RAG show "finite (RAG s)" .
+next
+ from acyclic_RAG show "acyclic (RAG s)" .
+qed
+
+lemma sgv_wRAG: "single_valued (wRAG s)"
+ using waiting_unique
+ by (unfold single_valued_def wRAG_def, auto)
+
+lemma sgv_hRAG: "single_valued (hRAG s)"
+ using held_unique
+ by (unfold single_valued_def hRAG_def, auto)
+
+lemma sgv_tRAG: "single_valued (tRAG s)"
+ by (unfold tRAG_def, rule single_valued_relcomp,
+ insert sgv_wRAG sgv_hRAG, auto)
+
+lemma acyclic_tRAG: "acyclic (tRAG s)"
+proof(unfold tRAG_def, rule acyclic_compose)
+ show "acyclic (RAG s)" using acyclic_RAG .
+next
+ show "wRAG s \<subseteq> RAG s" unfolding RAG_split by auto
+next
+ show "hRAG s \<subseteq> RAG s" unfolding RAG_split by auto
+qed
+
+lemma unique_RAG: "\<lbrakk>(n, n1) \<in> RAG s; (n, n2) \<in> RAG s\<rbrakk> \<Longrightarrow> n1 = n2"
+ apply(unfold s_RAG_def, auto, fold waiting_eq holding_eq)
+ by(auto elim:waiting_unique held_unique)
+
+lemma sgv_RAG: "single_valued (RAG s)"
+ using unique_RAG by (auto simp:single_valued_def)
+
+lemma rtree_RAG: "rtree (RAG s)"
+ using sgv_RAG acyclic_RAG
+ by (unfold rtree_def rtree_axioms_def sgv_def, auto)
+
+end
+
+sublocale valid_trace < fsbtRAGs : fsubtree "RAG s"
+proof -
+ show "fsubtree (RAG s)"
+ proof(intro_locales)
+ show "fbranch (RAG s)" using finite_fbranchI[OF finite_RAG] .
+ next
+ show "fsubtree_axioms (RAG s)"
+ proof(unfold fsubtree_axioms_def)
+ from wf_RAG show "wf (RAG s)" .
+ qed
+ qed
+qed
+
+context valid_trace
+begin
+
+lemma finite_subtree_threads:
+ "finite {th'. Th th' \<in> subtree (RAG s) (Th th)}" (is "finite ?A")
+proof -
+ have "?A = the_thread ` {Th th' | th' . Th th' \<in> subtree (RAG s) (Th th)}"
+ by (auto, insert image_iff, fastforce)
+ moreover have "finite {Th th' | th' . Th th' \<in> subtree (RAG s) (Th th)}"
+ (is "finite ?B")
+ proof -
+ have "?B = (subtree (RAG s) (Th th)) \<inter> {Th th' | th'. True}"
+ by auto
+ moreover have "... \<subseteq> (subtree (RAG s) (Th th))" by auto
+ moreover have "finite ..." by (simp add: finite_subtree)
+ ultimately show ?thesis by auto
+ qed
+ ultimately show ?thesis by auto
+qed
+
+lemma le_cp:
+ shows "preced th s \<le> cp s th"
+ proof(unfold cp_alt_def, rule Max_ge)
+ show "finite (the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th)})"
+ by (simp add: finite_subtree_threads)
+ next
+ show "preced th s \<in> the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th)}"
+ by (simp add: subtree_def the_preced_def)
+ qed
+
+lemma cp_le:
+ assumes th_in: "th \<in> threads s"
+ shows "cp s th \<le> Max (the_preced s ` threads s)"
+proof(unfold cp_alt_def, rule Max_f_mono)
+ show "finite (threads s)" by (simp add: finite_threads)
+next
+ show " {th'. Th th' \<in> subtree (RAG s) (Th th)} \<noteq> {}"
+ using subtree_def by fastforce
+next
+ show "{th'. Th th' \<in> subtree (RAG s) (Th th)} \<subseteq> threads s"
+ using assms
+ by (smt Domain.DomainI dm_RAG_threads mem_Collect_eq
+ node.inject(1) rtranclD subsetI subtree_def trancl_domain)
+qed
+
+lemma max_cp_eq:
+ shows "Max ((cp s) ` threads s) = Max (the_preced s ` threads s)"
+ (is "?L = ?R")
+proof -
+ have "?L \<le> ?R"
+ proof(cases "threads s = {}")
+ case False
+ show ?thesis
+ by (rule Max.boundedI,
+ insert cp_le,
+ auto simp:finite_threads False)
+ qed auto
+ moreover have "?R \<le> ?L"
+ by (rule Max_fg_mono,
+ simp add: finite_threads,
+ simp add: le_cp the_preced_def)
+ ultimately show ?thesis by auto
+qed
+
+lemma max_cp_eq_the_preced:
+ shows "Max ((cp s) ` threads s) = Max (the_preced s ` threads s)"
+ using max_cp_eq using the_preced_def by presburger
+
+lemma wf_RAG_converse:
+ shows "wf ((RAG s)^-1)"
+proof(rule finite_acyclic_wf_converse)
+ from finite_RAG
+ show "finite (RAG s)" .
+next
+ from acyclic_RAG
+ show "acyclic (RAG s)" .
+qed
+
+lemma chain_building:
+ assumes "node \<in> Domain (RAG s)"
+ obtains th' where "th' \<in> readys s" "(node, Th th') \<in> (RAG s)^+"
+proof -
+ from assms have "node \<in> Range ((RAG s)^-1)" by auto
+ from wf_base[OF wf_RAG_converse this]
+ obtain b where h_b: "(b, node) \<in> ((RAG s)\<inverse>)\<^sup>+" "\<forall>c. (c, b) \<notin> (RAG s)\<inverse>" by auto
+ obtain th' where eq_b: "b = Th th'"
+ proof(cases b)
+ case (Cs cs)
+ from h_b(1)[unfolded trancl_converse]
+ have "(node, b) \<in> ((RAG s)\<^sup>+)" by auto
+ from tranclE[OF this]
+ obtain n where "(n, b) \<in> RAG s" by auto
+ from this[unfolded Cs]
+ obtain th1 where "waiting s th1 cs"
+ by (unfold s_RAG_def, fold waiting_eq, auto)
+ from waiting_holding[OF this]
+ obtain th2 where "holding s th2 cs" .
+ hence "(Cs cs, Th th2) \<in> RAG s"
+ by (unfold s_RAG_def, fold holding_eq, auto)
+ with h_b(2)[unfolded Cs, rule_format]
+ have False by auto
+ thus ?thesis by auto
+ qed auto
+ have "th' \<in> readys s"
+ proof -
+ from h_b(2)[unfolded eq_b]
+ have "\<forall>cs. \<not> waiting s th' cs"
+ by (unfold s_RAG_def, fold waiting_eq, auto)
+ moreover have "th' \<in> threads s"
+ proof(rule rg_RAG_threads)
+ from tranclD[OF h_b(1), unfolded eq_b]
+ obtain z where "(z, Th th') \<in> (RAG s)" by auto
+ thus "Th th' \<in> Range (RAG s)" by auto
+ qed
+ ultimately show ?thesis by (auto simp:readys_def)
+ qed
+ moreover have "(node, Th th') \<in> (RAG s)^+"
+ using h_b(1)[unfolded trancl_converse] eq_b by auto
+ ultimately show ?thesis using that by metis
+qed
+
+text {* \noindent
+ The following is just an instance of @{text "chain_building"}.
+*}
+lemma th_chain_to_ready:
+ assumes th_in: "th \<in> threads s"
+ shows "th \<in> readys s \<or> (\<exists> th'. th' \<in> readys s \<and> (Th th, Th th') \<in> (RAG s)^+)"
+proof(cases "th \<in> readys s")
+ case True
+ thus ?thesis by auto
+next
+ case False
+ from False and th_in have "Th th \<in> Domain (RAG s)"
+ by (auto simp:readys_def s_waiting_def s_RAG_def wq_def cs_waiting_def Domain_def)
+ from chain_building [rule_format, OF this]
+ show ?thesis by auto
+qed
+
+end
+
+lemma count_rec1 [simp]:
+ assumes "Q e"
+ shows "count Q (e#es) = Suc (count Q es)"
+ using assms
+ by (unfold count_def, auto)
+
+lemma count_rec2 [simp]:
+ assumes "\<not>Q e"
+ shows "count Q (e#es) = (count Q es)"
+ using assms
+ by (unfold count_def, auto)
+
+lemma count_rec3 [simp]:
+ shows "count Q [] = 0"
+ by (unfold count_def, auto)
+
+lemma cntP_simp1[simp]:
+ "cntP (P th cs'#s) th = cntP s th + 1"
+ by (unfold cntP_def, simp)
+
+lemma cntP_simp2[simp]:
+ assumes "th' \<noteq> th"
+ shows "cntP (P th cs'#s) th' = cntP s th'"
+ using assms
+ by (unfold cntP_def, simp)
+
+lemma cntP_simp3[simp]:
+ assumes "\<not> isP e"
+ shows "cntP (e#s) th' = cntP s th'"
+ using assms
+ by (unfold cntP_def, cases e, simp+)
+
+lemma cntV_simp1[simp]:
+ "cntV (V th cs'#s) th = cntV s th + 1"
+ by (unfold cntV_def, simp)
+
+lemma cntV_simp2[simp]:
+ assumes "th' \<noteq> th"
+ shows "cntV (V th cs'#s) th' = cntV s th'"
+ using assms
+ by (unfold cntV_def, simp)
+
+lemma cntV_simp3[simp]:
+ assumes "\<not> isV e"
+ shows "cntV (e#s) th' = cntV s th'"
+ using assms
+ by (unfold cntV_def, cases e, simp+)
+
+lemma cntP_diff_inv:
+ assumes "cntP (e#s) th \<noteq> cntP s th"
+ shows "isP e \<and> actor e = th"
+proof(cases e)
+ case (P th' pty)
+ show ?thesis
+ by (cases "(\<lambda>e. \<exists>cs. e = P th cs) (P th' pty)",
+ insert assms P, auto simp:cntP_def)
+qed (insert assms, auto simp:cntP_def)
+
+lemma cntV_diff_inv:
+ assumes "cntV (e#s) th \<noteq> cntV s th"
+ shows "isV e \<and> actor e = th"
+proof(cases e)
+ case (V th' pty)
+ show ?thesis
+ by (cases "(\<lambda>e. \<exists>cs. e = V th cs) (V th' pty)",
+ insert assms V, auto simp:cntV_def)
+qed (insert assms, auto simp:cntV_def)
+
+lemma children_RAG_alt_def:
+ "children (RAG (s::state)) (Th th) = Cs ` {cs. holding s th cs}"
+ by (unfold s_RAG_def, auto simp:children_def holding_eq)
+
+fun the_cs :: "node \<Rightarrow> cs" where
+ "the_cs (Cs cs) = cs"
+
+lemma holdents_alt_def:
+ "holdents s th = the_cs ` (children (RAG (s::state)) (Th th))"
+ by (unfold children_RAG_alt_def holdents_def, simp add: image_image)
+
+lemma cntCS_alt_def:
+ "cntCS s th = card (children (RAG s) (Th th))"
+ apply (unfold children_RAG_alt_def cntCS_def holdents_def)
+ by (rule card_image[symmetric], auto simp:inj_on_def)
+
+context valid_trace
+begin
+
+lemma finite_holdents: "finite (holdents s th)"
+ by (unfold holdents_alt_def, insert finite_children, auto)
+
+end
+
+context valid_trace_p_w
+begin
+
+lemma holding_s_holder: "holding s holder cs"
+ by (unfold s_holding_def, fold wq_def, unfold wq_s_cs, auto)
+
+lemma holding_es_holder: "holding (e#s) holder cs"
+ by (unfold s_holding_def, fold wq_def, unfold wq_es_cs wq_s_cs, auto)
+
+lemma holdents_es:
+ shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R")
+proof -
+ { fix cs'
+ assume "cs' \<in> ?L"
+ hence h: "holding (e#s) th' cs'" by (auto simp:holdents_def)
+ have "holding s th' cs'"
+ proof(cases "cs' = cs")
+ case True
+ from held_unique[OF h[unfolded True] holding_es_holder]
+ have "th' = holder" .
+ thus ?thesis
+ by (unfold True holdents_def, insert holding_s_holder, simp)
+ next
+ case False
+ hence "wq (e#s) cs' = wq s cs'" by simp
+ from h[unfolded s_holding_def, folded wq_def, unfolded this]
+ show ?thesis
+ by (unfold s_holding_def, fold wq_def, auto)
+ qed
+ hence "cs' \<in> ?R" by (auto simp:holdents_def)
+ } moreover {
+ fix cs'
+ assume "cs' \<in> ?R"
+ hence h: "holding s th' cs'" by (auto simp:holdents_def)
+ have "holding (e#s) th' cs'"
+ proof(cases "cs' = cs")
+ case True
+ from held_unique[OF h[unfolded True] holding_s_holder]
+ have "th' = holder" .
+ thus ?thesis
+ by (unfold True holdents_def, insert holding_es_holder, simp)
+ next
+ case False
+ hence "wq s cs' = wq (e#s) cs'" by simp
+ from h[unfolded s_holding_def, folded wq_def, unfolded this]
+ show ?thesis
+ by (unfold s_holding_def, fold wq_def, auto)
+ qed
+ hence "cs' \<in> ?L" by (auto simp:holdents_def)
+ } ultimately show ?thesis by auto
+qed
+
+lemma cntCS_es_th[simp]: "cntCS (e#s) th' = cntCS s th'"
+ by (unfold cntCS_def holdents_es, simp)
+
+lemma th_not_ready_es:
+ shows "th \<notin> readys (e#s)"
+ using waiting_es_th_cs
+ by (unfold readys_def, auto)
+
+end
+
+context valid_trace_p_h
+begin
+
+lemma th_not_waiting':
+ "\<not> waiting (e#s) th cs'"
+proof(cases "cs' = cs")
+ case True
+ show ?thesis
+ by (unfold True s_waiting_def, fold wq_def, unfold wq_es_cs', auto)
+next
+ case False
+ from th_not_waiting[of cs', unfolded s_waiting_def, folded wq_def]
+ show ?thesis
+ by (unfold s_waiting_def, fold wq_def, insert False, simp)
+qed
+
+lemma ready_th_es:
+ shows "th \<in> readys (e#s)"
+ using th_not_waiting'
+ by (unfold readys_def, insert live_th_es, auto)
+
+lemma holdents_es_th:
+ "holdents (e#s) th = (holdents s th) \<union> {cs}" (is "?L = ?R")
+proof -
+ { fix cs'
+ assume "cs' \<in> ?L"
+ hence "holding (e#s) th cs'"
+ by (unfold holdents_def, auto)
+ hence "cs' \<in> ?R"
+ by (cases rule:holding_esE, auto simp:holdents_def)
+ } moreover {
+ fix cs'
+ assume "cs' \<in> ?R"
+ hence "holding s th cs' \<or> cs' = cs"
+ by (auto simp:holdents_def)
+ hence "cs' \<in> ?L"
+ proof
+ assume "holding s th cs'"
+ from holding_kept[OF this]
+ show ?thesis by (auto simp:holdents_def)
+ next
+ assume "cs' = cs"
+ thus ?thesis using holding_es_th_cs
+ by (unfold holdents_def, auto)
+ qed
+ } ultimately show ?thesis by auto
+qed
+
+lemma cntCS_es_th: "cntCS (e#s) th = cntCS s th + 1"
+proof -
+ have "card (holdents s th \<union> {cs}) = card (holdents s th) + 1"
+ proof(subst card_Un_disjoint)
+ show "holdents s th \<inter> {cs} = {}"
+ using not_holding_s_th_cs by (auto simp:holdents_def)
+ qed (auto simp:finite_holdents)
+ thus ?thesis
+ by (unfold cntCS_def holdents_es_th, simp)
+qed
+
+lemma no_holder:
+ "\<not> holding s th' cs"
+proof
+ assume otherwise: "holding s th' cs"
+ from this[unfolded s_holding_def, folded wq_def, unfolded we]
+ show False by auto
+qed
+
+lemma holdents_es_th':
+ assumes "th' \<noteq> th"
+ shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R")
+proof -
+ { fix cs'
+ assume "cs' \<in> ?L"
+ hence h_e: "holding (e#s) th' cs'" by (auto simp:holdents_def)
+ have "cs' \<noteq> cs"
+ proof
+ assume "cs' = cs"
+ from held_unique[OF h_e[unfolded this] holding_es_th_cs]
+ have "th' = th" .
+ with assms show False by simp
+ qed
+ from h_e[unfolded s_holding_def, folded wq_def, unfolded wq_neq_simp[OF this]]
+ have "th' \<in> set (wq s cs') \<and> th' = hd (wq s cs')" .
+ hence "cs' \<in> ?R"
+ by (unfold holdents_def s_holding_def, fold wq_def, auto)
+ } moreover {
+ fix cs'
+ assume "cs' \<in> ?R"
+ hence "holding s th' cs'" by (auto simp:holdents_def)
+ from holding_kept[OF this]
+ have "holding (e # s) th' cs'" .
+ hence "cs' \<in> ?L"
+ by (unfold holdents_def, auto)
+ } ultimately show ?thesis by auto
+qed
+
+lemma cntCS_es_th'[simp]:
+ assumes "th' \<noteq> th"
+ shows "cntCS (e#s) th' = cntCS s th'"
+ by (unfold cntCS_def holdents_es_th'[OF assms], simp)
+
+end
+
+context valid_trace_p
+begin
+
+lemma readys_kept1:
+ assumes "th' \<noteq> th"
+ and "th' \<in> readys (e#s)"
+ shows "th' \<in> readys s"
+proof -
+ { fix cs'
+ assume wait: "waiting s th' cs'"
+ have n_wait: "\<not> waiting (e#s) th' cs'"
+ using assms(2)[unfolded readys_def] by auto
+ have False
+ proof(cases "cs' = cs")
+ case False
+ with n_wait wait
+ show ?thesis
+ by (unfold s_waiting_def, fold wq_def, auto)
+ next
+ case True
+ show ?thesis
+ proof(cases "wq s cs = []")
+ case True
+ then interpret vt: valid_trace_p_h
+ by (unfold_locales, simp)
+ show ?thesis using n_wait wait waiting_kept by auto
+ next
+ case False
+ then interpret vt: valid_trace_p_w by (unfold_locales, simp)
+ show ?thesis using n_wait wait waiting_kept by blast
+ qed
+ qed
+ } with assms(2) show ?thesis
+ by (unfold readys_def, auto)
+qed
+
+lemma readys_kept2:
+ assumes "th' \<noteq> th"
+ and "th' \<in> readys s"
+ shows "th' \<in> readys (e#s)"
+proof -
+ { fix cs'
+ assume wait: "waiting (e#s) th' cs'"
+ have n_wait: "\<not> waiting s th' cs'"
+ using assms(2)[unfolded readys_def] by auto
+ have False
+ proof(cases "cs' = cs")
+ case False
+ with n_wait wait
+ show ?thesis
+ by (unfold s_waiting_def, fold wq_def, auto)
+ next
+ case True
+ show ?thesis
+ proof(cases "wq s cs = []")
+ case True
+ then interpret vt: valid_trace_p_h
+ by (unfold_locales, simp)
+ show ?thesis using n_wait vt.waiting_esE wait by blast
+ next
+ case False
+ then interpret vt: valid_trace_p_w by (unfold_locales, simp)
+ show ?thesis using assms(1) n_wait vt.waiting_esE wait by auto
+ qed
+ qed
+ } with assms(2) show ?thesis
+ by (unfold readys_def, auto)
+qed
+
+lemma readys_simp [simp]:
+ assumes "th' \<noteq> th"
+ shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)"
+ using readys_kept1[OF assms] readys_kept2[OF assms]
+ by metis
+
+lemma cnp_cnv_cncs_kept:
+ assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'"
+ shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'"
+proof(cases "th' = th")
+ case True
+ note eq_th' = this
+ show ?thesis
+ proof(cases "wq s cs = []")
+ case True
+ then interpret vt: valid_trace_p_h by (unfold_locales, simp)
+ show ?thesis
+ using assms eq_th' is_p ready_th_s vt.cntCS_es_th vt.ready_th_es pvD_def by auto
+ next
+ case False
+ then interpret vt: valid_trace_p_w by (unfold_locales, simp)
+ show ?thesis
+ using add.commute add.left_commute assms eq_th' is_p live_th_s
+ ready_th_s vt.th_not_ready_es pvD_def
+ apply (auto)
+ by (fold is_p, simp)
+ qed
+next
+ case False
+ note h_False = False
+ thus ?thesis
+ proof(cases "wq s cs = []")
+ case True
+ then interpret vt: valid_trace_p_h by (unfold_locales, simp)
+ show ?thesis using assms
+ by (insert True h_False pvD_def, auto split:if_splits,unfold is_p, auto)
+ next
+ case False
+ then interpret vt: valid_trace_p_w by (unfold_locales, simp)
+ show ?thesis using assms
+ by (insert False h_False pvD_def, auto split:if_splits,unfold is_p, auto)
+ qed
+qed
+
+end
+
+
+context valid_trace_v (* ccc *)
+begin
+
+lemma holding_th_cs_s:
+ "holding s th cs"
+ by (unfold s_holding_def, fold wq_def, unfold wq_s_cs, auto)
+
+lemma th_ready_s [simp]: "th \<in> readys s"
+ using runing_th_s
+ by (unfold runing_def readys_def, auto)
+
+lemma th_live_s [simp]: "th \<in> threads s"
+ using th_ready_s by (unfold readys_def, auto)
+
+lemma th_ready_es [simp]: "th \<in> readys (e#s)"
+ using runing_th_s neq_t_th
+ by (unfold is_v runing_def readys_def, auto)
+
+lemma th_live_es [simp]: "th \<in> threads (e#s)"
+ using th_ready_es by (unfold readys_def, auto)
+
+lemma pvD_th_s[simp]: "pvD s th = 0"
+ by (unfold pvD_def, simp)
+
+lemma pvD_th_es[simp]: "pvD (e#s) th = 0"
+ by (unfold pvD_def, simp)
+
+lemma cntCS_s_th [simp]: "cntCS s th > 0"
+proof -
+ have "cs \<in> holdents s th" using holding_th_cs_s
+ by (unfold holdents_def, simp)
+ moreover have "finite (holdents s th)" using finite_holdents
+ by simp
+ ultimately show ?thesis
+ by (unfold cntCS_def,
+ auto intro!:card_gt_0_iff[symmetric, THEN iffD1])
+qed
+
+end
+
+context valid_trace_v_n
+begin
+
+lemma not_ready_taker_s[simp]:
+ "taker \<notin> readys s"
+ using waiting_taker
+ by (unfold readys_def, auto)
+
+lemma taker_live_s [simp]: "taker \<in> threads s"
+proof -
+ have "taker \<in> set wq'" by (simp add: eq_wq')
+ from th'_in_inv[OF this]
+ have "taker \<in> set rest" .
+ hence "taker \<in> set (wq s cs)" by (simp add: wq_s_cs)
+ thus ?thesis using wq_threads by auto
+qed
+
+lemma taker_live_es [simp]: "taker \<in> threads (e#s)"
+ using taker_live_s threads_es by blast
+
+lemma taker_ready_es [simp]:
+ shows "taker \<in> readys (e#s)"
+proof -
+ { fix cs'
+ assume "waiting (e#s) taker cs'"
+ hence False
+ proof(cases rule:waiting_esE)
+ case 1
+ thus ?thesis using waiting_taker waiting_unique by auto
+ qed simp
+ } thus ?thesis by (unfold readys_def, auto)
+qed
+
+lemma neq_taker_th: "taker \<noteq> th"
+ using th_not_waiting waiting_taker by blast
+
+lemma not_holding_taker_s_cs:
+ shows "\<not> holding s taker cs"
+ using holding_cs_eq_th neq_taker_th by auto
+
+lemma holdents_es_taker:
+ "holdents (e#s) taker = holdents s taker \<union> {cs}" (is "?L = ?R")
+proof -
+ { fix cs'
+ assume "cs' \<in> ?L"
+ hence "holding (e#s) taker cs'" by (auto simp:holdents_def)
+ hence "cs' \<in> ?R"
+ proof(cases rule:holding_esE)
+ case 2
+ thus ?thesis by (auto simp:holdents_def)
+ qed auto
+ } moreover {
+ fix cs'
+ assume "cs' \<in> ?R"
+ hence "holding s taker cs' \<or> cs' = cs" by (auto simp:holdents_def)
+ hence "cs' \<in> ?L"
+ proof
+ assume "holding s taker cs'"
+ hence "holding (e#s) taker cs'"
+ using holding_esI2 holding_taker by fastforce
+ thus ?thesis by (auto simp:holdents_def)
+ next
+ assume "cs' = cs"
+ with holding_taker
+ show ?thesis by (auto simp:holdents_def)
+ qed
+ } ultimately show ?thesis by auto
+qed
+
+lemma cntCS_es_taker [simp]: "cntCS (e#s) taker = cntCS s taker + 1"
+proof -
+ have "card (holdents s taker \<union> {cs}) = card (holdents s taker) + 1"
+ proof(subst card_Un_disjoint)
+ show "holdents s taker \<inter> {cs} = {}"
+ using not_holding_taker_s_cs by (auto simp:holdents_def)
+ qed (auto simp:finite_holdents)
+ thus ?thesis
+ by (unfold cntCS_def, insert holdents_es_taker, simp)
+qed
+
+lemma pvD_taker_s[simp]: "pvD s taker = 1"
+ by (unfold pvD_def, simp)
+
+lemma pvD_taker_es[simp]: "pvD (e#s) taker = 0"
+ by (unfold pvD_def, simp)
+
+lemma pvD_th_s[simp]: "pvD s th = 0"
+ by (unfold pvD_def, simp)
+
+lemma pvD_th_es[simp]: "pvD (e#s) th = 0"
+ by (unfold pvD_def, simp)
+
+lemma holdents_es_th:
+ "holdents (e#s) th = holdents s th - {cs}" (is "?L = ?R")
+proof -
+ { fix cs'
+ assume "cs' \<in> ?L"
+ hence "holding (e#s) th cs'" by (auto simp:holdents_def)
+ hence "cs' \<in> ?R"
+ proof(cases rule:holding_esE)
+ case 2
+ thus ?thesis by (auto simp:holdents_def)
+ qed (insert neq_taker_th, auto)
+ } moreover {
+ fix cs'
+ assume "cs' \<in> ?R"
+ hence "cs' \<noteq> cs" "holding s th cs'" by (auto simp:holdents_def)
+ from holding_esI2[OF this]
+ have "cs' \<in> ?L" by (auto simp:holdents_def)
+ } ultimately show ?thesis by auto
+qed
+
+lemma cntCS_es_th [simp]: "cntCS (e#s) th = cntCS s th - 1"
+proof -
+ have "card (holdents s th - {cs}) = card (holdents s th) - 1"
+ proof -
+ have "cs \<in> holdents s th" using holding_th_cs_s
+ by (auto simp:holdents_def)
+ moreover have "finite (holdents s th)"
+ by (simp add: finite_holdents)
+ ultimately show ?thesis by auto
+ qed
+ thus ?thesis by (unfold cntCS_def holdents_es_th)
+qed
+
+lemma holdents_kept:
+ assumes "th' \<noteq> taker"
+ and "th' \<noteq> th"
+ shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R")
+proof -
+ { fix cs'
+ assume h: "cs' \<in> ?L"
+ have "cs' \<in> ?R"
+ proof(cases "cs' = cs")
+ case False
+ hence eq_wq: "wq (e#s) cs' = wq s cs'" by simp
+ from h have "holding (e#s) th' cs'" by (auto simp:holdents_def)
+ from this[unfolded s_holding_def, folded wq_def, unfolded eq_wq]
+ show ?thesis
+ by (unfold holdents_def s_holding_def, fold wq_def, auto)
+ next
+ case True
+ from h[unfolded this]
+ have "holding (e#s) th' cs" by (auto simp:holdents_def)
+ from held_unique[OF this holding_taker]
+ have "th' = taker" .
+ with assms show ?thesis by auto
+ qed
+ } moreover {
+ fix cs'
+ assume h: "cs' \<in> ?R"
+ have "cs' \<in> ?L"
+ proof(cases "cs' = cs")
+ case False
+ hence eq_wq: "wq (e#s) cs' = wq s cs'" by simp
+ from h have "holding s th' cs'" by (auto simp:holdents_def)
+ from this[unfolded s_holding_def, folded wq_def, unfolded eq_wq]
+ show ?thesis
+ by (unfold holdents_def s_holding_def, fold wq_def, insert eq_wq, simp)
+ next
+ case True
+ from h[unfolded this]
+ have "holding s th' cs" by (auto simp:holdents_def)
+ from held_unique[OF this holding_th_cs_s]
+ have "th' = th" .
+ with assms show ?thesis by auto
+ qed
+ } ultimately show ?thesis by auto
+qed
+
+lemma cntCS_kept [simp]:
+ assumes "th' \<noteq> taker"
+ and "th' \<noteq> th"
+ shows "cntCS (e#s) th' = cntCS s th'"
+ by (unfold cntCS_def holdents_kept[OF assms], simp)
+
+lemma readys_kept1:
+ assumes "th' \<noteq> taker"
+ and "th' \<in> readys (e#s)"
+ shows "th' \<in> readys s"
+proof -
+ { fix cs'
+ assume wait: "waiting s th' cs'"
+ have n_wait: "\<not> waiting (e#s) th' cs'"
+ using assms(2)[unfolded readys_def] by auto
+ have False
+ proof(cases "cs' = cs")
+ case False
+ with n_wait wait
+ show ?thesis
+ by (unfold s_waiting_def, fold wq_def, auto)
+ next
+ case True
+ have "th' \<in> set (th # rest) \<and> th' \<noteq> hd (th # rest)"
+ using wait[unfolded True s_waiting_def, folded wq_def, unfolded wq_s_cs] .
+ moreover have "\<not> (th' \<in> set rest \<and> th' \<noteq> hd (taker # rest'))"
+ using n_wait[unfolded True s_waiting_def, folded wq_def,
+ unfolded wq_es_cs set_wq', unfolded eq_wq'] .
+ ultimately have "th' = taker" by auto
+ with assms(1)
+ show ?thesis by simp
+ qed
+ } with assms(2) show ?thesis
+ by (unfold readys_def, auto)
+qed
+
+lemma readys_kept2:
+ assumes "th' \<noteq> taker"
+ and "th' \<in> readys s"
+ shows "th' \<in> readys (e#s)"
+proof -
+ { fix cs'
+ assume wait: "waiting (e#s) th' cs'"
+ have n_wait: "\<not> waiting s th' cs'"
+ using assms(2)[unfolded readys_def] by auto
+ have False
+ proof(cases "cs' = cs")
+ case False
+ with n_wait wait
+ show ?thesis
+ by (unfold s_waiting_def, fold wq_def, auto)
+ next
+ case True
+ have "th' \<in> set rest \<and> th' \<noteq> hd (taker # rest')"
+ using wait [unfolded True s_waiting_def, folded wq_def,
+ unfolded wq_es_cs set_wq', unfolded eq_wq'] .
+ moreover have "\<not> (th' \<in> set (th # rest) \<and> th' \<noteq> hd (th # rest))"
+ using n_wait[unfolded True s_waiting_def, folded wq_def, unfolded wq_s_cs] .
+ ultimately have "th' = taker" by auto
+ with assms(1)
+ show ?thesis by simp
+ qed
+ } with assms(2) show ?thesis
+ by (unfold readys_def, auto)
+qed
+
+lemma readys_simp [simp]:
+ assumes "th' \<noteq> taker"
+ shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)"
+ using readys_kept1[OF assms] readys_kept2[OF assms]
+ by metis
+
+lemma cnp_cnv_cncs_kept:
+ assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'"
+ shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'"
+proof -
+ { assume eq_th': "th' = taker"
+ have ?thesis
+ apply (unfold eq_th' pvD_taker_es cntCS_es_taker)
+ by (insert neq_taker_th assms[unfolded eq_th'], unfold is_v, simp)
+ } moreover {
+ assume eq_th': "th' = th"
+ have ?thesis
+ apply (unfold eq_th' pvD_th_es cntCS_es_th)
+ by (insert assms[unfolded eq_th'], unfold is_v, simp)
+ } moreover {
+ assume h: "th' \<noteq> taker" "th' \<noteq> th"
+ have ?thesis using assms
+ apply (unfold cntCS_kept[OF h], insert h, unfold is_v, simp)
+ by (fold is_v, unfold pvD_def, simp)
+ } ultimately show ?thesis by metis
+qed
+
+end
+
+context valid_trace_v_e
+begin
+
+lemma holdents_es_th:
+ "holdents (e#s) th = holdents s th - {cs}" (is "?L = ?R")
+proof -
+ { fix cs'
+ assume "cs' \<in> ?L"
+ hence "holding (e#s) th cs'" by (auto simp:holdents_def)
+ hence "cs' \<in> ?R"
+ proof(cases rule:holding_esE)
+ case 1
+ thus ?thesis by (auto simp:holdents_def)
+ qed
+ } moreover {
+ fix cs'
+ assume "cs' \<in> ?R"
+ hence "cs' \<noteq> cs" "holding s th cs'" by (auto simp:holdents_def)
+ from holding_esI2[OF this]
+ have "cs' \<in> ?L" by (auto simp:holdents_def)
+ } ultimately show ?thesis by auto
+qed
+
+lemma cntCS_es_th [simp]: "cntCS (e#s) th = cntCS s th - 1"
+proof -
+ have "card (holdents s th - {cs}) = card (holdents s th) - 1"
+ proof -
+ have "cs \<in> holdents s th" using holding_th_cs_s
+ by (auto simp:holdents_def)
+ moreover have "finite (holdents s th)"
+ by (simp add: finite_holdents)
+ ultimately show ?thesis by auto
+ qed
+ thus ?thesis by (unfold cntCS_def holdents_es_th)
+qed
+
+lemma holdents_kept:
+ assumes "th' \<noteq> th"
+ shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R")
+proof -
+ { fix cs'
+ assume h: "cs' \<in> ?L"
+ have "cs' \<in> ?R"
+ proof(cases "cs' = cs")
+ case False
+ hence eq_wq: "wq (e#s) cs' = wq s cs'" by simp
+ from h have "holding (e#s) th' cs'" by (auto simp:holdents_def)
+ from this[unfolded s_holding_def, folded wq_def, unfolded eq_wq]
+ show ?thesis
+ by (unfold holdents_def s_holding_def, fold wq_def, auto)
+ next
+ case True
+ from h[unfolded this]
+ have "holding (e#s) th' cs" by (auto simp:holdents_def)
+ from this[unfolded s_holding_def, folded wq_def,
+ unfolded wq_es_cs nil_wq']
+ show ?thesis by auto
+ qed
+ } moreover {
+ fix cs'
+ assume h: "cs' \<in> ?R"
+ have "cs' \<in> ?L"
+ proof(cases "cs' = cs")
+ case False
+ hence eq_wq: "wq (e#s) cs' = wq s cs'" by simp
+ from h have "holding s th' cs'" by (auto simp:holdents_def)
+ from this[unfolded s_holding_def, folded wq_def, unfolded eq_wq]
+ show ?thesis
+ by (unfold holdents_def s_holding_def, fold wq_def, insert eq_wq, simp)
+ next
+ case True
+ from h[unfolded this]
+ have "holding s th' cs" by (auto simp:holdents_def)
+ from held_unique[OF this holding_th_cs_s]
+ have "th' = th" .
+ with assms show ?thesis by auto
+ qed
+ } ultimately show ?thesis by auto
+qed
+
+lemma cntCS_kept [simp]:
+ assumes "th' \<noteq> th"
+ shows "cntCS (e#s) th' = cntCS s th'"
+ by (unfold cntCS_def holdents_kept[OF assms], simp)
+
+lemma readys_kept1:
+ assumes "th' \<in> readys (e#s)"
+ shows "th' \<in> readys s"
+proof -
+ { fix cs'
+ assume wait: "waiting s th' cs'"
+ have n_wait: "\<not> waiting (e#s) th' cs'"
+ using assms(1)[unfolded readys_def] by auto
+ have False
+ proof(cases "cs' = cs")
+ case False
+ with n_wait wait
+ show ?thesis
+ by (unfold s_waiting_def, fold wq_def, auto)
+ next
+ case True
+ have "th' \<in> set (th # rest) \<and> th' \<noteq> hd (th # rest)"
+ using wait[unfolded True s_waiting_def, folded wq_def, unfolded wq_s_cs] .
+ hence "th' \<in> set rest" by auto
+ with set_wq' have "th' \<in> set wq'" by metis
+ with nil_wq' show ?thesis by simp
+ qed
+ } thus ?thesis using assms
+ by (unfold readys_def, auto)
+qed
+
+lemma readys_kept2:
+ assumes "th' \<in> readys s"
+ shows "th' \<in> readys (e#s)"
+proof -
+ { fix cs'
+ assume wait: "waiting (e#s) th' cs'"
+ have n_wait: "\<not> waiting s th' cs'"
+ using assms[unfolded readys_def] by auto
+ have False
+ proof(cases "cs' = cs")
+ case False
+ with n_wait wait
+ show ?thesis
+ by (unfold s_waiting_def, fold wq_def, auto)
+ next
+ case True
+ have "th' \<in> set [] \<and> th' \<noteq> hd []"
+ using wait[unfolded True s_waiting_def, folded wq_def,
+ unfolded wq_es_cs nil_wq'] .
+ thus ?thesis by simp
+ qed
+ } with assms show ?thesis
+ by (unfold readys_def, auto)
+qed
+
+lemma readys_simp [simp]:
+ shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)"
+ using readys_kept1[OF assms] readys_kept2[OF assms]
+ by metis
+
+lemma cnp_cnv_cncs_kept:
+ assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'"
+ shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'"
+proof -
+ {
+ assume eq_th': "th' = th"
+ have ?thesis
+ apply (unfold eq_th' pvD_th_es cntCS_es_th)
+ by (insert assms[unfolded eq_th'], unfold is_v, simp)
+ } moreover {
+ assume h: "th' \<noteq> th"
+ have ?thesis using assms
+ apply (unfold cntCS_kept[OF h], insert h, unfold is_v, simp)
+ by (fold is_v, unfold pvD_def, simp)
+ } ultimately show ?thesis by metis
+qed
+
+end
+
+context valid_trace_v
+begin
+
+lemma cnp_cnv_cncs_kept:
+ assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'"
+ shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'"
+proof(cases "rest = []")
+ case True
+ then interpret vt: valid_trace_v_e by (unfold_locales, simp)
+ show ?thesis using assms using vt.cnp_cnv_cncs_kept by blast
+next
+ case False
+ then interpret vt: valid_trace_v_n by (unfold_locales, simp)
+ show ?thesis using assms using vt.cnp_cnv_cncs_kept by blast
+qed
+
+end
+
+context valid_trace_create
+begin
+
+lemma th_not_live_s [simp]: "th \<notin> threads s"
+proof -
+ from pip_e[unfolded is_create]
+ show ?thesis by (cases, simp)
+qed
+
+lemma th_not_ready_s [simp]: "th \<notin> readys s"
+ using th_not_live_s by (unfold readys_def, simp)
+
+lemma th_live_es [simp]: "th \<in> threads (e#s)"
+ by (unfold is_create, simp)
+
+lemma not_waiting_th_s [simp]: "\<not> waiting s th cs'"
+proof
+ assume "waiting s th cs'"
+ from this[unfolded s_waiting_def, folded wq_def, unfolded wq_neq_simp]
+ have "th \<in> set (wq s cs')" by auto
+ from wq_threads[OF this] have "th \<in> threads s" .
+ with th_not_live_s show False by simp
+qed
+
+lemma not_holding_th_s [simp]: "\<not> holding s th cs'"
+proof
+ assume "holding s th cs'"
+ from this[unfolded s_holding_def, folded wq_def, unfolded wq_neq_simp]
+ have "th \<in> set (wq s cs')" by auto
+ from wq_threads[OF this] have "th \<in> threads s" .
+ with th_not_live_s show False by simp
+qed
+
+lemma not_waiting_th_es [simp]: "\<not> waiting (e#s) th cs'"
+proof
+ assume "waiting (e # s) th cs'"
+ from this[unfolded s_waiting_def, folded wq_def, unfolded wq_neq_simp]
+ have "th \<in> set (wq s cs')" by auto
+ from wq_threads[OF this] have "th \<in> threads s" .
+ with th_not_live_s show False by simp
+qed
+
+lemma not_holding_th_es [simp]: "\<not> holding (e#s) th cs'"
+proof
+ assume "holding (e # s) th cs'"
+ from this[unfolded s_holding_def, folded wq_def, unfolded wq_neq_simp]
+ have "th \<in> set (wq s cs')" by auto
+ from wq_threads[OF this] have "th \<in> threads s" .
+ with th_not_live_s show False by simp
+qed
+
+lemma ready_th_es [simp]: "th \<in> readys (e#s)"
+ by (simp add:readys_def)
+
+lemma holdents_th_s: "holdents s th = {}"
+ by (unfold holdents_def, auto)
+
+lemma holdents_th_es: "holdents (e#s) th = {}"
+ by (unfold holdents_def, auto)
+
+lemma cntCS_th_s [simp]: "cntCS s th = 0"
+ by (unfold cntCS_def, simp add:holdents_th_s)
+
+lemma cntCS_th_es [simp]: "cntCS (e#s) th = 0"
+ by (unfold cntCS_def, simp add:holdents_th_es)
+
+lemma pvD_th_s [simp]: "pvD s th = 0"
+ by (unfold pvD_def, simp)
+
+lemma pvD_th_es [simp]: "pvD (e#s) th = 0"
+ by (unfold pvD_def, simp)
+
+lemma holdents_kept:
+ assumes "th' \<noteq> th"
+ shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R")
+proof -
+ { fix cs'
+ assume h: "cs' \<in> ?L"
+ hence "cs' \<in> ?R"
+ by (unfold holdents_def s_holding_def, fold wq_def,
+ unfold wq_neq_simp, auto)
+ } moreover {
+ fix cs'
+ assume h: "cs' \<in> ?R"
+ hence "cs' \<in> ?L"
+ by (unfold holdents_def s_holding_def, fold wq_def,
+ unfold wq_neq_simp, auto)
+ } ultimately show ?thesis by auto
+qed
+
+lemma cntCS_kept [simp]:
+ assumes "th' \<noteq> th"
+ shows "cntCS (e#s) th' = cntCS s th'" (is "?L = ?R")
+ using holdents_kept[OF assms]
+ by (unfold cntCS_def, simp)
+
+lemma readys_kept1:
+ assumes "th' \<noteq> th"
+ and "th' \<in> readys (e#s)"
+ shows "th' \<in> readys s"
+proof -
+ { fix cs'
+ assume wait: "waiting s th' cs'"
+ have n_wait: "\<not> waiting (e#s) th' cs'"
+ using assms by (auto simp:readys_def)
+ from wait[unfolded s_waiting_def, folded wq_def]
+ n_wait[unfolded s_waiting_def, folded wq_def, unfolded wq_neq_simp]
+ have False by auto
+ } thus ?thesis using assms
+ by (unfold readys_def, auto)
+qed
+
+lemma readys_kept2:
+ assumes "th' \<noteq> th"
+ and "th' \<in> readys s"
+ shows "th' \<in> readys (e#s)"
+proof -
+ { fix cs'
+ assume wait: "waiting (e#s) th' cs'"
+ have n_wait: "\<not> waiting s th' cs'"
+ using assms(2) by (auto simp:readys_def)
+ from wait[unfolded s_waiting_def, folded wq_def, unfolded wq_neq_simp]
+ n_wait[unfolded s_waiting_def, folded wq_def]
+ have False by auto
+ } with assms show ?thesis
+ by (unfold readys_def, auto)
+qed
+
+lemma readys_simp [simp]:
+ assumes "th' \<noteq> th"
+ shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)"
+ using readys_kept1[OF assms] readys_kept2[OF assms]
+ by metis
+
+lemma pvD_kept [simp]:
+ assumes "th' \<noteq> th"
+ shows "pvD (e#s) th' = pvD s th'"
+ using assms
+ by (unfold pvD_def, simp)
+
+lemma cnp_cnv_cncs_kept:
+ assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'"
+ shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'"
+proof -
+ {
+ assume eq_th': "th' = th"
+ have ?thesis using assms
+ by (unfold eq_th', simp, unfold is_create, simp)
+ } moreover {
+ assume h: "th' \<noteq> th"
+ hence ?thesis using assms
+ by (simp, simp add:is_create)
+ } ultimately show ?thesis by metis
+qed
+
+end
+
+context valid_trace_exit
+begin
+
+lemma th_live_s [simp]: "th \<in> threads s"
+proof -
+ from pip_e[unfolded is_exit]
+ show ?thesis
+ by (cases, unfold runing_def readys_def, simp)
+qed
+
+lemma th_ready_s [simp]: "th \<in> readys s"
+proof -
+ from pip_e[unfolded is_exit]
+ show ?thesis
+ by (cases, unfold runing_def, simp)
+qed
+
+lemma th_not_live_es [simp]: "th \<notin> threads (e#s)"
+ by (unfold is_exit, simp)
+
+lemma not_holding_th_s [simp]: "\<not> holding s th cs'"
+proof -
+ from pip_e[unfolded is_exit]
+ show ?thesis
+ by (cases, unfold holdents_def, auto)
+qed
+
+lemma cntCS_th_s [simp]: "cntCS s th = 0"
+proof -
+ from pip_e[unfolded is_exit]
+ show ?thesis
+ by (cases, unfold cntCS_def, simp)
+qed
+
+lemma not_holding_th_es [simp]: "\<not> holding (e#s) th cs'"
+proof
+ assume "holding (e # s) th cs'"
+ from this[unfolded s_holding_def, folded wq_def, unfolded wq_neq_simp]
+ have "holding s th cs'"
+ by (unfold s_holding_def, fold wq_def, auto)
+ with not_holding_th_s
+ show False by simp
+qed
+
+lemma ready_th_es [simp]: "th \<notin> readys (e#s)"
+ by (simp add:readys_def)
+
+lemma holdents_th_s: "holdents s th = {}"
+ by (unfold holdents_def, auto)
+
+lemma holdents_th_es: "holdents (e#s) th = {}"
+ by (unfold holdents_def, auto)
+
+lemma cntCS_th_es [simp]: "cntCS (e#s) th = 0"
+ by (unfold cntCS_def, simp add:holdents_th_es)
+
+lemma pvD_th_s [simp]: "pvD s th = 0"
+ by (unfold pvD_def, simp)
+
+lemma pvD_th_es [simp]: "pvD (e#s) th = 0"
+ by (unfold pvD_def, simp)
+
+lemma holdents_kept:
+ assumes "th' \<noteq> th"
+ shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R")
+proof -
+ { fix cs'
+ assume h: "cs' \<in> ?L"
+ hence "cs' \<in> ?R"
+ by (unfold holdents_def s_holding_def, fold wq_def,
+ unfold wq_neq_simp, auto)
+ } moreover {
+ fix cs'
+ assume h: "cs' \<in> ?R"
+ hence "cs' \<in> ?L"
+ by (unfold holdents_def s_holding_def, fold wq_def,
+ unfold wq_neq_simp, auto)
+ } ultimately show ?thesis by auto
+qed
+
+lemma cntCS_kept [simp]:
+ assumes "th' \<noteq> th"
+ shows "cntCS (e#s) th' = cntCS s th'" (is "?L = ?R")
+ using holdents_kept[OF assms]
+ by (unfold cntCS_def, simp)
+
+lemma readys_kept1:
+ assumes "th' \<noteq> th"
+ and "th' \<in> readys (e#s)"
+ shows "th' \<in> readys s"
+proof -
+ { fix cs'
+ assume wait: "waiting s th' cs'"
+ have n_wait: "\<not> waiting (e#s) th' cs'"
+ using assms by (auto simp:readys_def)
+ from wait[unfolded s_waiting_def, folded wq_def]
+ n_wait[unfolded s_waiting_def, folded wq_def, unfolded wq_neq_simp]
+ have False by auto
+ } thus ?thesis using assms
+ by (unfold readys_def, auto)
+qed
+
+lemma readys_kept2:
+ assumes "th' \<noteq> th"
+ and "th' \<in> readys s"
+ shows "th' \<in> readys (e#s)"
+proof -
+ { fix cs'
+ assume wait: "waiting (e#s) th' cs'"
+ have n_wait: "\<not> waiting s th' cs'"
+ using assms(2) by (auto simp:readys_def)
+ from wait[unfolded s_waiting_def, folded wq_def, unfolded wq_neq_simp]
+ n_wait[unfolded s_waiting_def, folded wq_def]
+ have False by auto
+ } with assms show ?thesis
+ by (unfold readys_def, auto)
+qed
+
+lemma readys_simp [simp]:
+ assumes "th' \<noteq> th"
+ shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)"
+ using readys_kept1[OF assms] readys_kept2[OF assms]
+ by metis
+
+lemma pvD_kept [simp]:
+ assumes "th' \<noteq> th"
+ shows "pvD (e#s) th' = pvD s th'"
+ using assms
+ by (unfold pvD_def, simp)
+
+lemma cnp_cnv_cncs_kept:
+ assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'"
+ shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'"
+proof -
+ {
+ assume eq_th': "th' = th"
+ have ?thesis using assms
+ by (unfold eq_th', simp, unfold is_exit, simp)
+ } moreover {
+ assume h: "th' \<noteq> th"
+ hence ?thesis using assms
+ by (simp, simp add:is_exit)
+ } ultimately show ?thesis by metis
+qed
+
+end
+
+context valid_trace_set
+begin
+
+lemma th_live_s [simp]: "th \<in> threads s"
+proof -
+ from pip_e[unfolded is_set]
+ show ?thesis
+ by (cases, unfold runing_def readys_def, simp)
+qed
+
+lemma th_ready_s [simp]: "th \<in> readys s"
+proof -
+ from pip_e[unfolded is_set]
+ show ?thesis
+ by (cases, unfold runing_def, simp)
+qed
+
+lemma th_not_live_es [simp]: "th \<in> threads (e#s)"
+ by (unfold is_set, simp)
+
+
+lemma holdents_kept:
+ shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R")
+proof -
+ { fix cs'
+ assume h: "cs' \<in> ?L"
+ hence "cs' \<in> ?R"
+ by (unfold holdents_def s_holding_def, fold wq_def,
+ unfold wq_neq_simp, auto)
+ } moreover {
+ fix cs'
+ assume h: "cs' \<in> ?R"
+ hence "cs' \<in> ?L"
+ by (unfold holdents_def s_holding_def, fold wq_def,
+ unfold wq_neq_simp, auto)
+ } ultimately show ?thesis by auto
+qed
+
+lemma cntCS_kept [simp]:
+ shows "cntCS (e#s) th' = cntCS s th'" (is "?L = ?R")
+ using holdents_kept
+ by (unfold cntCS_def, simp)
+
+lemma threads_kept[simp]:
+ "threads (e#s) = threads s"
+ by (unfold is_set, simp)
+
+lemma readys_kept1:
+ assumes "th' \<in> readys (e#s)"
+ shows "th' \<in> readys s"
+proof -
+ { fix cs'
+ assume wait: "waiting s th' cs'"
+ have n_wait: "\<not> waiting (e#s) th' cs'"
+ using assms by (auto simp:readys_def)
+ from wait[unfolded s_waiting_def, folded wq_def]
+ n_wait[unfolded s_waiting_def, folded wq_def, unfolded wq_neq_simp]
+ have False by auto
+ } moreover have "th' \<in> threads s"
+ using assms[unfolded readys_def] by auto
+ ultimately show ?thesis
+ by (unfold readys_def, auto)
+qed
+
+lemma readys_kept2:
+ assumes "th' \<in> readys s"
+ shows "th' \<in> readys (e#s)"
+proof -
+ { fix cs'
+ assume wait: "waiting (e#s) th' cs'"
+ have n_wait: "\<not> waiting s th' cs'"
+ using assms by (auto simp:readys_def)
+ from wait[unfolded s_waiting_def, folded wq_def, unfolded wq_neq_simp]
+ n_wait[unfolded s_waiting_def, folded wq_def]
+ have False by auto
+ } with assms show ?thesis
+ by (unfold readys_def, auto)
+qed
+
+lemma readys_simp [simp]:
+ shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)"
+ using readys_kept1 readys_kept2
+ by metis
+
+lemma pvD_kept [simp]:
+ shows "pvD (e#s) th' = pvD s th'"
+ by (unfold pvD_def, simp)
+
+lemma cnp_cnv_cncs_kept:
+ assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'"
+ shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'"
+ using assms
+ by (unfold is_set, simp, fold is_set, simp)
+
+end
+
+context valid_trace
+begin
+
+lemma cnp_cnv_cncs: "cntP s th' = cntV s th' + cntCS s th' + pvD s th'"
+proof(induct rule:ind)
+ case Nil
+ thus ?case
+ by (unfold cntP_def cntV_def pvD_def cntCS_def holdents_def
+ s_holding_def, simp)
+next
+ case (Cons s e)
+ interpret vt_e: valid_trace_e s e using Cons by simp
+ show ?case
+ proof(cases e)
+ case (Create th prio)
+ interpret vt_create: valid_trace_create s e th prio
+ using Create by (unfold_locales, simp)
+ show ?thesis using Cons by (simp add: vt_create.cnp_cnv_cncs_kept)
+ next
+ case (Exit th)
+ interpret vt_exit: valid_trace_exit s e th
+ using Exit by (unfold_locales, simp)
+ show ?thesis using Cons by (simp add: vt_exit.cnp_cnv_cncs_kept)
+ next
+ case (P th cs)
+ interpret vt_p: valid_trace_p s e th cs using P by (unfold_locales, simp)
+ show ?thesis using Cons by (simp add: vt_p.cnp_cnv_cncs_kept)
+ next
+ case (V th cs)
+ interpret vt_v: valid_trace_v s e th cs using V by (unfold_locales, simp)
+ show ?thesis using Cons by (simp add: vt_v.cnp_cnv_cncs_kept)
+ next
+ case (Set th prio)
+ interpret vt_set: valid_trace_set s e th prio
+ using Set by (unfold_locales, simp)
+ show ?thesis using Cons by (simp add: vt_set.cnp_cnv_cncs_kept)
+ qed
+qed
+
+lemma not_thread_holdents:
+ assumes not_in: "th \<notin> threads s"
+ shows "holdents s th = {}"
+proof -
+ { fix cs
+ assume "cs \<in> holdents s th"
+ hence "holding s th cs" by (auto simp:holdents_def)
+ from this[unfolded s_holding_def, folded wq_def]
+ have "th \<in> set (wq s cs)" by auto
+ with wq_threads have "th \<in> threads s" by auto
+ with assms
+ have False by simp
+ } thus ?thesis by auto
+qed
+
+lemma not_thread_cncs:
+ assumes not_in: "th \<notin> threads s"
+ shows "cntCS s th = 0"
+ using not_thread_holdents[OF assms]
+ by (simp add:cntCS_def)
+
+lemma cnp_cnv_eq:
+ assumes "th \<notin> threads s"
+ shows "cntP s th = cntV s th"
+ using assms cnp_cnv_cncs not_thread_cncs pvD_def
+ by (auto)
+
+end
+
+
+
+end
+
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Attic/Moment.thy Tue Jun 14 15:06:16 2016 +0100
@@ -0,0 +1,105 @@
+theory Moment
+imports Main
+begin
+
+definition moment :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list"
+where "moment n s = rev (take n (rev s))"
+
+value "moment 3 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9::int]"
+value "moment 2 [5, 4, 3, 2, 1, 0::int]"
+
+lemma moment_app [simp]:
+ assumes ile: "i \<le> length s"
+ shows "moment i (s' @ s) = moment i s"
+using assms unfolding moment_def by simp
+
+lemma moment_eq [simp]: "moment (length s) (s' @ s) = s"
+ unfolding moment_def by simp
+
+lemma moment_ge [simp]: "length s \<le> n \<Longrightarrow> moment n s = s"
+ by (unfold moment_def, simp)
+
+lemma moment_zero [simp]: "moment 0 s = []"
+ by (simp add:moment_def)
+
+lemma least_idx:
+ assumes "Q (i::nat)"
+ obtains j where "j \<le> i" "Q j" "\<forall> k < j. \<not> Q k"
+ using assms
+ by (metis ex_least_nat_le le0 not_less0)
+
+lemma duration_idx:
+ assumes "\<not> Q (i::nat)"
+ and "Q j"
+ and "i \<le> j"
+ obtains k where "i \<le> k" "k < j" "\<not> Q k" "\<forall> i'. k < i' \<and> i' \<le> j \<longrightarrow> Q i'"
+proof -
+ let ?Q = "\<lambda> t. t \<le> j \<and> \<not> Q (j - t)"
+ have "?Q (j - i)" using assms by (simp add: assms(1))
+ from least_idx [of ?Q, OF this]
+ obtain l
+ where h: "l \<le> j - i" "\<not> Q (j - l)" "\<forall>k<l. \<not> (k \<le> j \<and> \<not> Q (j - k))"
+ by metis
+ let ?k = "j - l"
+ have "i \<le> ?k" using assms(3) h(1) by linarith
+ moreover have "?k < j" by (metis assms(2) diff_le_self h(2) le_neq_implies_less)
+ moreover have "\<not> Q ?k" by (simp add: h(2))
+ moreover have "\<forall> i'. ?k < i' \<and> i' \<le> j \<longrightarrow> Q i'"
+ by (metis diff_diff_cancel diff_le_self diff_less_mono2 h(3)
+ less_imp_diff_less not_less)
+ ultimately show ?thesis using that by metis
+qed
+
+lemma p_split_gen:
+ assumes "Q s"
+ and "\<not> Q (moment k s)"
+ shows "(\<exists> i. i < length s \<and> k \<le> i \<and> \<not> Q (moment i s) \<and> (\<forall> i' > i. Q (moment i' s)))"
+proof(cases "k \<le> length s")
+ case True
+ let ?Q = "\<lambda> t. Q (moment t s)"
+ have "?Q (length s)" using assms(1) by simp
+ from duration_idx[of ?Q, OF assms(2) this True]
+ obtain i where h: "k \<le> i" "i < length s" "\<not> Q (moment i s)"
+ "\<forall>i'. i < i' \<and> i' \<le> length s \<longrightarrow> Q (moment i' s)" by metis
+ moreover have "(\<forall> i' > i. Q (moment i' s))" using h(4) assms(1) not_less
+ by fastforce
+ ultimately show ?thesis by metis
+qed (insert assms, auto)
+
+lemma p_split:
+ assumes qs: "Q s"
+ and nq: "\<not> Q []"
+ shows "(\<exists> i. i < length s \<and> \<not> Q (moment i s) \<and> (\<forall> i' > i. Q (moment i' s)))"
+proof -
+ from nq have "\<not> Q (moment 0 s)" by simp
+ from p_split_gen [of Q s 0, OF qs this]
+ show ?thesis by auto
+qed
+
+lemma moment_Suc_tl:
+ assumes "Suc i \<le> length s"
+ shows "tl (moment (Suc i) s) = moment i s"
+ using assms
+ by (simp add:moment_def rev_take,
+ metis Suc_diff_le diff_Suc_Suc drop_Suc tl_drop)
+
+lemma moment_Suc_hd:
+ assumes "Suc i \<le> length s"
+ shows "hd (moment (Suc i) s) = s!(length s - Suc i)"
+ by (simp add:moment_def rev_take,
+ subst hd_drop_conv_nth, insert assms, auto)
+
+lemma moment_plus:
+ assumes "Suc i \<le> length s"
+ shows "(moment (Suc i) s) = (hd (moment (Suc i) s)) # (moment i s)"
+proof -
+ have "(moment (Suc i) s) \<noteq> []" using assms
+ by (simp add:moment_def rev_take)
+ hence "(moment (Suc i) s) = (hd (moment (Suc i) s)) # tl (moment (Suc i) s)"
+ by auto
+ with moment_Suc_tl[OF assms]
+ show ?thesis by metis
+qed
+
+end
+
--- a/CpsG.thy Tue Jun 14 13:56:51 2016 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,4669 +0,0 @@
-theory CpsG
-imports PIPDefs
-begin
-
-section {* Generic aulxiliary lemmas *}
-
-lemma f_image_eq:
- assumes h: "\<And> a. a \<in> A \<Longrightarrow> f a = g a"
- shows "f ` A = g ` A"
-proof
- show "f ` A \<subseteq> g ` A"
- by(rule image_subsetI, auto intro:h)
-next
- show "g ` A \<subseteq> f ` A"
- by (rule image_subsetI, auto intro:h[symmetric])
-qed
-
-lemma Max_fg_mono:
- assumes "finite A"
- and "\<forall> a \<in> A. f a \<le> g a"
- shows "Max (f ` A) \<le> Max (g ` A)"
-proof(cases "A = {}")
- case True
- thus ?thesis by auto
-next
- case False
- show ?thesis
- proof(rule Max.boundedI)
- from assms show "finite (f ` A)" by auto
- next
- from False show "f ` A \<noteq> {}" by auto
- next
- fix fa
- assume "fa \<in> f ` A"
- then obtain a where h_fa: "a \<in> A" "fa = f a" by auto
- show "fa \<le> Max (g ` A)"
- proof(rule Max_ge_iff[THEN iffD2])
- from assms show "finite (g ` A)" by auto
- next
- from False show "g ` A \<noteq> {}" by auto
- next
- from h_fa have "g a \<in> g ` A" by auto
- moreover have "fa \<le> g a" using h_fa assms(2) by auto
- ultimately show "\<exists>a\<in>g ` A. fa \<le> a" by auto
- qed
- qed
-qed
-
-lemma Max_f_mono:
- assumes seq: "A \<subseteq> B"
- and np: "A \<noteq> {}"
- and fnt: "finite B"
- shows "Max (f ` A) \<le> Max (f ` B)"
-proof(rule Max_mono)
- from seq show "f ` A \<subseteq> f ` B" by auto
-next
- from np show "f ` A \<noteq> {}" by auto
-next
- from fnt and seq show "finite (f ` B)" by auto
-qed
-
-lemma Max_UNION:
- assumes "finite A"
- and "A \<noteq> {}"
- and "\<forall> M \<in> f ` A. finite M"
- and "\<forall> M \<in> f ` A. M \<noteq> {}"
- shows "Max (\<Union>x\<in> A. f x) = Max (Max ` f ` A)" (is "?L = ?R")
- using assms[simp]
-proof -
- have "?L = Max (\<Union>(f ` A))"
- by (fold Union_image_eq, simp)
- also have "... = ?R"
- by (subst Max_Union, simp+)
- finally show ?thesis .
-qed
-
-lemma max_Max_eq:
- assumes "finite A"
- and "A \<noteq> {}"
- and "x = y"
- shows "max x (Max A) = Max ({y} \<union> A)" (is "?L = ?R")
-proof -
- have "?R = Max (insert y A)" by simp
- also from assms have "... = ?L"
- by (subst Max.insert, simp+)
- finally show ?thesis by simp
-qed
-
-lemma rel_eqI:
- assumes "\<And> x y. (x,y) \<in> A \<Longrightarrow> (x,y) \<in> B"
- and "\<And> x y. (x,y) \<in> B \<Longrightarrow> (x, y) \<in> A"
- shows "A = B"
- using assms by auto
-
-section {* Lemmas do not depend on trace validity *}
-
-lemma birth_time_lt:
- assumes "s \<noteq> []"
- shows "last_set th s < length s"
- using assms
-proof(induct s)
- case (Cons a s)
- show ?case
- proof(cases "s \<noteq> []")
- case False
- thus ?thesis
- by (cases a, auto)
- next
- case True
- show ?thesis using Cons(1)[OF True]
- by (cases a, auto)
- qed
-qed simp
-
-lemma th_in_ne: "th \<in> threads s \<Longrightarrow> s \<noteq> []"
- by (induct s, auto)
-
-lemma preced_tm_lt: "th \<in> threads s \<Longrightarrow> preced th s = Prc x y \<Longrightarrow> y < length s"
- by (drule_tac th_in_ne, unfold preced_def, auto intro: birth_time_lt)
-
-lemma eq_RAG:
- "RAG (wq s) = RAG s"
- by (unfold cs_RAG_def s_RAG_def, auto)
-
-lemma waiting_holding:
- assumes "waiting (s::state) th cs"
- obtains th' where "holding s th' cs"
-proof -
- from assms[unfolded s_waiting_def, folded wq_def]
- obtain th' where "th' \<in> set (wq s cs)" "th' = hd (wq s cs)"
- by (metis empty_iff hd_in_set list.set(1))
- hence "holding s th' cs"
- by (unfold s_holding_def, fold wq_def, auto)
- from that[OF this] show ?thesis .
-qed
-
-lemma cp_eq_cpreced: "cp s th = cpreced (wq s) s th"
-unfolding cp_def wq_def
-apply(induct s rule: schs.induct)
-apply(simp add: Let_def cpreced_initial)
-apply(simp add: Let_def)
-apply(simp add: Let_def)
-apply(simp add: Let_def)
-apply(subst (2) schs.simps)
-apply(simp add: Let_def)
-apply(subst (2) schs.simps)
-apply(simp add: Let_def)
-done
-
-lemma cp_alt_def:
- "cp s th =
- Max ((the_preced s) ` {th'. Th th' \<in> (subtree (RAG s) (Th th))})"
-proof -
- have "Max (the_preced s ` ({th} \<union> dependants (wq s) th)) =
- Max (the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th)})"
- (is "Max (_ ` ?L) = Max (_ ` ?R)")
- proof -
- have "?L = ?R"
- by (auto dest:rtranclD simp:cs_dependants_def cs_RAG_def s_RAG_def subtree_def)
- thus ?thesis by simp
- qed
- thus ?thesis by (unfold cp_eq_cpreced cpreced_def, fold the_preced_def, simp)
-qed
-
-lemma RAG_target_th: "(Th th, x) \<in> RAG (s::state) \<Longrightarrow> \<exists> cs. x = Cs cs"
- by (unfold s_RAG_def, auto)
-
-lemma waiting_eq: "waiting s th cs = waiting (wq s) th cs"
- by (unfold s_waiting_def cs_waiting_def wq_def, auto)
-
-lemma holding_eq: "holding (s::state) th cs = holding (wq s) th cs"
- by (unfold s_holding_def wq_def cs_holding_def, simp)
-
-lemma children_RAG_alt_def:
- "children (RAG (s::state)) (Th th) = Cs ` {cs. holding s th cs}"
- by (unfold s_RAG_def, auto simp:children_def holding_eq)
-
-lemma holdents_alt_def:
- "holdents s th = the_cs ` (children (RAG (s::state)) (Th th))"
- by (unfold children_RAG_alt_def holdents_def, simp add: image_image)
-
-lemma cntCS_alt_def:
- "cntCS s th = card (children (RAG s) (Th th))"
- apply (unfold children_RAG_alt_def cntCS_def holdents_def)
- by (rule card_image[symmetric], auto simp:inj_on_def)
-
-lemma runing_ready:
- shows "runing s \<subseteq> readys s"
- unfolding runing_def readys_def
- by auto
-
-lemma readys_threads:
- shows "readys s \<subseteq> threads s"
- unfolding readys_def
- by auto
-
-lemma wq_v_neq [simp]:
- "cs \<noteq> cs' \<Longrightarrow> wq (V thread cs#s) cs' = wq s cs'"
- by (auto simp:wq_def Let_def cp_def split:list.splits)
-
-lemma runing_head:
- assumes "th \<in> runing s"
- and "th \<in> set (wq_fun (schs s) cs)"
- shows "th = hd (wq_fun (schs s) cs)"
- using assms
- by (simp add:runing_def readys_def s_waiting_def wq_def)
-
-lemma runing_wqE:
- assumes "th \<in> runing s"
- and "th \<in> set (wq s cs)"
- obtains rest where "wq s cs = th#rest"
-proof -
- from assms(2) obtain th' rest where eq_wq: "wq s cs = th'#rest"
- by (meson list.set_cases)
- have "th' = th"
- proof(rule ccontr)
- assume "th' \<noteq> th"
- hence "th \<noteq> hd (wq s cs)" using eq_wq by auto
- with assms(2)
- have "waiting s th cs"
- by (unfold s_waiting_def, fold wq_def, auto)
- with assms show False
- by (unfold runing_def readys_def, auto)
- qed
- with eq_wq that show ?thesis by metis
-qed
-
-lemma isP_E:
- assumes "isP e"
- obtains cs where "e = P (actor e) cs"
- using assms by (cases e, auto)
-
-lemma isV_E:
- assumes "isV e"
- obtains cs where "e = V (actor e) cs"
- using assms by (cases e, auto)
-
-
-text {*
- Every thread can only be blocked on one critical resource,
- symmetrically, every critical resource can only be held by one thread.
- This fact is much more easier according to our definition.
-*}
-lemma held_unique:
- assumes "holding (s::event list) th1 cs"
- and "holding s th2 cs"
- shows "th1 = th2"
- by (insert assms, unfold s_holding_def, auto)
-
-lemma last_set_lt: "th \<in> threads s \<Longrightarrow> last_set th s < length s"
- apply (induct s, auto)
- by (case_tac a, auto split:if_splits)
-
-lemma last_set_unique:
- "\<lbrakk>last_set th1 s = last_set th2 s; th1 \<in> threads s; th2 \<in> threads s\<rbrakk>
- \<Longrightarrow> th1 = th2"
- apply (induct s, auto)
- by (case_tac a, auto split:if_splits dest:last_set_lt)
-
-lemma preced_unique :
- assumes pcd_eq: "preced th1 s = preced th2 s"
- and th_in1: "th1 \<in> threads s"
- and th_in2: " th2 \<in> threads s"
- shows "th1 = th2"
-proof -
- from pcd_eq have "last_set th1 s = last_set th2 s" by (simp add:preced_def)
- from last_set_unique [OF this th_in1 th_in2]
- show ?thesis .
-qed
-
-lemma preced_linorder:
- assumes neq_12: "th1 \<noteq> th2"
- and th_in1: "th1 \<in> threads s"
- and th_in2: " th2 \<in> threads s"
- shows "preced th1 s < preced th2 s \<or> preced th1 s > preced th2 s"
-proof -
- from preced_unique [OF _ th_in1 th_in2] and neq_12
- have "preced th1 s \<noteq> preced th2 s" by auto
- thus ?thesis by auto
-qed
-
-lemma in_RAG_E:
- assumes "(n1, n2) \<in> RAG (s::state)"
- obtains (waiting) th cs where "n1 = Th th" "n2 = Cs cs" "waiting s th cs"
- | (holding) th cs where "n1 = Cs cs" "n2 = Th th" "holding s th cs"
- using assms[unfolded s_RAG_def, folded waiting_eq holding_eq]
- by auto
-
-lemma count_rec1 [simp]:
- assumes "Q e"
- shows "count Q (e#es) = Suc (count Q es)"
- using assms
- by (unfold count_def, auto)
-
-lemma count_rec2 [simp]:
- assumes "\<not>Q e"
- shows "count Q (e#es) = (count Q es)"
- using assms
- by (unfold count_def, auto)
-
-lemma count_rec3 [simp]:
- shows "count Q [] = 0"
- by (unfold count_def, auto)
-
-lemma cntP_simp1[simp]:
- "cntP (P th cs'#s) th = cntP s th + 1"
- by (unfold cntP_def, simp)
-
-lemma cntP_simp2[simp]:
- assumes "th' \<noteq> th"
- shows "cntP (P th cs'#s) th' = cntP s th'"
- using assms
- by (unfold cntP_def, simp)
-
-lemma cntP_simp3[simp]:
- assumes "\<not> isP e"
- shows "cntP (e#s) th' = cntP s th'"
- using assms
- by (unfold cntP_def, cases e, simp+)
-
-lemma cntV_simp1[simp]:
- "cntV (V th cs'#s) th = cntV s th + 1"
- by (unfold cntV_def, simp)
-
-lemma cntV_simp2[simp]:
- assumes "th' \<noteq> th"
- shows "cntV (V th cs'#s) th' = cntV s th'"
- using assms
- by (unfold cntV_def, simp)
-
-lemma cntV_simp3[simp]:
- assumes "\<not> isV e"
- shows "cntV (e#s) th' = cntV s th'"
- using assms
- by (unfold cntV_def, cases e, simp+)
-
-lemma cntP_diff_inv:
- assumes "cntP (e#s) th \<noteq> cntP s th"
- shows "isP e \<and> actor e = th"
-proof(cases e)
- case (P th' pty)
- show ?thesis
- by (cases "(\<lambda>e. \<exists>cs. e = P th cs) (P th' pty)",
- insert assms P, auto simp:cntP_def)
-qed (insert assms, auto simp:cntP_def)
-
-lemma cntV_diff_inv:
- assumes "cntV (e#s) th \<noteq> cntV s th"
- shows "isV e \<and> actor e = th"
-proof(cases e)
- case (V th' pty)
- show ?thesis
- by (cases "(\<lambda>e. \<exists>cs. e = V th cs) (V th' pty)",
- insert assms V, auto simp:cntV_def)
-qed (insert assms, auto simp:cntV_def)
-
-lemma eq_dependants: "dependants (wq s) = dependants s"
- by (simp add: s_dependants_abv wq_def)
-
-lemma inj_the_preced:
- "inj_on (the_preced s) (threads s)"
- by (metis inj_onI preced_unique the_preced_def)
-
-lemma holding_next_thI:
- assumes "holding s th cs"
- and "length (wq s cs) > 1"
- obtains th' where "next_th s th cs th'"
-proof -
- from assms(1)[folded holding_eq, unfolded cs_holding_def]
- have " th \<in> set (wq s cs) \<and> th = hd (wq s cs)"
- by (unfold s_holding_def, fold wq_def, auto)
- then obtain rest where h1: "wq s cs = th#rest"
- by (cases "wq s cs", auto)
- with assms(2) have h2: "rest \<noteq> []" by auto
- let ?th' = "hd (SOME q. distinct q \<and> set q = set rest)"
- have "next_th s th cs ?th'" using h1(1) h2
- by (unfold next_th_def, auto)
- from that[OF this] show ?thesis .
-qed
-
-(* ccc *)
-
-section {* Locales used to investigate the execution of PIP *}
-
-text {*
- The following locale @{text valid_trace} is used to constrain the
- trace to be valid. All properties hold for valid traces are
- derived under this locale.
-*}
-locale valid_trace =
- fixes s
- assumes vt : "vt s"
-
-text {*
- The following locale @{text valid_trace_e} describes
- the valid extension of a valid trace. The event @{text "e"}
- represents an event in the system, which corresponds
- to a one step operation of the PIP protocol.
- It is required that @{text "e"} is an event eligible to happen
- under state @{text "s"}, which is already required to be valid
- by the parent locale @{text "valid_trace"}.
-
- This locale is used to investigate one step execution of PIP,
- properties concerning the effects of @{text "e"}'s execution,
- for example, how the values of observation functions are changed,
- or how desirable properties are kept invariant, are derived
- under this locale. The state before execution is @{text "s"}, while
- the state after execution is @{text "e#s"}. Therefore, the lemmas
- derived usually relate observations on @{text "e#s"} to those
- on @{text "s"}.
-*}
-
-locale valid_trace_e = valid_trace +
- fixes e
- assumes vt_e: "vt (e#s)"
-begin
-
-text {*
- The following lemma shows that @{text "e"} must be a
- eligible event (or a valid step) to be taken under
- the state represented by @{text "s"}.
-*}
-lemma pip_e: "PIP s e"
- using vt_e by (cases, simp)
-
-end
-
-text {*
- Because @{term "e#s"} is also a valid trace, properties
- derived for valid trace @{term s} also hold on @{term "e#s"}.
-*}
-sublocale valid_trace_e < vat_es!: valid_trace "e#s"
- using vt_e
- by (unfold_locales, simp)
-
-text {*
- For each specific event (or operation), there is a sublocale
- further constraining that the event @{text e} to be that
- particular event.
-
- For example, the following
- locale @{text "valid_trace_create"} is the sublocale for
- event @{term "Create"}:
-*}
-locale valid_trace_create = valid_trace_e +
- fixes th prio
- assumes is_create: "e = Create th prio"
-
-locale valid_trace_exit = valid_trace_e +
- fixes th
- assumes is_exit: "e = Exit th"
-
-locale valid_trace_p = valid_trace_e +
- fixes th cs
- assumes is_p: "e = P th cs"
-
-text {*
- locale @{text "valid_trace_p"} is divided further into two
- sublocales, namely, @{text "valid_trace_p_h"}
- and @{text "valid_trace_p_w"}.
-*}
-
-text {*
- The following two sublocales @{text "valid_trace_p_h"}
- and @{text "valid_trace_p_w"} represent two complementary
- cases under @{text "valid_trace_p"}, where
- @{text "valid_trace_p_h"} further constraints that
- @{text "wq s cs = []"}, which means the waiting queue of
- the requested resource @{text "cs"} is empty, in which
- case, the requesting thread @{text "th"}
- will take hold of @{text "cs"}.
-
- Opposite to @{text "valid_trace_p_h"},
- @{text "valid_trace_p_w"} constraints that
- @{text "wq s cs \<noteq> []"}, which means the waiting queue of
- the requested resource @{text "cs"} is nonempty, in which
- case, the requesting thread @{text "th"} will be blocked
- on @{text "cs"}:
-
- Peculiar properties will be derived under respective
- locales.
-*}
-
-locale valid_trace_p_h = valid_trace_p +
- assumes we: "wq s cs = []"
-
-locale valid_trace_p_w = valid_trace_p +
- assumes wne: "wq s cs \<noteq> []"
-begin
-
-text {*
- The following @{text "holder"} designates
- the holder of @{text "cs"} before the @{text "P"}-operation.
-*}
-definition "holder = hd (wq s cs)"
-
-text {*
- The following @{text "waiters"} designates
- the list of threads waiting for @{text "cs"}
- before the @{text "P"}-operation.
-*}
-definition "waiters = tl (wq s cs)"
-end
-
-text {*
- @{text "valid_trace_v"} is set for the @{term V}-operation.
-*}
-locale valid_trace_v = valid_trace_e +
- fixes th cs
- assumes is_v: "e = V th cs"
-begin
- -- {* The following @{text "rest"} is the tail of
- waiting queue of the resource @{text "cs"}
- to be released by this @{text "V"}-operation.
- *}
- definition "rest = tl (wq s cs)"
-
- text {*
- The following @{text "wq'"} is the waiting
- queue of @{term "cs"}
- after the @{text "V"}-operation, which
- is simply a reordering of @{term "rest"}.
-
- The effect of this reordering needs to be
- understood by two cases:
- \begin{enumerate}
- \item When @{text "rest = []"},
- the reordering gives rise to an empty list as well,
- which means there is no thread holding or waiting
- for resource @{term "cs"}, therefore, it is free.
-
- \item When @{text "rest \<noteq> []"}, the effect of
- this reordering is to arbitrarily
- switch one thread in @{term "rest"} to the
- head, which, by definition take over the hold
- of @{term "cs"} and is designated by @{text "taker"}
- in the following sublocale @{text "valid_trace_v_n"}.
- *}
- definition "wq' = (SOME q. distinct q \<and> set q = set rest)"
-
- text {*
- The following @{text "rest'"} is the tail of the
- waiting queue after the @{text "V"}-operation.
- It plays only auxiliary role to ease reasoning.
- *}
- definition "rest' = tl wq'"
-
-end
-
-text {*
- In the following, @{text "valid_trace_v"} is also
- divided into two
- sublocales: when @{text "rest"} is empty (represented
- by @{text "valid_trace_v_e"}), which means, there is no thread waiting
- for @{text "cs"}, therefore, after the @{text "V"}-operation,
- it will become free; otherwise (represented
- by @{text "valid_trace_v_n"}), one thread
- will be picked from those in @{text "rest"} to take
- over @{text "cs"}.
-*}
-
-locale valid_trace_v_e = valid_trace_v +
- assumes rest_nil: "rest = []"
-
-locale valid_trace_v_n = valid_trace_v +
- assumes rest_nnl: "rest \<noteq> []"
-begin
-
-text {*
- The following @{text "taker"} is the thread to
- take over @{text "cs"}.
-*}
- definition "taker = hd wq'"
-
-end
-
-
-locale valid_trace_set = valid_trace_e +
- fixes th prio
- assumes is_set: "e = Set th prio"
-
-context valid_trace
-begin
-
-text {*
- Induction rule introduced to easy the
- derivation of properties for valid trace @{term "s"}.
- One more premises, namely @{term "valid_trace_e s e"}
- is added, so that an interpretation of
- @{text "valid_trace_e"} can be instantiated
- so that all properties derived so far becomes
- available in the proof of induction step.
-
- You will see its use in the proofs that follows.
-*}
-lemma ind [consumes 0, case_names Nil Cons, induct type]:
- assumes "PP []"
- and "(\<And>s e. valid_trace_e s e \<Longrightarrow>
- PP s \<Longrightarrow> PIP s e \<Longrightarrow> PP (e # s))"
- shows "PP s"
-proof(induct rule:vt.induct[OF vt, case_names Init Step])
- case Init
- from assms(1) show ?case .
-next
- case (Step s e)
- show ?case
- proof(rule assms(2))
- show "valid_trace_e s e" using Step by (unfold_locales, auto)
- next
- show "PP s" using Step by simp
- next
- show "PIP s e" using Step by simp
- qed
-qed
-
-text {*
- The following lemma says that if @{text "s"} is a valid state, so
- is its any postfix. Where @{term "monent t s"} is the postfix of
- @{term "s"} with length @{term "t"}.
-*}
-lemma vt_moment: "\<And> t. vt (moment t s)"
-proof(induct rule:ind)
- case Nil
- thus ?case by (simp add:vt_nil)
-next
- case (Cons s e t)
- show ?case
- proof(cases "t \<ge> length (e#s)")
- case True
- from True have "moment t (e#s) = e#s" by simp
- thus ?thesis using Cons
- by (simp add:valid_trace_def valid_trace_e_def, auto)
- next
- case False
- from Cons have "vt (moment t s)" by simp
- moreover have "moment t (e#s) = moment t s"
- proof -
- from False have "t \<le> length s" by simp
- from moment_app [OF this, of "[e]"]
- show ?thesis by simp
- qed
- ultimately show ?thesis by simp
- qed
-qed
-end
-
-text {*
- The following locale @{text "valid_moment"} is to inherit the properties
- derived on any valid state to the prefix of it, with length @{text "i"}.
-*}
-locale valid_moment = valid_trace +
- fixes i :: nat
-
-sublocale valid_moment < vat_moment!: valid_trace "(moment i s)"
- by (unfold_locales, insert vt_moment, auto)
-
-locale valid_moment_e = valid_moment +
- assumes less_i: "i < length s"
-begin
- definition "next_e = hd (moment (Suc i) s)"
-
- lemma trace_e:
- "moment (Suc i) s = next_e#moment i s"
- proof -
- from less_i have "Suc i \<le> length s" by auto
- from moment_plus[OF this, folded next_e_def]
- show ?thesis .
- qed
-
-end
-
-sublocale valid_moment_e < vat_moment_e!: valid_trace_e "moment i s" "next_e"
- using vt_moment[of "Suc i", unfolded trace_e]
- by (unfold_locales, simp)
-
-section {* Distinctiveness of waiting queues *}
-
-context valid_trace_create
-begin
-
-lemma wq_kept [simp]:
- shows "wq (e#s) cs' = wq s cs'"
- using assms unfolding is_create wq_def
- by (auto simp:Let_def)
-
-lemma wq_distinct_kept:
- assumes "distinct (wq s cs')"
- shows "distinct (wq (e#s) cs')"
- using assms by simp
-end
-
-context valid_trace_exit
-begin
-
-lemma wq_kept [simp]:
- shows "wq (e#s) cs' = wq s cs'"
- using assms unfolding is_exit wq_def
- by (auto simp:Let_def)
-
-lemma wq_distinct_kept:
- assumes "distinct (wq s cs')"
- shows "distinct (wq (e#s) cs')"
- using assms by simp
-end
-
-context valid_trace_p
-begin
-
-lemma wq_neq_simp [simp]:
- assumes "cs' \<noteq> cs"
- shows "wq (e#s) cs' = wq s cs'"
- using assms unfolding is_p wq_def
- by (auto simp:Let_def)
-
-lemma runing_th_s:
- shows "th \<in> runing s"
-proof -
- from pip_e[unfolded is_p]
- show ?thesis by (cases, simp)
-qed
-
-lemma th_not_in_wq:
- shows "th \<notin> set (wq s cs)"
-proof
- assume otherwise: "th \<in> set (wq s cs)"
- from runing_wqE[OF runing_th_s this]
- obtain rest where eq_wq: "wq s cs = th#rest" by blast
- with otherwise
- have "holding s th cs"
- by (unfold s_holding_def, fold wq_def, simp)
- hence cs_th_RAG: "(Cs cs, Th th) \<in> RAG s"
- by (unfold s_RAG_def, fold holding_eq, auto)
- from pip_e[unfolded is_p]
- show False
- proof(cases)
- case (thread_P)
- with cs_th_RAG show ?thesis by auto
- qed
-qed
-
-lemma wq_es_cs:
- "wq (e#s) cs = wq s cs @ [th]"
- by (unfold is_p wq_def, auto simp:Let_def)
-
-lemma wq_distinct_kept:
- assumes "distinct (wq s cs')"
- shows "distinct (wq (e#s) cs')"
-proof(cases "cs' = cs")
- case True
- show ?thesis using True assms th_not_in_wq
- by (unfold True wq_es_cs, auto)
-qed (insert assms, simp)
-
-end
-
-context valid_trace_v
-begin
-
-lemma wq_neq_simp [simp]:
- assumes "cs' \<noteq> cs"
- shows "wq (e#s) cs' = wq s cs'"
- using assms unfolding is_v wq_def
- by (auto simp:Let_def)
-
-lemma wq_s_cs:
- "wq s cs = th#rest"
-proof -
- from pip_e[unfolded is_v]
- show ?thesis
- proof(cases)
- case (thread_V)
- from this(2) show ?thesis
- by (unfold rest_def s_holding_def, fold wq_def,
- metis empty_iff list.collapse list.set(1))
- qed
-qed
-
-lemma wq_es_cs:
- "wq (e#s) cs = wq'"
- using wq_s_cs[unfolded wq_def]
- by (auto simp:Let_def wq_def rest_def wq'_def is_v, simp)
-
-lemma wq_distinct_kept:
- assumes "distinct (wq s cs')"
- shows "distinct (wq (e#s) cs')"
-proof(cases "cs' = cs")
- case True
- show ?thesis
- proof(unfold True wq_es_cs wq'_def, rule someI2)
- show "distinct rest \<and> set rest = set rest"
- using assms[unfolded True wq_s_cs] by auto
- qed simp
-qed (insert assms, simp)
-
-end
-
-context valid_trace_set
-begin
-
-lemma wq_kept [simp]:
- shows "wq (e#s) cs' = wq s cs'"
- using assms unfolding is_set wq_def
- by (auto simp:Let_def)
-
-lemma wq_distinct_kept:
- assumes "distinct (wq s cs')"
- shows "distinct (wq (e#s) cs')"
- using assms by simp
-end
-
-context valid_trace
-begin
-
-lemma finite_threads:
- shows "finite (threads s)"
- using vt by (induct) (auto elim: step.cases)
-
-lemma finite_readys [simp]: "finite (readys s)"
- using finite_threads readys_threads rev_finite_subset by blast
-
-lemma wq_distinct: "distinct (wq s cs)"
-proof(induct rule:ind)
- case (Cons s e)
- interpret vt_e: valid_trace_e s e using Cons by simp
- show ?case
- proof(cases e)
- case (Create th prio)
- interpret vt_create: valid_trace_create s e th prio
- using Create by (unfold_locales, simp)
- show ?thesis using Cons by (simp add: vt_create.wq_distinct_kept)
- next
- case (Exit th)
- interpret vt_exit: valid_trace_exit s e th
- using Exit by (unfold_locales, simp)
- show ?thesis using Cons by (simp add: vt_exit.wq_distinct_kept)
- next
- case (P th cs)
- interpret vt_p: valid_trace_p s e th cs using P by (unfold_locales, simp)
- show ?thesis using Cons by (simp add: vt_p.wq_distinct_kept)
- next
- case (V th cs)
- interpret vt_v: valid_trace_v s e th cs using V by (unfold_locales, simp)
- show ?thesis using Cons by (simp add: vt_v.wq_distinct_kept)
- next
- case (Set th prio)
- interpret vt_set: valid_trace_set s e th prio
- using Set by (unfold_locales, simp)
- show ?thesis using Cons by (simp add: vt_set.wq_distinct_kept)
- qed
-qed (unfold wq_def Let_def, simp)
-
-end
-
-section {* Waiting queues and threads *}
-
-context valid_trace_e
-begin
-
-lemma wq_out_inv:
- assumes s_in: "thread \<in> set (wq s cs)"
- and s_hd: "thread = hd (wq s cs)"
- and s_i: "thread \<noteq> hd (wq (e#s) cs)"
- shows "e = V thread cs"
-proof(cases e)
--- {* There are only two non-trivial cases: *}
- case (V th cs1)
- show ?thesis
- proof(cases "cs1 = cs")
- case True
- have "PIP s (V th cs)" using pip_e[unfolded V[unfolded True]] .
- thus ?thesis
- proof(cases)
- case (thread_V)
- moreover have "th = thread" using thread_V(2) s_hd
- by (unfold s_holding_def wq_def, simp)
- ultimately show ?thesis using V True by simp
- qed
- qed (insert assms V, auto simp:wq_def Let_def split:if_splits)
-next
- case (P th cs1)
- show ?thesis
- proof(cases "cs1 = cs")
- case True
- with P have "wq (e#s) cs = wq_fun (schs s) cs @ [th]"
- by (auto simp:wq_def Let_def split:if_splits)
- with s_i s_hd s_in have False
- by (metis empty_iff hd_append2 list.set(1) wq_def)
- thus ?thesis by simp
- qed (insert assms P, auto simp:wq_def Let_def split:if_splits)
-qed (insert assms, auto simp:wq_def Let_def split:if_splits)
-
-lemma wq_in_inv:
- assumes s_ni: "thread \<notin> set (wq s cs)"
- and s_i: "thread \<in> set (wq (e#s) cs)"
- shows "e = P thread cs"
-proof(cases e)
- -- {* This is the only non-trivial case: *}
- case (V th cs1)
- have False
- proof(cases "cs1 = cs")
- case True
- show ?thesis
- proof(cases "(wq s cs1)")
- case (Cons w_hd w_tl)
- have "set (wq (e#s) cs) \<subseteq> set (wq s cs)"
- proof -
- have "(wq (e#s) cs) = (SOME q. distinct q \<and> set q = set w_tl)"
- using Cons V by (auto simp:wq_def Let_def True split:if_splits)
- moreover have "set ... \<subseteq> set (wq s cs)"
- proof(rule someI2)
- show "distinct w_tl \<and> set w_tl = set w_tl"
- by (metis distinct.simps(2) local.Cons wq_distinct)
- qed (insert Cons True, auto)
- ultimately show ?thesis by simp
- qed
- with assms show ?thesis by auto
- qed (insert assms V True, auto simp:wq_def Let_def split:if_splits)
- qed (insert assms V, auto simp:wq_def Let_def split:if_splits)
- thus ?thesis by auto
-qed (insert assms, auto simp:wq_def Let_def split:if_splits)
-
-end
-
-lemma (in valid_trace_create)
- th_not_in_threads: "th \<notin> threads s"
-proof -
- from pip_e[unfolded is_create]
- show ?thesis by (cases, simp)
-qed
-
-lemma (in valid_trace_create)
- threads_es [simp]: "threads (e#s) = threads s \<union> {th}"
- by (unfold is_create, simp)
-
-lemma (in valid_trace_exit)
- threads_es [simp]: "threads (e#s) = threads s - {th}"
- by (unfold is_exit, simp)
-
-lemma (in valid_trace_p)
- threads_es [simp]: "threads (e#s) = threads s"
- by (unfold is_p, simp)
-
-lemma (in valid_trace_v)
- threads_es [simp]: "threads (e#s) = threads s"
- by (unfold is_v, simp)
-
-lemma (in valid_trace_v)
- th_not_in_rest[simp]: "th \<notin> set rest"
-proof
- assume otherwise: "th \<in> set rest"
- have "distinct (wq s cs)" by (simp add: wq_distinct)
- from this[unfolded wq_s_cs] and otherwise
- show False by auto
-qed
-
-lemma (in valid_trace_v) distinct_rest: "distinct rest"
- by (simp add: distinct_tl rest_def wq_distinct)
-
-lemma (in valid_trace_v)
- set_wq_es_cs [simp]: "set (wq (e#s) cs) = set (wq s cs) - {th}"
-proof(unfold wq_es_cs wq'_def, rule someI2)
- show "distinct rest \<and> set rest = set rest"
- by (simp add: distinct_rest)
-next
- fix x
- assume "distinct x \<and> set x = set rest"
- thus "set x = set (wq s cs) - {th}"
- by (unfold wq_s_cs, simp)
-qed
-
-lemma (in valid_trace_exit)
- th_not_in_wq: "th \<notin> set (wq s cs)"
-proof -
- from pip_e[unfolded is_exit]
- show ?thesis
- by (cases, unfold holdents_def s_holding_def, fold wq_def,
- auto elim!:runing_wqE)
-qed
-
-lemma (in valid_trace) wq_threads:
- assumes "th \<in> set (wq s cs)"
- shows "th \<in> threads s"
- using assms
-proof(induct rule:ind)
- case (Nil)
- thus ?case by (auto simp:wq_def)
-next
- case (Cons s e)
- interpret vt_e: valid_trace_e s e using Cons by simp
- show ?case
- proof(cases e)
- case (Create th' prio')
- interpret vt: valid_trace_create s e th' prio'
- using Create by (unfold_locales, simp)
- show ?thesis
- using Cons.hyps(2) Cons.prems by auto
- next
- case (Exit th')
- interpret vt: valid_trace_exit s e th'
- using Exit by (unfold_locales, simp)
- show ?thesis
- using Cons.hyps(2) Cons.prems vt.th_not_in_wq by auto
- next
- case (P th' cs')
- interpret vt: valid_trace_p s e th' cs'
- using P by (unfold_locales, simp)
- show ?thesis
- using Cons.hyps(2) Cons.prems readys_threads
- runing_ready vt.is_p vt.runing_th_s vt_e.wq_in_inv
- by fastforce
- next
- case (V th' cs')
- interpret vt: valid_trace_v s e th' cs'
- using V by (unfold_locales, simp)
- show ?thesis using Cons
- using vt.is_v vt.threads_es vt_e.wq_in_inv by blast
- next
- case (Set th' prio)
- interpret vt: valid_trace_set s e th' prio
- using Set by (unfold_locales, simp)
- show ?thesis using Cons.hyps(2) Cons.prems vt.is_set
- by (auto simp:wq_def Let_def)
- qed
-qed
-
-section {* RAG and threads *}
-
-context valid_trace
-begin
-
-lemma dm_RAG_threads:
- assumes in_dom: "(Th th) \<in> Domain (RAG s)"
- shows "th \<in> threads s"
-proof -
- from in_dom obtain n where "(Th th, n) \<in> RAG s" by auto
- moreover from RAG_target_th[OF this] obtain cs where "n = Cs cs" by auto
- ultimately have "(Th th, Cs cs) \<in> RAG s" by simp
- hence "th \<in> set (wq s cs)"
- by (unfold s_RAG_def, auto simp:cs_waiting_def)
- from wq_threads [OF this] show ?thesis .
-qed
-
-lemma rg_RAG_threads:
- assumes "(Th th) \<in> Range (RAG s)"
- shows "th \<in> threads s"
- using assms
- by (unfold s_RAG_def cs_waiting_def cs_holding_def,
- auto intro:wq_threads)
-
-lemma RAG_threads:
- assumes "(Th th) \<in> Field (RAG s)"
- shows "th \<in> threads s"
- using assms
- by (metis Field_def UnE dm_RAG_threads rg_RAG_threads)
-
-end
-
-section {* The change of @{term RAG} *}
-
-text {*
- The following three lemmas show that @{text "RAG"} does not change
- by the happening of @{text "Set"}, @{text "Create"} and @{text "Exit"}
- events, respectively.
-*}
-
-lemma (in valid_trace_set) RAG_unchanged [simp]: "(RAG (e # s)) = RAG s"
- by (unfold is_set s_RAG_def s_waiting_def wq_def, simp add:Let_def)
-
-lemma (in valid_trace_create) RAG_unchanged [simp]: "(RAG (e # s)) = RAG s"
- by (unfold is_create s_RAG_def s_waiting_def wq_def, simp add:Let_def)
-
-lemma (in valid_trace_exit) RAG_unchanged[simp]: "(RAG (e # s)) = RAG s"
- by (unfold is_exit s_RAG_def s_waiting_def wq_def, simp add:Let_def)
-
-context valid_trace_v
-begin
-
-lemma holding_cs_eq_th:
- assumes "holding s t cs"
- shows "t = th"
-proof -
- from pip_e[unfolded is_v]
- show ?thesis
- proof(cases)
- case (thread_V)
- from held_unique[OF this(2) assms]
- show ?thesis by simp
- qed
-qed
-
-lemma distinct_wq': "distinct wq'"
- by (metis (mono_tags, lifting) distinct_rest some_eq_ex wq'_def)
-
-lemma set_wq': "set wq' = set rest"
- by (metis (mono_tags, lifting) distinct_rest some_eq_ex wq'_def)
-
-lemma th'_in_inv:
- assumes "th' \<in> set wq'"
- shows "th' \<in> set rest"
- using assms set_wq' by simp
-
-lemma runing_th_s:
- shows "th \<in> runing s"
-proof -
- from pip_e[unfolded is_v]
- show ?thesis by (cases, simp)
-qed
-
-lemma neq_t_th:
- assumes "waiting (e#s) t c"
- shows "t \<noteq> th"
-proof
- assume otherwise: "t = th"
- show False
- proof(cases "c = cs")
- case True
- have "t \<in> set wq'"
- using assms[unfolded True s_waiting_def, folded wq_def, unfolded wq_es_cs]
- by simp
- from th'_in_inv[OF this] have "t \<in> set rest" .
- with wq_s_cs[folded otherwise] wq_distinct[of cs]
- show ?thesis by simp
- next
- case False
- have "wq (e#s) c = wq s c" using False
- by (unfold is_v, simp)
- hence "waiting s t c" using assms
- by (simp add: cs_waiting_def waiting_eq)
- hence "t \<notin> readys s" by (unfold readys_def, auto)
- hence "t \<notin> runing s" using runing_ready by auto
- with runing_th_s[folded otherwise] show ?thesis by auto
- qed
-qed
-
-lemma waiting_esI1:
- assumes "waiting s t c"
- and "c \<noteq> cs"
- shows "waiting (e#s) t c"
-proof -
- have "wq (e#s) c = wq s c"
- using assms(2) is_v by auto
- with assms(1) show ?thesis
- using cs_waiting_def waiting_eq by auto
-qed
-
-lemma holding_esI2:
- assumes "c \<noteq> cs"
- and "holding s t c"
- shows "holding (e#s) t c"
-proof -
- from assms(1) have "wq (e#s) c = wq s c" using is_v by auto
- from assms(2)[unfolded s_holding_def, folded wq_def,
- folded this, unfolded wq_def, folded s_holding_def]
- show ?thesis .
-qed
-
-lemma holding_esI1:
- assumes "holding s t c"
- and "t \<noteq> th"
- shows "holding (e#s) t c"
-proof -
- have "c \<noteq> cs" using assms using holding_cs_eq_th by blast
- from holding_esI2[OF this assms(1)]
- show ?thesis .
-qed
-
-end
-
-context valid_trace_v_n
-begin
-
-lemma neq_wq': "wq' \<noteq> []"
-proof (unfold wq'_def, rule someI2)
- show "distinct rest \<and> set rest = set rest"
- by (simp add: distinct_rest)
-next
- fix x
- assume " distinct x \<and> set x = set rest"
- thus "x \<noteq> []" using rest_nnl by auto
-qed
-
-lemma eq_wq': "wq' = taker # rest'"
- by (simp add: neq_wq' rest'_def taker_def)
-
-lemma next_th_taker:
- shows "next_th s th cs taker"
- using rest_nnl taker_def wq'_def wq_s_cs
- by (auto simp:next_th_def)
-
-lemma taker_unique:
- assumes "next_th s th cs taker'"
- shows "taker' = taker"
-proof -
- from assms
- obtain rest' where
- h: "wq s cs = th # rest'"
- "taker' = hd (SOME q. distinct q \<and> set q = set rest')"
- by (unfold next_th_def, auto)
- with wq_s_cs have "rest' = rest" by auto
- thus ?thesis using h(2) taker_def wq'_def by auto
-qed
-
-lemma waiting_set_eq:
- "{(Th th', Cs cs) |th'. next_th s th cs th'} = {(Th taker, Cs cs)}"
- by (smt all_not_in_conv bot.extremum insertI1 insert_subset
- mem_Collect_eq next_th_taker subsetI subset_antisym taker_def taker_unique)
-
-lemma holding_set_eq:
- "{(Cs cs, Th th') |th'. next_th s th cs th'} = {(Cs cs, Th taker)}"
- using next_th_taker taker_def waiting_set_eq
- by fastforce
-
-lemma holding_taker:
- shows "holding (e#s) taker cs"
- by (unfold s_holding_def, fold wq_def, unfold wq_es_cs,
- auto simp:neq_wq' taker_def)
-
-lemma waiting_esI2:
- assumes "waiting s t cs"
- and "t \<noteq> taker"
- shows "waiting (e#s) t cs"
-proof -
- have "t \<in> set wq'"
- proof(unfold wq'_def, rule someI2)
- show "distinct rest \<and> set rest = set rest"
- by (simp add: distinct_rest)
- next
- fix x
- assume "distinct x \<and> set x = set rest"
- moreover have "t \<in> set rest"
- using assms(1) cs_waiting_def waiting_eq wq_s_cs by auto
- ultimately show "t \<in> set x" by simp
- qed
- moreover have "t \<noteq> hd wq'"
- using assms(2) taker_def by auto
- ultimately show ?thesis
- by (unfold s_waiting_def, fold wq_def, unfold wq_es_cs, simp)
-qed
-
-lemma waiting_esE:
- assumes "waiting (e#s) t c"
- obtains "c \<noteq> cs" "waiting s t c"
- | "c = cs" "t \<noteq> taker" "waiting s t cs" "t \<in> set rest'"
-proof(cases "c = cs")
- case False
- hence "wq (e#s) c = wq s c" using is_v by auto
- with assms have "waiting s t c" using cs_waiting_def waiting_eq by auto
- from that(1)[OF False this] show ?thesis .
-next
- case True
- from assms[unfolded s_waiting_def True, folded wq_def, unfolded wq_es_cs]
- have "t \<noteq> hd wq'" "t \<in> set wq'" by auto
- hence "t \<noteq> taker" by (simp add: taker_def)
- moreover hence "t \<noteq> th" using assms neq_t_th by blast
- moreover have "t \<in> set rest" by (simp add: `t \<in> set wq'` th'_in_inv)
- ultimately have "waiting s t cs"
- by (metis cs_waiting_def list.distinct(2) list.sel(1)
- list.set_sel(2) rest_def waiting_eq wq_s_cs)
- show ?thesis using that(2)
- using True `t \<in> set wq'` `t \<noteq> taker` `waiting s t cs` eq_wq' by auto
-qed
-
-lemma holding_esI1:
- assumes "c = cs"
- and "t = taker"
- shows "holding (e#s) t c"
- by (unfold assms, simp add: holding_taker)
-
-lemma holding_esE:
- assumes "holding (e#s) t c"
- obtains "c = cs" "t = taker"
- | "c \<noteq> cs" "holding s t c"
-proof(cases "c = cs")
- case True
- from assms[unfolded True, unfolded s_holding_def,
- folded wq_def, unfolded wq_es_cs]
- have "t = taker" by (simp add: taker_def)
- from that(1)[OF True this] show ?thesis .
-next
- case False
- hence "wq (e#s) c = wq s c" using is_v by auto
- from assms[unfolded s_holding_def, folded wq_def,
- unfolded this, unfolded wq_def, folded s_holding_def]
- have "holding s t c" .
- from that(2)[OF False this] show ?thesis .
-qed
-
-end
-
-
-context valid_trace_v_e
-begin
-
-lemma nil_wq': "wq' = []"
-proof (unfold wq'_def, rule someI2)
- show "distinct rest \<and> set rest = set rest"
- by (simp add: distinct_rest)
-next
- fix x
- assume " distinct x \<and> set x = set rest"
- thus "x = []" using rest_nil by auto
-qed
-
-lemma no_taker:
- assumes "next_th s th cs taker"
- shows "False"
-proof -
- from assms[unfolded next_th_def]
- obtain rest' where "wq s cs = th # rest'" "rest' \<noteq> []"
- by auto
- thus ?thesis using rest_def rest_nil by auto
-qed
-
-lemma waiting_set_eq:
- "{(Th th', Cs cs) |th'. next_th s th cs th'} = {}"
- using no_taker by auto
-
-lemma holding_set_eq:
- "{(Cs cs, Th th') |th'. next_th s th cs th'} = {}"
- using no_taker by auto
-
-lemma no_holding:
- assumes "holding (e#s) taker cs"
- shows False
-proof -
- from wq_es_cs[unfolded nil_wq']
- have " wq (e # s) cs = []" .
- from assms[unfolded s_holding_def, folded wq_def, unfolded this]
- show ?thesis by auto
-qed
-
-lemma no_waiting:
- assumes "waiting (e#s) t cs"
- shows False
-proof -
- from wq_es_cs[unfolded nil_wq']
- have " wq (e # s) cs = []" .
- from assms[unfolded s_waiting_def, folded wq_def, unfolded this]
- show ?thesis by auto
-qed
-
-lemma waiting_esI2:
- assumes "waiting s t c"
- shows "waiting (e#s) t c"
-proof -
- have "c \<noteq> cs" using assms
- using cs_waiting_def rest_nil waiting_eq wq_s_cs by auto
- from waiting_esI1[OF assms this]
- show ?thesis .
-qed
-
-lemma waiting_esE:
- assumes "waiting (e#s) t c"
- obtains "c \<noteq> cs" "waiting s t c"
-proof(cases "c = cs")
- case False
- hence "wq (e#s) c = wq s c" using is_v by auto
- with assms have "waiting s t c" using cs_waiting_def waiting_eq by auto
- from that(1)[OF False this] show ?thesis .
-next
- case True
- from no_waiting[OF assms[unfolded True]]
- show ?thesis by auto
-qed
-
-lemma holding_esE:
- assumes "holding (e#s) t c"
- obtains "c \<noteq> cs" "holding s t c"
-proof(cases "c = cs")
- case True
- from no_holding[OF assms[unfolded True]]
- show ?thesis by auto
-next
- case False
- hence "wq (e#s) c = wq s c" using is_v by auto
- from assms[unfolded s_holding_def, folded wq_def,
- unfolded this, unfolded wq_def, folded s_holding_def]
- have "holding s t c" .
- from that[OF False this] show ?thesis .
-qed
-
-end
-
-
-context valid_trace_v
-begin
-
-lemma RAG_es:
- "RAG (e # s) =
- RAG s - {(Cs cs, Th th)} -
- {(Th th', Cs cs) |th'. next_th s th cs th'} \<union>
- {(Cs cs, Th th') |th'. next_th s th cs th'}" (is "?L = ?R")
-proof(rule rel_eqI)
- fix n1 n2
- assume "(n1, n2) \<in> ?L"
- thus "(n1, n2) \<in> ?R"
- proof(cases rule:in_RAG_E)
- case (waiting th' cs')
- show ?thesis
- proof(cases "rest = []")
- case False
- interpret h_n: valid_trace_v_n s e th cs
- by (unfold_locales, insert False, simp)
- from waiting(3)
- show ?thesis
- proof(cases rule:h_n.waiting_esE)
- case 1
- with waiting(1,2)
- show ?thesis
- by (unfold h_n.waiting_set_eq h_n.holding_set_eq s_RAG_def,
- fold waiting_eq, auto)
- next
- case 2
- with waiting(1,2)
- show ?thesis
- by (unfold h_n.waiting_set_eq h_n.holding_set_eq s_RAG_def,
- fold waiting_eq, auto)
- qed
- next
- case True
- interpret h_e: valid_trace_v_e s e th cs
- by (unfold_locales, insert True, simp)
- from waiting(3)
- show ?thesis
- proof(cases rule:h_e.waiting_esE)
- case 1
- with waiting(1,2)
- show ?thesis
- by (unfold h_e.waiting_set_eq h_e.holding_set_eq s_RAG_def,
- fold waiting_eq, auto)
- qed
- qed
- next
- case (holding th' cs')
- show ?thesis
- proof(cases "rest = []")
- case False
- interpret h_n: valid_trace_v_n s e th cs
- by (unfold_locales, insert False, simp)
- from holding(3)
- show ?thesis
- proof(cases rule:h_n.holding_esE)
- case 1
- with holding(1,2)
- show ?thesis
- by (unfold h_n.waiting_set_eq h_n.holding_set_eq s_RAG_def,
- fold waiting_eq, auto)
- next
- case 2
- with holding(1,2)
- show ?thesis
- by (unfold h_n.waiting_set_eq h_n.holding_set_eq s_RAG_def,
- fold holding_eq, auto)
- qed
- next
- case True
- interpret h_e: valid_trace_v_e s e th cs
- by (unfold_locales, insert True, simp)
- from holding(3)
- show ?thesis
- proof(cases rule:h_e.holding_esE)
- case 1
- with holding(1,2)
- show ?thesis
- by (unfold h_e.waiting_set_eq h_e.holding_set_eq s_RAG_def,
- fold holding_eq, auto)
- qed
- qed
- qed
-next
- fix n1 n2
- assume h: "(n1, n2) \<in> ?R"
- show "(n1, n2) \<in> ?L"
- proof(cases "rest = []")
- case False
- interpret h_n: valid_trace_v_n s e th cs
- by (unfold_locales, insert False, simp)
- from h[unfolded h_n.waiting_set_eq h_n.holding_set_eq]
- have "((n1, n2) \<in> RAG s \<and> (n1 \<noteq> Cs cs \<or> n2 \<noteq> Th th)
- \<and> (n1 \<noteq> Th h_n.taker \<or> n2 \<noteq> Cs cs)) \<or>
- (n2 = Th h_n.taker \<and> n1 = Cs cs)"
- by auto
- thus ?thesis
- proof
- assume "n2 = Th h_n.taker \<and> n1 = Cs cs"
- with h_n.holding_taker
- show ?thesis
- by (unfold s_RAG_def, fold holding_eq, auto)
- next
- assume h: "(n1, n2) \<in> RAG s \<and>
- (n1 \<noteq> Cs cs \<or> n2 \<noteq> Th th) \<and> (n1 \<noteq> Th h_n.taker \<or> n2 \<noteq> Cs cs)"
- hence "(n1, n2) \<in> RAG s" by simp
- thus ?thesis
- proof(cases rule:in_RAG_E)
- case (waiting th' cs')
- from h and this(1,2)
- have "th' \<noteq> h_n.taker \<or> cs' \<noteq> cs" by auto
- hence "waiting (e#s) th' cs'"
- proof
- assume "cs' \<noteq> cs"
- from waiting_esI1[OF waiting(3) this]
- show ?thesis .
- next
- assume neq_th': "th' \<noteq> h_n.taker"
- show ?thesis
- proof(cases "cs' = cs")
- case False
- from waiting_esI1[OF waiting(3) this]
- show ?thesis .
- next
- case True
- from h_n.waiting_esI2[OF waiting(3)[unfolded True] neq_th', folded True]
- show ?thesis .
- qed
- qed
- thus ?thesis using waiting(1,2)
- by (unfold s_RAG_def, fold waiting_eq, auto)
- next
- case (holding th' cs')
- from h this(1,2)
- have "cs' \<noteq> cs \<or> th' \<noteq> th" by auto
- hence "holding (e#s) th' cs'"
- proof
- assume "cs' \<noteq> cs"
- from holding_esI2[OF this holding(3)]
- show ?thesis .
- next
- assume "th' \<noteq> th"
- from holding_esI1[OF holding(3) this]
- show ?thesis .
- qed
- thus ?thesis using holding(1,2)
- by (unfold s_RAG_def, fold holding_eq, auto)
- qed
- qed
- next
- case True
- interpret h_e: valid_trace_v_e s e th cs
- by (unfold_locales, insert True, simp)
- from h[unfolded h_e.waiting_set_eq h_e.holding_set_eq]
- have h_s: "(n1, n2) \<in> RAG s" "(n1, n2) \<noteq> (Cs cs, Th th)"
- by auto
- from h_s(1)
- show ?thesis
- proof(cases rule:in_RAG_E)
- case (waiting th' cs')
- from h_e.waiting_esI2[OF this(3)]
- show ?thesis using waiting(1,2)
- by (unfold s_RAG_def, fold waiting_eq, auto)
- next
- case (holding th' cs')
- with h_s(2)
- have "cs' \<noteq> cs \<or> th' \<noteq> th" by auto
- thus ?thesis
- proof
- assume neq_cs: "cs' \<noteq> cs"
- from holding_esI2[OF this holding(3)]
- show ?thesis using holding(1,2)
- by (unfold s_RAG_def, fold holding_eq, auto)
- next
- assume "th' \<noteq> th"
- from holding_esI1[OF holding(3) this]
- show ?thesis using holding(1,2)
- by (unfold s_RAG_def, fold holding_eq, auto)
- qed
- qed
- qed
-qed
-
-lemma
- finite_RAG_kept:
- assumes "finite (RAG s)"
- shows "finite (RAG (e#s))"
-proof(cases "rest = []")
- case True
- interpret vt: valid_trace_v_e using True
- by (unfold_locales, simp)
- show ?thesis using assms
- by (unfold RAG_es vt.waiting_set_eq vt.holding_set_eq, simp)
-next
- case False
- interpret vt: valid_trace_v_n using False
- by (unfold_locales, simp)
- show ?thesis using assms
- by (unfold RAG_es vt.waiting_set_eq vt.holding_set_eq, simp)
-qed
-
-end
-
-context valid_trace_p
-begin
-
-lemma waiting_kept:
- assumes "waiting s th' cs'"
- shows "waiting (e#s) th' cs'"
- using assms
- by (metis cs_waiting_def hd_append2 list.sel(1) list.set_intros(2)
- rotate1.simps(2) self_append_conv2 set_rotate1
- th_not_in_wq waiting_eq wq_es_cs wq_neq_simp)
-
-lemma holding_kept:
- assumes "holding s th' cs'"
- shows "holding (e#s) th' cs'"
-proof(cases "cs' = cs")
- case False
- hence "wq (e#s) cs' = wq s cs'" by simp
- with assms show ?thesis using cs_holding_def holding_eq by auto
-next
- case True
- from assms[unfolded s_holding_def, folded wq_def]
- obtain rest where eq_wq: "wq s cs' = th'#rest"
- by (metis empty_iff list.collapse list.set(1))
- hence "wq (e#s) cs' = th'#(rest@[th])"
- by (simp add: True wq_es_cs)
- thus ?thesis
- by (simp add: cs_holding_def holding_eq)
-qed
-end
-
-lemma (in valid_trace_p) th_not_waiting: "\<not> waiting s th c"
-proof -
- have "th \<in> readys s"
- using runing_ready runing_th_s by blast
- thus ?thesis
- by (unfold readys_def, auto)
-qed
-
-context valid_trace_p_h
-begin
-
-lemma wq_es_cs': "wq (e#s) cs = [th]"
- using wq_es_cs[unfolded we] by simp
-
-lemma holding_es_th_cs:
- shows "holding (e#s) th cs"
-proof -
- from wq_es_cs'
- have "th \<in> set (wq (e#s) cs)" "th = hd (wq (e#s) cs)" by auto
- thus ?thesis using cs_holding_def holding_eq by blast
-qed
-
-lemma RAG_edge: "(Cs cs, Th th) \<in> RAG (e#s)"
- by (unfold s_RAG_def, fold holding_eq, insert holding_es_th_cs, auto)
-
-lemma waiting_esE:
- assumes "waiting (e#s) th' cs'"
- obtains "waiting s th' cs'"
- using assms
- by (metis cs_waiting_def event.distinct(15) is_p list.sel(1)
- set_ConsD waiting_eq we wq_es_cs' wq_neq_simp wq_out_inv)
-
-lemma holding_esE:
- assumes "holding (e#s) th' cs'"
- obtains "cs' \<noteq> cs" "holding s th' cs'"
- | "cs' = cs" "th' = th"
-proof(cases "cs' = cs")
- case True
- from held_unique[OF holding_es_th_cs assms[unfolded True]]
- have "th' = th" by simp
- from that(2)[OF True this] show ?thesis .
-next
- case False
- have "holding s th' cs'" using assms
- using False cs_holding_def holding_eq by auto
- from that(1)[OF False this] show ?thesis .
-qed
-
-lemma RAG_es: "RAG (e # s) = RAG s \<union> {(Cs cs, Th th)}" (is "?L = ?R")
-proof(rule rel_eqI)
- fix n1 n2
- assume "(n1, n2) \<in> ?L"
- thus "(n1, n2) \<in> ?R"
- proof(cases rule:in_RAG_E)
- case (waiting th' cs')
- from this(3)
- show ?thesis
- proof(cases rule:waiting_esE)
- case 1
- thus ?thesis using waiting(1,2)
- by (unfold s_RAG_def, fold waiting_eq, auto)
- qed
- next
- case (holding th' cs')
- from this(3)
- show ?thesis
- proof(cases rule:holding_esE)
- case 1
- with holding(1,2)
- show ?thesis by (unfold s_RAG_def, fold holding_eq, auto)
- next
- case 2
- with holding(1,2) show ?thesis by auto
- qed
- qed
-next
- fix n1 n2
- assume "(n1, n2) \<in> ?R"
- hence "(n1, n2) \<in> RAG s \<or> (n1 = Cs cs \<and> n2 = Th th)" by auto
- thus "(n1, n2) \<in> ?L"
- proof
- assume "(n1, n2) \<in> RAG s"
- thus ?thesis
- proof(cases rule:in_RAG_E)
- case (waiting th' cs')
- from waiting_kept[OF this(3)]
- show ?thesis using waiting(1,2)
- by (unfold s_RAG_def, fold waiting_eq, auto)
- next
- case (holding th' cs')
- from holding_kept[OF this(3)]
- show ?thesis using holding(1,2)
- by (unfold s_RAG_def, fold holding_eq, auto)
- qed
- next
- assume "n1 = Cs cs \<and> n2 = Th th"
- with holding_es_th_cs
- show ?thesis
- by (unfold s_RAG_def, fold holding_eq, auto)
- qed
-qed
-
-end
-
-context valid_trace_p_w
-begin
-
-lemma wq_s_cs: "wq s cs = holder#waiters"
- by (simp add: holder_def waiters_def wne)
-
-lemma wq_es_cs': "wq (e#s) cs = holder#waiters@[th]"
- by (simp add: wq_es_cs wq_s_cs)
-
-lemma waiting_es_th_cs: "waiting (e#s) th cs"
- using cs_waiting_def th_not_in_wq waiting_eq wq_es_cs' wq_s_cs by auto
-
-lemma RAG_edge: "(Th th, Cs cs) \<in> RAG (e#s)"
- by (unfold s_RAG_def, fold waiting_eq, insert waiting_es_th_cs, auto)
-
-lemma holding_esE:
- assumes "holding (e#s) th' cs'"
- obtains "holding s th' cs'"
- using assms
-proof(cases "cs' = cs")
- case False
- hence "wq (e#s) cs' = wq s cs'" by simp
- with assms show ?thesis
- using cs_holding_def holding_eq that by auto
-next
- case True
- with assms show ?thesis
- by (metis cs_holding_def holding_eq list.sel(1) list.set_intros(1) that
- wq_es_cs' wq_s_cs)
-qed
-
-lemma waiting_esE:
- assumes "waiting (e#s) th' cs'"
- obtains "th' \<noteq> th" "waiting s th' cs'"
- | "th' = th" "cs' = cs"
-proof(cases "waiting s th' cs'")
- case True
- have "th' \<noteq> th"
- proof
- assume otherwise: "th' = th"
- from True[unfolded this]
- show False by (simp add: th_not_waiting)
- qed
- from that(1)[OF this True] show ?thesis .
-next
- case False
- hence "th' = th \<and> cs' = cs"
- by (metis assms cs_waiting_def holder_def list.sel(1) rotate1.simps(2)
- set_ConsD set_rotate1 waiting_eq wq_es_cs wq_es_cs' wq_neq_simp)
- with that(2) show ?thesis by metis
-qed
-
-lemma RAG_es: "RAG (e # s) = RAG s \<union> {(Th th, Cs cs)}" (is "?L = ?R")
-proof(rule rel_eqI)
- fix n1 n2
- assume "(n1, n2) \<in> ?L"
- thus "(n1, n2) \<in> ?R"
- proof(cases rule:in_RAG_E)
- case (waiting th' cs')
- from this(3)
- show ?thesis
- proof(cases rule:waiting_esE)
- case 1
- thus ?thesis using waiting(1,2)
- by (unfold s_RAG_def, fold waiting_eq, auto)
- next
- case 2
- thus ?thesis using waiting(1,2) by auto
- qed
- next
- case (holding th' cs')
- from this(3)
- show ?thesis
- proof(cases rule:holding_esE)
- case 1
- with holding(1,2)
- show ?thesis by (unfold s_RAG_def, fold holding_eq, auto)
- qed
- qed
-next
- fix n1 n2
- assume "(n1, n2) \<in> ?R"
- hence "(n1, n2) \<in> RAG s \<or> (n1 = Th th \<and> n2 = Cs cs)" by auto
- thus "(n1, n2) \<in> ?L"
- proof
- assume "(n1, n2) \<in> RAG s"
- thus ?thesis
- proof(cases rule:in_RAG_E)
- case (waiting th' cs')
- from waiting_kept[OF this(3)]
- show ?thesis using waiting(1,2)
- by (unfold s_RAG_def, fold waiting_eq, auto)
- next
- case (holding th' cs')
- from holding_kept[OF this(3)]
- show ?thesis using holding(1,2)
- by (unfold s_RAG_def, fold holding_eq, auto)
- qed
- next
- assume "n1 = Th th \<and> n2 = Cs cs"
- thus ?thesis using RAG_edge by auto
- qed
-qed
-
-end
-
-context valid_trace_p
-begin
-
-lemma RAG_es: "RAG (e # s) = (if (wq s cs = []) then RAG s \<union> {(Cs cs, Th th)}
- else RAG s \<union> {(Th th, Cs cs)})"
-proof(cases "wq s cs = []")
- case True
- interpret vt_p: valid_trace_p_h using True
- by (unfold_locales, simp)
- show ?thesis by (simp add: vt_p.RAG_es vt_p.we)
-next
- case False
- interpret vt_p: valid_trace_p_w using False
- by (unfold_locales, simp)
- show ?thesis by (simp add: vt_p.RAG_es vt_p.wne)
-qed
-
-end
-
-section {* Finiteness of RAG *}
-
-context valid_trace
-begin
-
-lemma finite_RAG:
- shows "finite (RAG s)"
-proof(induct rule:ind)
- case Nil
- show ?case
- by (auto simp: s_RAG_def cs_waiting_def
- cs_holding_def wq_def acyclic_def)
-next
- case (Cons s e)
- interpret vt_e: valid_trace_e s e using Cons by simp
- show ?case
- proof(cases e)
- case (Create th prio)
- interpret vt: valid_trace_create s e th prio using Create
- by (unfold_locales, simp)
- show ?thesis using Cons by simp
- next
- case (Exit th)
- interpret vt: valid_trace_exit s e th using Exit
- by (unfold_locales, simp)
- show ?thesis using Cons by simp
- next
- case (P th cs)
- interpret vt: valid_trace_p s e th cs using P
- by (unfold_locales, simp)
- show ?thesis using Cons using vt.RAG_es by auto
- next
- case (V th cs)
- interpret vt: valid_trace_v s e th cs using V
- by (unfold_locales, simp)
- show ?thesis using Cons by (simp add: vt.finite_RAG_kept)
- next
- case (Set th prio)
- interpret vt: valid_trace_set s e th prio using Set
- by (unfold_locales, simp)
- show ?thesis using Cons by simp
- qed
-qed
-end
-
-section {* RAG is acyclic *}
-
-text {* (* ddd *)
- The nature of the work is like this: since it starts from a very simple and basic
- model, even intuitively very `basic` and `obvious` properties need to derived from scratch.
- For instance, the fact
- that one thread can not be blocked by two critical resources at the same time
- is obvious, because only running threads can make new requests, if one is waiting for
- a critical resource and get blocked, it can not make another resource request and get
- blocked the second time (because it is not running).
-
- To derive this fact, one needs to prove by contraction and
- reason about time (or @{text "moement"}). The reasoning is based on a generic theorem
- named @{text "p_split"}, which is about status changing along the time axis. It says if
- a condition @{text "Q"} is @{text "True"} at a state @{text "s"},
- but it was @{text "False"} at the very beginning, then there must exits a moment @{text "t"}
- in the history of @{text "s"} (notice that @{text "s"} itself is essentially the history
- of events leading to it), such that @{text "Q"} switched
- from being @{text "False"} to @{text "True"} and kept being @{text "True"}
- till the last moment of @{text "s"}.
-
- Suppose a thread @{text "th"} is blocked
- on @{text "cs1"} and @{text "cs2"} in some state @{text "s"},
- since no thread is blocked at the very beginning, by applying
- @{text "p_split"} to these two blocking facts, there exist
- two moments @{text "t1"} and @{text "t2"} in @{text "s"}, such that
- @{text "th"} got blocked on @{text "cs1"} and @{text "cs2"}
- and kept on blocked on them respectively ever since.
-
- Without lost of generality, we assume @{text "t1"} is earlier than @{text "t2"}.
- However, since @{text "th"} was blocked ever since memonent @{text "t1"}, so it was still
- in blocked state at moment @{text "t2"} and could not
- make any request and get blocked the second time: Contradiction.
-*}
-
-
-context valid_trace
-begin
-
-lemma waiting_unique_pre: (* ddd *)
- assumes h11: "thread \<in> set (wq s cs1)"
- and h12: "thread \<noteq> hd (wq s cs1)"
- assumes h21: "thread \<in> set (wq s cs2)"
- and h22: "thread \<noteq> hd (wq s cs2)"
- and neq12: "cs1 \<noteq> cs2"
- shows "False"
-proof -
- let "?Q" = "\<lambda> cs s. thread \<in> set (wq s cs) \<and> thread \<noteq> hd (wq s cs)"
- from h11 and h12 have q1: "?Q cs1 s" by simp
- from h21 and h22 have q2: "?Q cs2 s" by simp
- have nq1: "\<not> ?Q cs1 []" by (simp add:wq_def)
- have nq2: "\<not> ?Q cs2 []" by (simp add:wq_def)
- from p_split [of "?Q cs1", OF q1 nq1]
- obtain t1 where lt1: "t1 < length s"
- and np1: "\<not> ?Q cs1 (moment t1 s)"
- and nn1: "(\<forall>i'>t1. ?Q cs1 (moment i' s))" by auto
- from p_split [of "?Q cs2", OF q2 nq2]
- obtain t2 where lt2: "t2 < length s"
- and np2: "\<not> ?Q cs2 (moment t2 s)"
- and nn2: "(\<forall>i'>t2. ?Q cs2 (moment i' s))" by auto
- { fix s cs
- assume q: "?Q cs s"
- have "thread \<notin> runing s"
- proof
- assume "thread \<in> runing s"
- hence " \<forall>cs. \<not> (thread \<in> set (wq_fun (schs s) cs) \<and>
- thread \<noteq> hd (wq_fun (schs s) cs))"
- by (unfold runing_def s_waiting_def readys_def, auto)
- from this[rule_format, of cs] q
- show False by (simp add: wq_def)
- qed
- } note q_not_runing = this
- { fix t1 t2 cs1 cs2
- assume lt1: "t1 < length s"
- and np1: "\<not> ?Q cs1 (moment t1 s)"
- and nn1: "(\<forall>i'>t1. ?Q cs1 (moment i' s))"
- and lt2: "t2 < length s"
- and np2: "\<not> ?Q cs2 (moment t2 s)"
- and nn2: "(\<forall>i'>t2. ?Q cs2 (moment i' s))"
- and lt12: "t1 < t2"
- let ?t3 = "Suc t2"
- interpret ve2: valid_moment_e _ t2 using lt2
- by (unfold_locales, simp)
- let ?e = ve2.next_e
- have "t2 < ?t3" by simp
- from nn2 [rule_format, OF this] and ve2.trace_e
- have h1: "thread \<in> set (wq (?e#moment t2 s) cs2)" and
- h2: "thread \<noteq> hd (wq (?e#moment t2 s) cs2)" by auto
- have ?thesis
- proof -
- have "thread \<in> runing (moment t2 s)"
- proof(cases "thread \<in> set (wq (moment t2 s) cs2)")
- case True
- have "?e = V thread cs2"
- proof -
- have eq_th: "thread = hd (wq (moment t2 s) cs2)"
- using True and np2 by auto
- thus ?thesis
- using True h2 ve2.vat_moment_e.wq_out_inv by blast
- qed
- thus ?thesis
- using step.cases ve2.vat_moment_e.pip_e by auto
- next
- case False
- hence "?e = P thread cs2"
- using h1 ve2.vat_moment_e.wq_in_inv by blast
- thus ?thesis
- using step.cases ve2.vat_moment_e.pip_e by auto
- qed
- moreover have "thread \<notin> runing (moment t2 s)"
- by (rule q_not_runing[OF nn1[rule_format, OF lt12]])
- ultimately show ?thesis by simp
- qed
- } note lt_case = this
- show ?thesis
- proof -
- { assume "t1 < t2"
- from lt_case[OF lt1 np1 nn1 lt2 np2 nn2 this]
- have ?thesis .
- } moreover {
- assume "t2 < t1"
- from lt_case[OF lt2 np2 nn2 lt1 np1 nn1 this]
- have ?thesis .
- } moreover {
- assume eq_12: "t1 = t2"
- let ?t3 = "Suc t2"
- interpret ve2: valid_moment_e _ t2 using lt2
- by (unfold_locales, simp)
- let ?e = ve2.next_e
- have "t2 < ?t3" by simp
- from nn2 [rule_format, OF this] and ve2.trace_e
- have h1: "thread \<in> set (wq (?e#moment t2 s) cs2)" by auto
- have lt_2: "t2 < ?t3" by simp
- from nn2 [rule_format, OF this] and ve2.trace_e
- have h1: "thread \<in> set (wq (?e#moment t2 s) cs2)" and
- h2: "thread \<noteq> hd (wq (?e#moment t2 s) cs2)" by auto
- from nn1[rule_format, OF lt_2[folded eq_12], unfolded ve2.trace_e[folded eq_12]]
- eq_12[symmetric]
- have g1: "thread \<in> set (wq (?e#moment t1 s) cs1)" and
- g2: "thread \<noteq> hd (wq (?e#moment t1 s) cs1)" by auto
- have "?e = V thread cs2 \<or> ?e = P thread cs2"
- using h1 h2 np2 ve2.vat_moment_e.wq_in_inv
- ve2.vat_moment_e.wq_out_inv by blast
- moreover have "?e = V thread cs1 \<or> ?e = P thread cs1"
- using eq_12 g1 g2 np1 ve2.vat_moment_e.wq_in_inv
- ve2.vat_moment_e.wq_out_inv by blast
- ultimately have ?thesis using neq12 by auto
- } ultimately show ?thesis using nat_neq_iff by blast
- qed
-qed
-
-text {*
- This lemma is a simple corrolary of @{text "waiting_unique_pre"}.
-*}
-
-lemma waiting_unique:
- assumes "waiting s th cs1"
- and "waiting s th cs2"
- shows "cs1 = cs2"
- using waiting_unique_pre assms
- unfolding wq_def s_waiting_def
- by auto
-
-end
-
-lemma (in valid_trace_v)
- preced_es [simp]: "preced th (e#s) = preced th s"
- by (unfold is_v preced_def, simp)
-
-lemma the_preced_v[simp]: "the_preced (V th cs#s) = the_preced s"
-proof
- fix th'
- show "the_preced (V th cs # s) th' = the_preced s th'"
- by (unfold the_preced_def preced_def, simp)
-qed
-
-
-lemma (in valid_trace_v)
- the_preced_es: "the_preced (e#s) = the_preced s"
- by (unfold is_v preced_def, simp)
-
-context valid_trace_p
-begin
-
-lemma not_holding_s_th_cs: "\<not> holding s th cs"
-proof
- assume otherwise: "holding s th cs"
- from pip_e[unfolded is_p]
- show False
- proof(cases)
- case (thread_P)
- moreover have "(Cs cs, Th th) \<in> RAG s"
- using otherwise cs_holding_def
- holding_eq th_not_in_wq by auto
- ultimately show ?thesis by auto
- qed
-qed
-
-end
-
-
-lemma (in valid_trace_v_n) finite_waiting_set:
- "finite {(Th th', Cs cs) |th'. next_th s th cs th'}"
- by (simp add: waiting_set_eq)
-
-lemma (in valid_trace_v_n) finite_holding_set:
- "finite {(Cs cs, Th th') |th'. next_th s th cs th'}"
- by (simp add: holding_set_eq)
-
-lemma (in valid_trace_v_e) finite_waiting_set:
- "finite {(Th th', Cs cs) |th'. next_th s th cs th'}"
- by (simp add: waiting_set_eq)
-
-lemma (in valid_trace_v_e) finite_holding_set:
- "finite {(Cs cs, Th th') |th'. next_th s th cs th'}"
- by (simp add: holding_set_eq)
-
-
-context valid_trace_v_e
-begin
-
-lemma
- acylic_RAG_kept:
- assumes "acyclic (RAG s)"
- shows "acyclic (RAG (e#s))"
-proof(rule acyclic_subset[OF assms])
- show "RAG (e # s) \<subseteq> RAG s"
- by (unfold RAG_es waiting_set_eq holding_set_eq, auto)
-qed
-
-end
-
-context valid_trace_v_n
-begin
-
-lemma waiting_taker: "waiting s taker cs"
- apply (unfold s_waiting_def, fold wq_def, unfold wq_s_cs taker_def)
- using eq_wq' th'_in_inv wq'_def by fastforce
-
-lemma
- acylic_RAG_kept:
- assumes "acyclic (RAG s)"
- shows "acyclic (RAG (e#s))"
-proof -
- have "acyclic ((RAG s - {(Cs cs, Th th)} - {(Th taker, Cs cs)}) \<union>
- {(Cs cs, Th taker)})" (is "acyclic (?A \<union> _)")
- proof -
- from assms
- have "acyclic ?A"
- by (rule acyclic_subset, auto)
- moreover have "(Th taker, Cs cs) \<notin> ?A^*"
- proof
- assume otherwise: "(Th taker, Cs cs) \<in> ?A^*"
- hence "(Th taker, Cs cs) \<in> ?A^+"
- by (unfold rtrancl_eq_or_trancl, auto)
- from tranclD[OF this]
- obtain cs' where h: "(Th taker, Cs cs') \<in> ?A"
- "(Th taker, Cs cs') \<in> RAG s"
- by (unfold s_RAG_def, auto)
- from this(2) have "waiting s taker cs'"
- by (unfold s_RAG_def, fold waiting_eq, auto)
- from waiting_unique[OF this waiting_taker]
- have "cs' = cs" .
- from h(1)[unfolded this] show False by auto
- qed
- ultimately show ?thesis by auto
- qed
- thus ?thesis
- by (unfold RAG_es waiting_set_eq holding_set_eq, simp)
-qed
-
-end
-
-context valid_trace_p_h
-begin
-
-lemma
- acylic_RAG_kept:
- assumes "acyclic (RAG s)"
- shows "acyclic (RAG (e#s))"
-proof -
- have "acyclic (RAG s \<union> {(Cs cs, Th th)})" (is "acyclic (?A \<union> _)")
- proof -
- from assms
- have "acyclic ?A"
- by (rule acyclic_subset, auto)
- moreover have "(Th th, Cs cs) \<notin> ?A^*"
- proof
- assume otherwise: "(Th th, Cs cs) \<in> ?A^*"
- hence "(Th th, Cs cs) \<in> ?A^+"
- by (unfold rtrancl_eq_or_trancl, auto)
- from tranclD[OF this]
- obtain cs' where h: "(Th th, Cs cs') \<in> RAG s"
- by (unfold s_RAG_def, auto)
- hence "waiting s th cs'"
- by (unfold s_RAG_def, fold waiting_eq, auto)
- with th_not_waiting show False by auto
- qed
- ultimately show ?thesis by auto
- qed
- thus ?thesis by (unfold RAG_es, simp)
-qed
-
-end
-
-context valid_trace_p_w
-begin
-
-lemma
- acylic_RAG_kept:
- assumes "acyclic (RAG s)"
- shows "acyclic (RAG (e#s))"
-proof -
- have "acyclic (RAG s \<union> {(Th th, Cs cs)})" (is "acyclic (?A \<union> _)")
- proof -
- from assms
- have "acyclic ?A"
- by (rule acyclic_subset, auto)
- moreover have "(Cs cs, Th th) \<notin> ?A^*"
- proof
- assume otherwise: "(Cs cs, Th th) \<in> ?A^*"
- from pip_e[unfolded is_p]
- show False
- proof(cases)
- case (thread_P)
- moreover from otherwise have "(Cs cs, Th th) \<in> ?A^+"
- by (unfold rtrancl_eq_or_trancl, auto)
- ultimately show ?thesis by auto
- qed
- qed
- ultimately show ?thesis by auto
- qed
- thus ?thesis by (unfold RAG_es, simp)
-qed
-
-end
-
-context valid_trace
-begin
-
-lemma acyclic_RAG:
- shows "acyclic (RAG s)"
-proof(induct rule:ind)
- case Nil
- show ?case
- by (auto simp: s_RAG_def cs_waiting_def
- cs_holding_def wq_def acyclic_def)
-next
- case (Cons s e)
- interpret vt_e: valid_trace_e s e using Cons by simp
- show ?case
- proof(cases e)
- case (Create th prio)
- interpret vt: valid_trace_create s e th prio using Create
- by (unfold_locales, simp)
- show ?thesis using Cons by simp
- next
- case (Exit th)
- interpret vt: valid_trace_exit s e th using Exit
- by (unfold_locales, simp)
- show ?thesis using Cons by simp
- next
- case (P th cs)
- interpret vt: valid_trace_p s e th cs using P
- by (unfold_locales, simp)
- show ?thesis
- proof(cases "wq s cs = []")
- case True
- then interpret vt_h: valid_trace_p_h s e th cs
- by (unfold_locales, simp)
- show ?thesis using Cons by (simp add: vt_h.acylic_RAG_kept)
- next
- case False
- then interpret vt_w: valid_trace_p_w s e th cs
- by (unfold_locales, simp)
- show ?thesis using Cons by (simp add: vt_w.acylic_RAG_kept)
- qed
- next
- case (V th cs)
- interpret vt: valid_trace_v s e th cs using V
- by (unfold_locales, simp)
- show ?thesis
- proof(cases "vt.rest = []")
- case True
- then interpret vt_e: valid_trace_v_e s e th cs
- by (unfold_locales, simp)
- show ?thesis by (simp add: Cons.hyps(2) vt_e.acylic_RAG_kept)
- next
- case False
- then interpret vt_n: valid_trace_v_n s e th cs
- by (unfold_locales, simp)
- show ?thesis by (simp add: Cons.hyps(2) vt_n.acylic_RAG_kept)
- qed
- next
- case (Set th prio)
- interpret vt: valid_trace_set s e th prio using Set
- by (unfold_locales, simp)
- show ?thesis using Cons by simp
- qed
-qed
-
-end
-
-section {* RAG is single-valued *}
-
-context valid_trace
-begin
-
-lemma unique_RAG: "\<lbrakk>(n, n1) \<in> RAG s; (n, n2) \<in> RAG s\<rbrakk> \<Longrightarrow> n1 = n2"
- apply(unfold s_RAG_def, auto, fold waiting_eq holding_eq)
- by(auto elim:waiting_unique held_unique)
-
-lemma sgv_RAG: "single_valued (RAG s)"
- using unique_RAG by (auto simp:single_valued_def)
-
-end
-
-section {* RAG is well-founded *}
-
-context valid_trace
-begin
-
-lemma wf_RAG: "wf (RAG s)"
-proof(rule finite_acyclic_wf)
- from finite_RAG show "finite (RAG s)" .
-next
- from acyclic_RAG show "acyclic (RAG s)" .
-qed
-
-lemma wf_RAG_converse:
- shows "wf ((RAG s)^-1)"
-proof(rule finite_acyclic_wf_converse)
- from finite_RAG
- show "finite (RAG s)" .
-next
- from acyclic_RAG
- show "acyclic (RAG s)" .
-qed
-
-end
-
-section {* RAG forms a forest (or tree) *}
-
-context valid_trace
-begin
-
-lemma rtree_RAG: "rtree (RAG s)"
- using sgv_RAG acyclic_RAG
- by (unfold rtree_def rtree_axioms_def sgv_def, auto)
-
-end
-
-sublocale valid_trace < rtree_RAG: rtree "RAG s"
- using rtree_RAG .
-
-sublocale valid_trace < fsbtRAGs : fsubtree "RAG s"
-proof -
- show "fsubtree (RAG s)"
- proof(intro_locales)
- show "fbranch (RAG s)" using finite_fbranchI[OF finite_RAG] .
- next
- show "fsubtree_axioms (RAG s)"
- proof(unfold fsubtree_axioms_def)
- from wf_RAG show "wf (RAG s)" .
- qed
- qed
-qed
-
-
-section {* Derived properties for parts of RAG *}
-
-context valid_trace
-begin
-
-lemma acyclic_tRAG: "acyclic (tRAG s)"
-proof(unfold tRAG_def, rule acyclic_compose)
- show "acyclic (RAG s)" using acyclic_RAG .
-next
- show "wRAG s \<subseteq> RAG s" unfolding RAG_split by auto
-next
- show "hRAG s \<subseteq> RAG s" unfolding RAG_split by auto
-qed
-
-lemma sgv_wRAG: "single_valued (wRAG s)"
- using waiting_unique
- by (unfold single_valued_def wRAG_def, auto)
-
-lemma sgv_hRAG: "single_valued (hRAG s)"
- using held_unique
- by (unfold single_valued_def hRAG_def, auto)
-
-lemma sgv_tRAG: "single_valued (tRAG s)"
- by (unfold tRAG_def, rule single_valued_relcomp,
- insert sgv_wRAG sgv_hRAG, auto)
-
-end
-
-sublocale valid_trace < rtree_s: rtree "tRAG s"
-proof(unfold_locales)
- from sgv_tRAG show "single_valued (tRAG s)" .
-next
- from acyclic_tRAG show "acyclic (tRAG s)" .
-qed
-
-sublocale valid_trace < fsbttRAGs: fsubtree "tRAG s"
-proof -
- have "fsubtree (tRAG s)"
- proof -
- have "fbranch (tRAG s)"
- proof(unfold tRAG_def, rule fbranch_compose)
- show "fbranch (wRAG s)"
- proof(rule finite_fbranchI)
- from finite_RAG show "finite (wRAG s)"
- by (unfold RAG_split, auto)
- qed
- next
- show "fbranch (hRAG s)"
- proof(rule finite_fbranchI)
- from finite_RAG
- show "finite (hRAG s)" by (unfold RAG_split, auto)
- qed
- qed
- moreover have "wf (tRAG s)"
- proof(rule wf_subset)
- show "wf (RAG s O RAG s)" using wf_RAG
- by (fold wf_comp_self, simp)
- next
- show "tRAG s \<subseteq> (RAG s O RAG s)"
- by (unfold tRAG_alt_def, auto)
- qed
- ultimately show ?thesis
- by (unfold fsubtree_def fsubtree_axioms_def,auto)
- qed
- from this[folded tRAG_def] show "fsubtree (tRAG s)" .
-qed
-
-lemma tRAG_nodeE:
- assumes "(n1, n2) \<in> tRAG s"
- obtains th1 th2 where "n1 = Th th1" "n2 = Th th2"
- using assms
- by (auto simp: tRAG_def wRAG_def hRAG_def)
-
-lemma tRAG_ancestorsE:
- assumes "x \<in> ancestors (tRAG s) u"
- obtains th where "x = Th th"
-proof -
- from assms have "(u, x) \<in> (tRAG s)^+"
- by (unfold ancestors_def, auto)
- from tranclE[OF this] obtain c where "(c, x) \<in> tRAG s" by auto
- then obtain th where "x = Th th"
- by (unfold tRAG_alt_def, auto)
- from that[OF this] show ?thesis .
-qed
-
-lemma subtree_nodeE:
- assumes "n \<in> subtree (tRAG s) (Th th)"
- obtains th1 where "n = Th th1"
-proof -
- show ?thesis
- proof(rule subtreeE[OF assms])
- assume "n = Th th"
- from that[OF this] show ?thesis .
- next
- assume "Th th \<in> ancestors (tRAG s) n"
- hence "(n, Th th) \<in> (tRAG s)^+" by (auto simp:ancestors_def)
- hence "\<exists> th1. n = Th th1"
- proof(induct)
- case (base y)
- from tRAG_nodeE[OF this] show ?case by metis
- next
- case (step y z)
- thus ?case by auto
- qed
- with that show ?thesis by auto
- qed
-qed
-
-lemma tRAG_star_RAG: "(tRAG s)^* \<subseteq> (RAG s)^*"
-proof -
- have "(wRAG s O hRAG s)^* \<subseteq> (RAG s O RAG s)^*"
- by (rule rtrancl_mono, auto simp:RAG_split)
- also have "... \<subseteq> ((RAG s)^*)^*"
- by (rule rtrancl_mono, auto)
- also have "... = (RAG s)^*" by simp
- finally show ?thesis by (unfold tRAG_def, simp)
-qed
-
-lemma tRAG_subtree_RAG: "subtree (tRAG s) x \<subseteq> subtree (RAG s) x"
-proof -
- { fix a
- assume "a \<in> subtree (tRAG s) x"
- hence "(a, x) \<in> (tRAG s)^*" by (auto simp:subtree_def)
- with tRAG_star_RAG
- have "(a, x) \<in> (RAG s)^*" by auto
- hence "a \<in> subtree (RAG s) x" by (auto simp:subtree_def)
- } thus ?thesis by auto
-qed
-
-lemma tRAG_trancl_eq:
- "{th'. (Th th', Th th) \<in> (tRAG s)^+} =
- {th'. (Th th', Th th) \<in> (RAG s)^+}"
- (is "?L = ?R")
-proof -
- { fix th'
- assume "th' \<in> ?L"
- hence "(Th th', Th th) \<in> (tRAG s)^+" by auto
- from tranclD[OF this]
- obtain z where h: "(Th th', z) \<in> tRAG s" "(z, Th th) \<in> (tRAG s)\<^sup>*" by auto
- from tRAG_subtree_RAG and this(2)
- have "(z, Th th) \<in> (RAG s)^*" by (meson subsetCE tRAG_star_RAG)
- moreover from h(1) have "(Th th', z) \<in> (RAG s)^+" using tRAG_alt_def by auto
- ultimately have "th' \<in> ?R" by auto
- } moreover
- { fix th'
- assume "th' \<in> ?R"
- hence "(Th th', Th th) \<in> (RAG s)^+" by (auto)
- from plus_rpath[OF this]
- obtain xs where rp: "rpath (RAG s) (Th th') xs (Th th)" "xs \<noteq> []" by auto
- hence "(Th th', Th th) \<in> (tRAG s)^+"
- proof(induct xs arbitrary:th' th rule:length_induct)
- case (1 xs th' th)
- then obtain x1 xs1 where Cons1: "xs = x1#xs1" by (cases xs, auto)
- show ?case
- proof(cases "xs1")
- case Nil
- from 1(2)[unfolded Cons1 Nil]
- have rp: "rpath (RAG s) (Th th') [x1] (Th th)" .
- hence "(Th th', x1) \<in> (RAG s)"
- by (cases, auto)
- then obtain cs where "x1 = Cs cs"
- by (unfold s_RAG_def, auto)
- from rpath_nnl_lastE[OF rp[unfolded this]]
- show ?thesis by auto
- next
- case (Cons x2 xs2)
- from 1(2)[unfolded Cons1[unfolded this]]
- have rp: "rpath (RAG s) (Th th') (x1 # x2 # xs2) (Th th)" .
- from rpath_edges_on[OF this]
- have eds: "edges_on (Th th' # x1 # x2 # xs2) \<subseteq> RAG s" .
- have "(Th th', x1) \<in> edges_on (Th th' # x1 # x2 # xs2)"
- by (simp add: edges_on_unfold)
- with eds have rg1: "(Th th', x1) \<in> RAG s" by auto
- then obtain cs1 where eq_x1: "x1 = Cs cs1" by (unfold s_RAG_def, auto)
- have "(x1, x2) \<in> edges_on (Th th' # x1 # x2 # xs2)"
- by (simp add: edges_on_unfold)
- from this eds
- have rg2: "(x1, x2) \<in> RAG s" by auto
- from this[unfolded eq_x1]
- obtain th1 where eq_x2: "x2 = Th th1" by (unfold s_RAG_def, auto)
- from rg1[unfolded eq_x1] rg2[unfolded eq_x1 eq_x2]
- have rt1: "(Th th', Th th1) \<in> tRAG s" by (unfold tRAG_alt_def, auto)
- from rp have "rpath (RAG s) x2 xs2 (Th th)"
- by (elim rpath_ConsE, simp)
- from this[unfolded eq_x2] have rp': "rpath (RAG s) (Th th1) xs2 (Th th)" .
- show ?thesis
- proof(cases "xs2 = []")
- case True
- from rpath_nilE[OF rp'[unfolded this]]
- have "th1 = th" by auto
- from rt1[unfolded this] show ?thesis by auto
- next
- case False
- from 1(1)[rule_format, OF _ rp' this, unfolded Cons1 Cons]
- have "(Th th1, Th th) \<in> (tRAG s)\<^sup>+" by simp
- with rt1 show ?thesis by auto
- qed
- qed
- qed
- hence "th' \<in> ?L" by auto
- } ultimately show ?thesis by blast
-qed
-
-lemma tRAG_trancl_eq_Th:
- "{Th th' | th'. (Th th', Th th) \<in> (tRAG s)^+} =
- {Th th' | th'. (Th th', Th th) \<in> (RAG s)^+}"
- using tRAG_trancl_eq by auto
-
-
-lemma tRAG_Field:
- "Field (tRAG s) \<subseteq> Field (RAG s)"
- by (unfold tRAG_alt_def Field_def, auto)
-
-lemma tRAG_mono:
- assumes "RAG s' \<subseteq> RAG s"
- shows "tRAG s' \<subseteq> tRAG s"
- using assms
- by (unfold tRAG_alt_def, auto)
-
-lemma tRAG_subtree_eq:
- "(subtree (tRAG s) (Th th)) = {Th th' | th'. Th th' \<in> (subtree (RAG s) (Th th))}"
- (is "?L = ?R")
-proof -
- { fix n
- assume h: "n \<in> ?L"
- hence "n \<in> ?R"
- by (smt mem_Collect_eq subsetCE subtree_def subtree_nodeE tRAG_subtree_RAG)
- } moreover {
- fix n
- assume "n \<in> ?R"
- then obtain th' where h: "n = Th th'" "(Th th', Th th) \<in> (RAG s)^*"
- by (auto simp:subtree_def)
- from rtranclD[OF this(2)]
- have "n \<in> ?L"
- proof
- assume "Th th' \<noteq> Th th \<and> (Th th', Th th) \<in> (RAG s)\<^sup>+"
- with h have "n \<in> {Th th' | th'. (Th th', Th th) \<in> (RAG s)^+}" by auto
- thus ?thesis using subtree_def tRAG_trancl_eq by fastforce
- qed (insert h, auto simp:subtree_def)
- } ultimately show ?thesis by auto
-qed
-
-lemma threads_set_eq:
- "the_thread ` (subtree (tRAG s) (Th th)) =
- {th'. Th th' \<in> (subtree (RAG s) (Th th))}" (is "?L = ?R")
- by (auto intro:rev_image_eqI simp:tRAG_subtree_eq)
-
-context valid_trace
-begin
-
-lemma RAG_tRAG_transfer:
- assumes "RAG s' = RAG s \<union> {(Th th, Cs cs)}"
- and "(Cs cs, Th th'') \<in> RAG s"
- shows "tRAG s' = tRAG s \<union> {(Th th, Th th'')}" (is "?L = ?R")
-proof -
- { fix n1 n2
- assume "(n1, n2) \<in> ?L"
- from this[unfolded tRAG_alt_def]
- obtain th1 th2 cs' where
- h: "n1 = Th th1" "n2 = Th th2"
- "(Th th1, Cs cs') \<in> RAG s'"
- "(Cs cs', Th th2) \<in> RAG s'" by auto
- from h(4) and assms(1) have cs_in: "(Cs cs', Th th2) \<in> RAG s" by auto
- from h(3) and assms(1)
- have "(Th th1, Cs cs') = (Th th, Cs cs) \<or>
- (Th th1, Cs cs') \<in> RAG s" by auto
- hence "(n1, n2) \<in> ?R"
- proof
- assume h1: "(Th th1, Cs cs') = (Th th, Cs cs)"
- hence eq_th1: "th1 = th" by simp
- moreover have "th2 = th''"
- proof -
- from h1 have "cs' = cs" by simp
- from assms(2) cs_in[unfolded this]
- show ?thesis using unique_RAG by auto
- qed
- ultimately show ?thesis using h(1,2) by auto
- next
- assume "(Th th1, Cs cs') \<in> RAG s"
- with cs_in have "(Th th1, Th th2) \<in> tRAG s"
- by (unfold tRAG_alt_def, auto)
- from this[folded h(1, 2)] show ?thesis by auto
- qed
- } moreover {
- fix n1 n2
- assume "(n1, n2) \<in> ?R"
- hence "(n1, n2) \<in>tRAG s \<or> (n1, n2) = (Th th, Th th'')" by auto
- hence "(n1, n2) \<in> ?L"
- proof
- assume "(n1, n2) \<in> tRAG s"
- moreover have "... \<subseteq> ?L"
- proof(rule tRAG_mono)
- show "RAG s \<subseteq> RAG s'" by (unfold assms(1), auto)
- qed
- ultimately show ?thesis by auto
- next
- assume eq_n: "(n1, n2) = (Th th, Th th'')"
- from assms(1, 2) have "(Cs cs, Th th'') \<in> RAG s'" by auto
- moreover have "(Th th, Cs cs) \<in> RAG s'" using assms(1) by auto
- ultimately show ?thesis
- by (unfold eq_n tRAG_alt_def, auto)
- qed
- } ultimately show ?thesis by auto
-qed
-
-lemma subtree_tRAG_thread:
- assumes "th \<in> threads s"
- shows "subtree (tRAG s) (Th th) \<subseteq> Th ` threads s" (is "?L \<subseteq> ?R")
-proof -
- have "?L = {Th th' |th'. Th th' \<in> subtree (RAG s) (Th th)}"
- by (unfold tRAG_subtree_eq, simp)
- also have "... \<subseteq> ?R"
- proof
- fix x
- assume "x \<in> {Th th' |th'. Th th' \<in> subtree (RAG s) (Th th)}"
- then obtain th' where h: "x = Th th'" "Th th' \<in> subtree (RAG s) (Th th)" by auto
- from this(2)
- show "x \<in> ?R"
- proof(cases rule:subtreeE)
- case 1
- thus ?thesis by (simp add: assms h(1))
- next
- case 2
- thus ?thesis by (metis ancestors_Field dm_RAG_threads h(1) image_eqI)
- qed
- qed
- finally show ?thesis .
-qed
-
-lemma dependants_alt_def:
- "dependants s th = {th'. (Th th', Th th) \<in> (tRAG s)^+}"
- by (metis eq_RAG s_dependants_def tRAG_trancl_eq)
-
-lemma dependants_alt_def1:
- "dependants (s::state) th = {th'. (Th th', Th th) \<in> (RAG s)^+}"
- using dependants_alt_def tRAG_trancl_eq by auto
-
-end
-
-section {* Chain to readys *}
-
-context valid_trace
-begin
-
-lemma chain_building:
- assumes "node \<in> Domain (RAG s)"
- obtains th' where "th' \<in> readys s" "(node, Th th') \<in> (RAG s)^+"
-proof -
- from assms have "node \<in> Range ((RAG s)^-1)" by auto
- from wf_base[OF wf_RAG_converse this]
- obtain b where h_b: "(b, node) \<in> ((RAG s)\<inverse>)\<^sup>+" "\<forall>c. (c, b) \<notin> (RAG s)\<inverse>" by auto
- obtain th' where eq_b: "b = Th th'"
- proof(cases b)
- case (Cs cs)
- from h_b(1)[unfolded trancl_converse]
- have "(node, b) \<in> ((RAG s)\<^sup>+)" by auto
- from tranclE[OF this]
- obtain n where "(n, b) \<in> RAG s" by auto
- from this[unfolded Cs]
- obtain th1 where "waiting s th1 cs"
- by (unfold s_RAG_def, fold waiting_eq, auto)
- from waiting_holding[OF this]
- obtain th2 where "holding s th2 cs" .
- hence "(Cs cs, Th th2) \<in> RAG s"
- by (unfold s_RAG_def, fold holding_eq, auto)
- with h_b(2)[unfolded Cs, rule_format]
- have False by auto
- thus ?thesis by auto
- qed auto
- have "th' \<in> readys s"
- proof -
- from h_b(2)[unfolded eq_b]
- have "\<forall>cs. \<not> waiting s th' cs"
- by (unfold s_RAG_def, fold waiting_eq, auto)
- moreover have "th' \<in> threads s"
- proof(rule rg_RAG_threads)
- from tranclD[OF h_b(1), unfolded eq_b]
- obtain z where "(z, Th th') \<in> (RAG s)" by auto
- thus "Th th' \<in> Range (RAG s)" by auto
- qed
- ultimately show ?thesis by (auto simp:readys_def)
- qed
- moreover have "(node, Th th') \<in> (RAG s)^+"
- using h_b(1)[unfolded trancl_converse] eq_b by auto
- ultimately show ?thesis using that by metis
-qed
-
-text {* \noindent
- The following is just an instance of @{text "chain_building"}.
-*}
-lemma th_chain_to_ready:
- assumes th_in: "th \<in> threads s"
- shows "th \<in> readys s \<or> (\<exists> th'. th' \<in> readys s \<and> (Th th, Th th') \<in> (RAG s)^+)"
-proof(cases "th \<in> readys s")
- case True
- thus ?thesis by auto
-next
- case False
- from False and th_in have "Th th \<in> Domain (RAG s)"
- by (auto simp:readys_def s_waiting_def s_RAG_def wq_def cs_waiting_def Domain_def)
- from chain_building [rule_format, OF this]
- show ?thesis by auto
-qed
-
-lemma finite_subtree_threads:
- "finite {th'. Th th' \<in> subtree (RAG s) (Th th)}" (is "finite ?A")
-proof -
- have "?A = the_thread ` {Th th' | th' . Th th' \<in> subtree (RAG s) (Th th)}"
- by (auto, insert image_iff, fastforce)
- moreover have "finite {Th th' | th' . Th th' \<in> subtree (RAG s) (Th th)}"
- (is "finite ?B")
- proof -
- have "?B = (subtree (RAG s) (Th th)) \<inter> {Th th' | th'. True}"
- by auto
- moreover have "... \<subseteq> (subtree (RAG s) (Th th))" by auto
- moreover have "finite ..." by (simp add: fsbtRAGs.finite_subtree)
- ultimately show ?thesis by auto
- qed
- ultimately show ?thesis by auto
-qed
-
-lemma runing_unique:
- assumes runing_1: "th1 \<in> runing s"
- and runing_2: "th2 \<in> runing s"
- shows "th1 = th2"
-proof -
- from runing_1 and runing_2 have "cp s th1 = cp s th2"
- unfolding runing_def by auto
- from this[unfolded cp_alt_def]
- have eq_max:
- "Max (the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th1)}) =
- Max (the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th2)})"
- (is "Max ?L = Max ?R") .
- have "Max ?L \<in> ?L"
- proof(rule Max_in)
- show "finite ?L" by (simp add: finite_subtree_threads)
- next
- show "?L \<noteq> {}" using subtree_def by fastforce
- qed
- then obtain th1' where
- h_1: "Th th1' \<in> subtree (RAG s) (Th th1)" "the_preced s th1' = Max ?L"
- by auto
- have "Max ?R \<in> ?R"
- proof(rule Max_in)
- show "finite ?R" by (simp add: finite_subtree_threads)
- next
- show "?R \<noteq> {}" using subtree_def by fastforce
- qed
- then obtain th2' where
- h_2: "Th th2' \<in> subtree (RAG s) (Th th2)" "the_preced s th2' = Max ?R"
- by auto
- have "th1' = th2'"
- proof(rule preced_unique)
- from h_1(1)
- show "th1' \<in> threads s"
- proof(cases rule:subtreeE)
- case 1
- hence "th1' = th1" by simp
- with runing_1 show ?thesis by (auto simp:runing_def readys_def)
- next
- case 2
- from this(2)
- have "(Th th1', Th th1) \<in> (RAG s)^+" by (auto simp:ancestors_def)
- from tranclD[OF this]
- have "(Th th1') \<in> Domain (RAG s)" by auto
- from dm_RAG_threads[OF this] show ?thesis .
- qed
- next
- from h_2(1)
- show "th2' \<in> threads s"
- proof(cases rule:subtreeE)
- case 1
- hence "th2' = th2" by simp
- with runing_2 show ?thesis by (auto simp:runing_def readys_def)
- next
- case 2
- from this(2)
- have "(Th th2', Th th2) \<in> (RAG s)^+" by (auto simp:ancestors_def)
- from tranclD[OF this]
- have "(Th th2') \<in> Domain (RAG s)" by auto
- from dm_RAG_threads[OF this] show ?thesis .
- qed
- next
- have "the_preced s th1' = the_preced s th2'"
- using eq_max h_1(2) h_2(2) by metis
- thus "preced th1' s = preced th2' s" by (simp add:the_preced_def)
- qed
- from h_1(1)[unfolded this]
- have star1: "(Th th2', Th th1) \<in> (RAG s)^*" by (auto simp:subtree_def)
- from h_2(1)[unfolded this]
- have star2: "(Th th2', Th th2) \<in> (RAG s)^*" by (auto simp:subtree_def)
- from star_rpath[OF star1] obtain xs1
- where rp1: "rpath (RAG s) (Th th2') xs1 (Th th1)"
- by auto
- from star_rpath[OF star2] obtain xs2
- where rp2: "rpath (RAG s) (Th th2') xs2 (Th th2)"
- by auto
- from rp1 rp2
- show ?thesis
- proof(cases)
- case (less_1 xs')
- moreover have "xs' = []"
- proof(rule ccontr)
- assume otherwise: "xs' \<noteq> []"
- from rpath_plus[OF less_1(3) this]
- have "(Th th1, Th th2) \<in> (RAG s)\<^sup>+" .
- from tranclD[OF this]
- obtain cs where "waiting s th1 cs"
- by (unfold s_RAG_def, fold waiting_eq, auto)
- with runing_1 show False
- by (unfold runing_def readys_def, auto)
- qed
- ultimately have "xs2 = xs1" by simp
- from rpath_dest_eq[OF rp1 rp2[unfolded this]]
- show ?thesis by simp
- next
- case (less_2 xs')
- moreover have "xs' = []"
- proof(rule ccontr)
- assume otherwise: "xs' \<noteq> []"
- from rpath_plus[OF less_2(3) this]
- have "(Th th2, Th th1) \<in> (RAG s)\<^sup>+" .
- from tranclD[OF this]
- obtain cs where "waiting s th2 cs"
- by (unfold s_RAG_def, fold waiting_eq, auto)
- with runing_2 show False
- by (unfold runing_def readys_def, auto)
- qed
- ultimately have "xs2 = xs1" by simp
- from rpath_dest_eq[OF rp1 rp2[unfolded this]]
- show ?thesis by simp
- qed
-qed
-
-lemma card_runing: "card (runing s) \<le> 1"
-proof(cases "runing s = {}")
- case True
- thus ?thesis by auto
-next
- case False
- then obtain th where [simp]: "th \<in> runing s" by auto
- from runing_unique[OF this]
- have "runing s = {th}" by auto
- thus ?thesis by auto
-qed
-
-end
-
-
-section {* Relating @{term cp} and @{term the_preced} and @{term preced} *}
-
-context valid_trace
-begin
-
-lemma le_cp:
- shows "preced th s \<le> cp s th"
- proof(unfold cp_alt_def, rule Max_ge)
- show "finite (the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th)})"
- by (simp add: finite_subtree_threads)
- next
- show "preced th s \<in> the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th)}"
- by (simp add: subtree_def the_preced_def)
- qed
-
-
-lemma cp_le:
- assumes th_in: "th \<in> threads s"
- shows "cp s th \<le> Max (the_preced s ` threads s)"
-proof(unfold cp_alt_def, rule Max_f_mono)
- show "finite (threads s)" by (simp add: finite_threads)
-next
- show " {th'. Th th' \<in> subtree (RAG s) (Th th)} \<noteq> {}"
- using subtree_def by fastforce
-next
- show "{th'. Th th' \<in> subtree (RAG s) (Th th)} \<subseteq> threads s"
- using assms
- by (smt Domain.DomainI dm_RAG_threads mem_Collect_eq
- node.inject(1) rtranclD subsetI subtree_def trancl_domain)
-qed
-
-lemma max_cp_eq:
- shows "Max ((cp s) ` threads s) = Max (the_preced s ` threads s)"
- (is "?L = ?R")
-proof -
- have "?L \<le> ?R"
- proof(cases "threads s = {}")
- case False
- show ?thesis
- by (rule Max.boundedI,
- insert cp_le,
- auto simp:finite_threads False)
- qed auto
- moreover have "?R \<le> ?L"
- by (rule Max_fg_mono,
- simp add: finite_threads,
- simp add: le_cp the_preced_def)
- ultimately show ?thesis by auto
-qed
-
-lemma threads_alt_def:
- "(threads s) = (\<Union> th \<in> readys s. {th'. Th th' \<in> subtree (RAG s) (Th th)})"
- (is "?L = ?R")
-proof -
- { fix th1
- assume "th1 \<in> ?L"
- from th_chain_to_ready[OF this]
- have "th1 \<in> readys s \<or> (\<exists>th'. th' \<in> readys s \<and> (Th th1, Th th') \<in> (RAG s)\<^sup>+)" .
- hence "th1 \<in> ?R" by (auto simp:subtree_def)
- } moreover
- { fix th'
- assume "th' \<in> ?R"
- then obtain th where h: "th \<in> readys s" " Th th' \<in> subtree (RAG s) (Th th)"
- by auto
- from this(2)
- have "th' \<in> ?L"
- proof(cases rule:subtreeE)
- case 1
- with h(1) show ?thesis by (auto simp:readys_def)
- next
- case 2
- from tranclD[OF this(2)[unfolded ancestors_def, simplified]]
- have "Th th' \<in> Domain (RAG s)" by auto
- from dm_RAG_threads[OF this]
- show ?thesis .
- qed
- } ultimately show ?thesis by auto
-qed
-
-
-text {* (* ccc *) \noindent
- Since the current precedence of the threads in ready queue will always be boosted,
- there must be one inside it has the maximum precedence of the whole system.
-*}
-lemma max_cp_readys_threads:
- shows "Max (cp s ` readys s) = Max (cp s ` threads s)" (is "?L = ?R")
-proof(cases "readys s = {}")
- case False
- have "?R = Max (the_preced s ` threads s)" by (unfold max_cp_eq, simp)
- also have "... =
- Max (the_preced s ` (\<Union>th\<in>readys s. {th'. Th th' \<in> subtree (RAG s) (Th th)}))"
- by (unfold threads_alt_def, simp)
- also have "... =
- Max ((\<Union>th\<in>readys s. the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th)}))"
- by (unfold image_UN, simp)
- also have "... =
- Max (Max ` (\<lambda>th. the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th)}) ` readys s)"
- proof(rule Max_UNION)
- show "\<forall>M\<in>(\<lambda>x. the_preced s `
- {th'. Th th' \<in> subtree (RAG s) (Th x)}) ` readys s. finite M"
- using finite_subtree_threads by auto
- qed (auto simp:False subtree_def)
- also have "... =
- Max ((Max \<circ> (\<lambda>th. the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th)})) ` readys s)"
- by (unfold image_comp, simp)
- also have "... = ?L" (is "Max (?f ` ?A) = Max (?g ` ?A)")
- proof -
- have "(?f ` ?A) = (?g ` ?A)"
- proof(rule f_image_eq)
- fix th1
- assume "th1 \<in> ?A"
- thus "?f th1 = ?g th1"
- by (unfold cp_alt_def, simp)
- qed
- thus ?thesis by simp
- qed
- finally show ?thesis by simp
-qed (auto simp:threads_alt_def)
-
-end
-
-section {* Relating @{term cntP}, @{term cntV}, @{term cntCS} and @{term pvD} *}
-
-context valid_trace_p_w
-begin
-
-lemma holding_s_holder: "holding s holder cs"
- by (unfold s_holding_def, fold wq_def, unfold wq_s_cs, auto)
-
-lemma holding_es_holder: "holding (e#s) holder cs"
- by (unfold s_holding_def, fold wq_def, unfold wq_es_cs wq_s_cs, auto)
-
-lemma holdents_es:
- shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R")
-proof -
- { fix cs'
- assume "cs' \<in> ?L"
- hence h: "holding (e#s) th' cs'" by (auto simp:holdents_def)
- have "holding s th' cs'"
- proof(cases "cs' = cs")
- case True
- from held_unique[OF h[unfolded True] holding_es_holder]
- have "th' = holder" .
- thus ?thesis
- by (unfold True holdents_def, insert holding_s_holder, simp)
- next
- case False
- hence "wq (e#s) cs' = wq s cs'" by simp
- from h[unfolded s_holding_def, folded wq_def, unfolded this]
- show ?thesis
- by (unfold s_holding_def, fold wq_def, auto)
- qed
- hence "cs' \<in> ?R" by (auto simp:holdents_def)
- } moreover {
- fix cs'
- assume "cs' \<in> ?R"
- hence h: "holding s th' cs'" by (auto simp:holdents_def)
- have "holding (e#s) th' cs'"
- proof(cases "cs' = cs")
- case True
- from held_unique[OF h[unfolded True] holding_s_holder]
- have "th' = holder" .
- thus ?thesis
- by (unfold True holdents_def, insert holding_es_holder, simp)
- next
- case False
- hence "wq s cs' = wq (e#s) cs'" by simp
- from h[unfolded s_holding_def, folded wq_def, unfolded this]
- show ?thesis
- by (unfold s_holding_def, fold wq_def, auto)
- qed
- hence "cs' \<in> ?L" by (auto simp:holdents_def)
- } ultimately show ?thesis by auto
-qed
-
-lemma cntCS_es_th[simp]: "cntCS (e#s) th' = cntCS s th'"
- by (unfold cntCS_def holdents_es, simp)
-
-lemma th_not_ready_es:
- shows "th \<notin> readys (e#s)"
- using waiting_es_th_cs
- by (unfold readys_def, auto)
-
-end
-
-lemma (in valid_trace) finite_holdents: "finite (holdents s th)"
- by (unfold holdents_alt_def, insert fsbtRAGs.finite_children, auto)
-
-context valid_trace_p
-begin
-
-lemma ready_th_s: "th \<in> readys s"
- using runing_th_s
- by (unfold runing_def, auto)
-
-lemma live_th_s: "th \<in> threads s"
- using readys_threads ready_th_s by auto
-
-lemma live_th_es: "th \<in> threads (e#s)"
- using live_th_s
- by (unfold is_p, simp)
-
-lemma waiting_neq_th:
- assumes "waiting s t c"
- shows "t \<noteq> th"
- using assms using th_not_waiting by blast
-
-end
-
-context valid_trace_p_h
-begin
-
-lemma th_not_waiting':
- "\<not> waiting (e#s) th cs'"
-proof(cases "cs' = cs")
- case True
- show ?thesis
- by (unfold True s_waiting_def, fold wq_def, unfold wq_es_cs', auto)
-next
- case False
- from th_not_waiting[of cs', unfolded s_waiting_def, folded wq_def]
- show ?thesis
- by (unfold s_waiting_def, fold wq_def, insert False, simp)
-qed
-
-lemma ready_th_es:
- shows "th \<in> readys (e#s)"
- using th_not_waiting'
- by (unfold readys_def, insert live_th_es, auto)
-
-lemma holdents_es_th:
- "holdents (e#s) th = (holdents s th) \<union> {cs}" (is "?L = ?R")
-proof -
- { fix cs'
- assume "cs' \<in> ?L"
- hence "holding (e#s) th cs'"
- by (unfold holdents_def, auto)
- hence "cs' \<in> ?R"
- by (cases rule:holding_esE, auto simp:holdents_def)
- } moreover {
- fix cs'
- assume "cs' \<in> ?R"
- hence "holding s th cs' \<or> cs' = cs"
- by (auto simp:holdents_def)
- hence "cs' \<in> ?L"
- proof
- assume "holding s th cs'"
- from holding_kept[OF this]
- show ?thesis by (auto simp:holdents_def)
- next
- assume "cs' = cs"
- thus ?thesis using holding_es_th_cs
- by (unfold holdents_def, auto)
- qed
- } ultimately show ?thesis by auto
-qed
-
-lemma cntCS_es_th: "cntCS (e#s) th = cntCS s th + 1"
-proof -
- have "card (holdents s th \<union> {cs}) = card (holdents s th) + 1"
- proof(subst card_Un_disjoint)
- show "holdents s th \<inter> {cs} = {}"
- using not_holding_s_th_cs by (auto simp:holdents_def)
- qed (auto simp:finite_holdents)
- thus ?thesis
- by (unfold cntCS_def holdents_es_th, simp)
-qed
-
-lemma no_holder:
- "\<not> holding s th' cs"
-proof
- assume otherwise: "holding s th' cs"
- from this[unfolded s_holding_def, folded wq_def, unfolded we]
- show False by auto
-qed
-
-lemma holdents_es_th':
- assumes "th' \<noteq> th"
- shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R")
-proof -
- { fix cs'
- assume "cs' \<in> ?L"
- hence h_e: "holding (e#s) th' cs'" by (auto simp:holdents_def)
- have "cs' \<noteq> cs"
- proof
- assume "cs' = cs"
- from held_unique[OF h_e[unfolded this] holding_es_th_cs]
- have "th' = th" .
- with assms show False by simp
- qed
- from h_e[unfolded s_holding_def, folded wq_def, unfolded wq_neq_simp[OF this]]
- have "th' \<in> set (wq s cs') \<and> th' = hd (wq s cs')" .
- hence "cs' \<in> ?R"
- by (unfold holdents_def s_holding_def, fold wq_def, auto)
- } moreover {
- fix cs'
- assume "cs' \<in> ?R"
- hence "holding s th' cs'" by (auto simp:holdents_def)
- from holding_kept[OF this]
- have "holding (e # s) th' cs'" .
- hence "cs' \<in> ?L"
- by (unfold holdents_def, auto)
- } ultimately show ?thesis by auto
-qed
-
-lemma cntCS_es_th'[simp]:
- assumes "th' \<noteq> th"
- shows "cntCS (e#s) th' = cntCS s th'"
- by (unfold cntCS_def holdents_es_th'[OF assms], simp)
-
-end
-
-context valid_trace_p
-begin
-
-lemma readys_kept1:
- assumes "th' \<noteq> th"
- and "th' \<in> readys (e#s)"
- shows "th' \<in> readys s"
-proof -
- { fix cs'
- assume wait: "waiting s th' cs'"
- have n_wait: "\<not> waiting (e#s) th' cs'"
- using assms(2)[unfolded readys_def] by auto
- have False
- proof(cases "cs' = cs")
- case False
- with n_wait wait
- show ?thesis
- by (unfold s_waiting_def, fold wq_def, auto)
- next
- case True
- show ?thesis
- proof(cases "wq s cs = []")
- case True
- then interpret vt: valid_trace_p_h
- by (unfold_locales, simp)
- show ?thesis using n_wait wait waiting_kept by auto
- next
- case False
- then interpret vt: valid_trace_p_w by (unfold_locales, simp)
- show ?thesis using n_wait wait waiting_kept by blast
- qed
- qed
- } with assms(2) show ?thesis
- by (unfold readys_def, auto)
-qed
-
-lemma readys_kept2:
- assumes "th' \<noteq> th"
- and "th' \<in> readys s"
- shows "th' \<in> readys (e#s)"
-proof -
- { fix cs'
- assume wait: "waiting (e#s) th' cs'"
- have n_wait: "\<not> waiting s th' cs'"
- using assms(2)[unfolded readys_def] by auto
- have False
- proof(cases "cs' = cs")
- case False
- with n_wait wait
- show ?thesis
- by (unfold s_waiting_def, fold wq_def, auto)
- next
- case True
- show ?thesis
- proof(cases "wq s cs = []")
- case True
- then interpret vt: valid_trace_p_h
- by (unfold_locales, simp)
- show ?thesis using n_wait vt.waiting_esE wait by blast
- next
- case False
- then interpret vt: valid_trace_p_w by (unfold_locales, simp)
- show ?thesis using assms(1) n_wait vt.waiting_esE wait by auto
- qed
- qed
- } with assms(2) show ?thesis
- by (unfold readys_def, auto)
-qed
-
-lemma readys_simp [simp]:
- assumes "th' \<noteq> th"
- shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)"
- using readys_kept1[OF assms] readys_kept2[OF assms]
- by metis
-
-lemma cnp_cnv_cncs_kept: (* ddd *)
- assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'"
- shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'"
-proof(cases "th' = th")
- case True
- note eq_th' = this
- show ?thesis
- proof(cases "wq s cs = []")
- case True
- then interpret vt: valid_trace_p_h by (unfold_locales, simp)
- show ?thesis
- using assms eq_th' is_p ready_th_s vt.cntCS_es_th vt.ready_th_es pvD_def by auto
- next
- case False
- then interpret vt: valid_trace_p_w by (unfold_locales, simp)
- show ?thesis
- using add.commute add.left_commute assms eq_th' is_p live_th_s
- ready_th_s vt.th_not_ready_es pvD_def
- apply (auto)
- by (fold is_p, simp)
- qed
-next
- case False
- note h_False = False
- thus ?thesis
- proof(cases "wq s cs = []")
- case True
- then interpret vt: valid_trace_p_h by (unfold_locales, simp)
- show ?thesis using assms
- by (insert True h_False pvD_def, auto split:if_splits,unfold is_p, auto)
- next
- case False
- then interpret vt: valid_trace_p_w by (unfold_locales, simp)
- show ?thesis using assms
- by (insert False h_False pvD_def, auto split:if_splits,unfold is_p, auto)
- qed
-qed
-
-end
-
-
-context valid_trace_v
-begin
-
-lemma holding_th_cs_s:
- "holding s th cs"
- by (unfold s_holding_def, fold wq_def, unfold wq_s_cs, auto)
-
-lemma th_ready_s [simp]: "th \<in> readys s"
- using runing_th_s
- by (unfold runing_def readys_def, auto)
-
-lemma th_live_s [simp]: "th \<in> threads s"
- using th_ready_s by (unfold readys_def, auto)
-
-lemma th_ready_es [simp]: "th \<in> readys (e#s)"
- using runing_th_s neq_t_th
- by (unfold is_v runing_def readys_def, auto)
-
-lemma th_live_es [simp]: "th \<in> threads (e#s)"
- using th_ready_es by (unfold readys_def, auto)
-
-lemma pvD_th_s[simp]: "pvD s th = 0"
- by (unfold pvD_def, simp)
-
-lemma pvD_th_es[simp]: "pvD (e#s) th = 0"
- by (unfold pvD_def, simp)
-
-lemma cntCS_s_th [simp]: "cntCS s th > 0"
-proof -
- have "cs \<in> holdents s th" using holding_th_cs_s
- by (unfold holdents_def, simp)
- moreover have "finite (holdents s th)" using finite_holdents
- by simp
- ultimately show ?thesis
- by (unfold cntCS_def,
- auto intro!:card_gt_0_iff[symmetric, THEN iffD1])
-qed
-
-end
-
-context valid_trace_v
-begin
-
-lemma th_not_waiting:
- "\<not> waiting s th c"
-proof -
- have "th \<in> readys s"
- using runing_ready runing_th_s by blast
- thus ?thesis
- by (unfold readys_def, auto)
-qed
-
-lemma waiting_neq_th:
- assumes "waiting s t c"
- shows "t \<noteq> th"
- using assms using th_not_waiting by blast
-
-end
-
-context valid_trace_v_n
-begin
-
-lemma not_ready_taker_s[simp]:
- "taker \<notin> readys s"
- using waiting_taker
- by (unfold readys_def, auto)
-
-lemma taker_live_s [simp]: "taker \<in> threads s"
-proof -
- have "taker \<in> set wq'" by (simp add: eq_wq')
- from th'_in_inv[OF this]
- have "taker \<in> set rest" .
- hence "taker \<in> set (wq s cs)" by (simp add: wq_s_cs)
- thus ?thesis using wq_threads by auto
-qed
-
-lemma taker_live_es [simp]: "taker \<in> threads (e#s)"
- using taker_live_s threads_es by blast
-
-lemma taker_ready_es [simp]:
- shows "taker \<in> readys (e#s)"
-proof -
- { fix cs'
- assume "waiting (e#s) taker cs'"
- hence False
- proof(cases rule:waiting_esE)
- case 1
- thus ?thesis using waiting_taker waiting_unique by auto
- qed simp
- } thus ?thesis by (unfold readys_def, auto)
-qed
-
-lemma neq_taker_th: "taker \<noteq> th"
- using th_not_waiting waiting_taker by blast
-
-lemma not_holding_taker_s_cs:
- shows "\<not> holding s taker cs"
- using holding_cs_eq_th neq_taker_th by auto
-
-lemma holdents_es_taker:
- "holdents (e#s) taker = holdents s taker \<union> {cs}" (is "?L = ?R")
-proof -
- { fix cs'
- assume "cs' \<in> ?L"
- hence "holding (e#s) taker cs'" by (auto simp:holdents_def)
- hence "cs' \<in> ?R"
- proof(cases rule:holding_esE)
- case 2
- thus ?thesis by (auto simp:holdents_def)
- qed auto
- } moreover {
- fix cs'
- assume "cs' \<in> ?R"
- hence "holding s taker cs' \<or> cs' = cs" by (auto simp:holdents_def)
- hence "cs' \<in> ?L"
- proof
- assume "holding s taker cs'"
- hence "holding (e#s) taker cs'"
- using holding_esI2 holding_taker by fastforce
- thus ?thesis by (auto simp:holdents_def)
- next
- assume "cs' = cs"
- with holding_taker
- show ?thesis by (auto simp:holdents_def)
- qed
- } ultimately show ?thesis by auto
-qed
-
-lemma cntCS_es_taker [simp]: "cntCS (e#s) taker = cntCS s taker + 1"
-proof -
- have "card (holdents s taker \<union> {cs}) = card (holdents s taker) + 1"
- proof(subst card_Un_disjoint)
- show "holdents s taker \<inter> {cs} = {}"
- using not_holding_taker_s_cs by (auto simp:holdents_def)
- qed (auto simp:finite_holdents)
- thus ?thesis
- by (unfold cntCS_def, insert holdents_es_taker, simp)
-qed
-
-lemma pvD_taker_s[simp]: "pvD s taker = 1"
- by (unfold pvD_def, simp)
-
-lemma pvD_taker_es[simp]: "pvD (e#s) taker = 0"
- by (unfold pvD_def, simp)
-
-lemma pvD_th_s[simp]: "pvD s th = 0"
- by (unfold pvD_def, simp)
-
-lemma pvD_th_es[simp]: "pvD (e#s) th = 0"
- by (unfold pvD_def, simp)
-
-lemma holdents_es_th:
- "holdents (e#s) th = holdents s th - {cs}" (is "?L = ?R")
-proof -
- { fix cs'
- assume "cs' \<in> ?L"
- hence "holding (e#s) th cs'" by (auto simp:holdents_def)
- hence "cs' \<in> ?R"
- proof(cases rule:holding_esE)
- case 2
- thus ?thesis by (auto simp:holdents_def)
- qed (insert neq_taker_th, auto)
- } moreover {
- fix cs'
- assume "cs' \<in> ?R"
- hence "cs' \<noteq> cs" "holding s th cs'" by (auto simp:holdents_def)
- from holding_esI2[OF this]
- have "cs' \<in> ?L" by (auto simp:holdents_def)
- } ultimately show ?thesis by auto
-qed
-
-lemma cntCS_es_th [simp]: "cntCS (e#s) th = cntCS s th - 1"
-proof -
- have "card (holdents s th - {cs}) = card (holdents s th) - 1"
- proof -
- have "cs \<in> holdents s th" using holding_th_cs_s
- by (auto simp:holdents_def)
- moreover have "finite (holdents s th)"
- by (simp add: finite_holdents)
- ultimately show ?thesis by auto
- qed
- thus ?thesis by (unfold cntCS_def holdents_es_th)
-qed
-
-lemma holdents_kept:
- assumes "th' \<noteq> taker"
- and "th' \<noteq> th"
- shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R")
-proof -
- { fix cs'
- assume h: "cs' \<in> ?L"
- have "cs' \<in> ?R"
- proof(cases "cs' = cs")
- case False
- hence eq_wq: "wq (e#s) cs' = wq s cs'" by simp
- from h have "holding (e#s) th' cs'" by (auto simp:holdents_def)
- from this[unfolded s_holding_def, folded wq_def, unfolded eq_wq]
- show ?thesis
- by (unfold holdents_def s_holding_def, fold wq_def, auto)
- next
- case True
- from h[unfolded this]
- have "holding (e#s) th' cs" by (auto simp:holdents_def)
- from held_unique[OF this holding_taker]
- have "th' = taker" .
- with assms show ?thesis by auto
- qed
- } moreover {
- fix cs'
- assume h: "cs' \<in> ?R"
- have "cs' \<in> ?L"
- proof(cases "cs' = cs")
- case False
- hence eq_wq: "wq (e#s) cs' = wq s cs'" by simp
- from h have "holding s th' cs'" by (auto simp:holdents_def)
- from this[unfolded s_holding_def, folded wq_def, unfolded eq_wq]
- show ?thesis
- by (unfold holdents_def s_holding_def, fold wq_def, insert eq_wq, simp)
- next
- case True
- from h[unfolded this]
- have "holding s th' cs" by (auto simp:holdents_def)
- from held_unique[OF this holding_th_cs_s]
- have "th' = th" .
- with assms show ?thesis by auto
- qed
- } ultimately show ?thesis by auto
-qed
-
-lemma cntCS_kept [simp]:
- assumes "th' \<noteq> taker"
- and "th' \<noteq> th"
- shows "cntCS (e#s) th' = cntCS s th'"
- by (unfold cntCS_def holdents_kept[OF assms], simp)
-
-lemma readys_kept1:
- assumes "th' \<noteq> taker"
- and "th' \<in> readys (e#s)"
- shows "th' \<in> readys s"
-proof -
- { fix cs'
- assume wait: "waiting s th' cs'"
- have n_wait: "\<not> waiting (e#s) th' cs'"
- using assms(2)[unfolded readys_def] by auto
- have False
- proof(cases "cs' = cs")
- case False
- with n_wait wait
- show ?thesis
- by (unfold s_waiting_def, fold wq_def, auto)
- next
- case True
- have "th' \<in> set (th # rest) \<and> th' \<noteq> hd (th # rest)"
- using wait[unfolded True s_waiting_def, folded wq_def, unfolded wq_s_cs] .
- moreover have "\<not> (th' \<in> set rest \<and> th' \<noteq> hd (taker # rest'))"
- using n_wait[unfolded True s_waiting_def, folded wq_def,
- unfolded wq_es_cs set_wq', unfolded eq_wq'] .
- ultimately have "th' = taker" by auto
- with assms(1)
- show ?thesis by simp
- qed
- } with assms(2) show ?thesis
- by (unfold readys_def, auto)
-qed
-
-lemma readys_kept2:
- assumes "th' \<noteq> taker"
- and "th' \<in> readys s"
- shows "th' \<in> readys (e#s)"
-proof -
- { fix cs'
- assume wait: "waiting (e#s) th' cs'"
- have n_wait: "\<not> waiting s th' cs'"
- using assms(2)[unfolded readys_def] by auto
- have False
- proof(cases "cs' = cs")
- case False
- with n_wait wait
- show ?thesis
- by (unfold s_waiting_def, fold wq_def, auto)
- next
- case True
- have "th' \<in> set rest \<and> th' \<noteq> hd (taker # rest')"
- using wait [unfolded True s_waiting_def, folded wq_def,
- unfolded wq_es_cs set_wq', unfolded eq_wq'] .
- moreover have "\<not> (th' \<in> set (th # rest) \<and> th' \<noteq> hd (th # rest))"
- using n_wait[unfolded True s_waiting_def, folded wq_def, unfolded wq_s_cs] .
- ultimately have "th' = taker" by auto
- with assms(1)
- show ?thesis by simp
- qed
- } with assms(2) show ?thesis
- by (unfold readys_def, auto)
-qed
-
-lemma readys_simp [simp]:
- assumes "th' \<noteq> taker"
- shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)"
- using readys_kept1[OF assms] readys_kept2[OF assms]
- by metis
-
-lemma cnp_cnv_cncs_kept:
- assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'"
- shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'"
-proof -
- { assume eq_th': "th' = taker"
- have ?thesis
- apply (unfold eq_th' pvD_taker_es cntCS_es_taker)
- by (insert neq_taker_th assms[unfolded eq_th'], unfold is_v, simp)
- } moreover {
- assume eq_th': "th' = th"
- have ?thesis
- apply (unfold eq_th' pvD_th_es cntCS_es_th)
- by (insert assms[unfolded eq_th'], unfold is_v, simp)
- } moreover {
- assume h: "th' \<noteq> taker" "th' \<noteq> th"
- have ?thesis using assms
- apply (unfold cntCS_kept[OF h], insert h, unfold is_v, simp)
- by (fold is_v, unfold pvD_def, simp)
- } ultimately show ?thesis by metis
-qed
-
-end
-
-context valid_trace_v_e
-begin
-
-lemma holdents_es_th:
- "holdents (e#s) th = holdents s th - {cs}" (is "?L = ?R")
-proof -
- { fix cs'
- assume "cs' \<in> ?L"
- hence "holding (e#s) th cs'" by (auto simp:holdents_def)
- hence "cs' \<in> ?R"
- proof(cases rule:holding_esE)
- case 1
- thus ?thesis by (auto simp:holdents_def)
- qed
- } moreover {
- fix cs'
- assume "cs' \<in> ?R"
- hence "cs' \<noteq> cs" "holding s th cs'" by (auto simp:holdents_def)
- from holding_esI2[OF this]
- have "cs' \<in> ?L" by (auto simp:holdents_def)
- } ultimately show ?thesis by auto
-qed
-
-lemma cntCS_es_th [simp]: "cntCS (e#s) th = cntCS s th - 1"
-proof -
- have "card (holdents s th - {cs}) = card (holdents s th) - 1"
- proof -
- have "cs \<in> holdents s th" using holding_th_cs_s
- by (auto simp:holdents_def)
- moreover have "finite (holdents s th)"
- by (simp add: finite_holdents)
- ultimately show ?thesis by auto
- qed
- thus ?thesis by (unfold cntCS_def holdents_es_th)
-qed
-
-lemma holdents_kept:
- assumes "th' \<noteq> th"
- shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R")
-proof -
- { fix cs'
- assume h: "cs' \<in> ?L"
- have "cs' \<in> ?R"
- proof(cases "cs' = cs")
- case False
- hence eq_wq: "wq (e#s) cs' = wq s cs'" by simp
- from h have "holding (e#s) th' cs'" by (auto simp:holdents_def)
- from this[unfolded s_holding_def, folded wq_def, unfolded eq_wq]
- show ?thesis
- by (unfold holdents_def s_holding_def, fold wq_def, auto)
- next
- case True
- from h[unfolded this]
- have "holding (e#s) th' cs" by (auto simp:holdents_def)
- from this[unfolded s_holding_def, folded wq_def,
- unfolded wq_es_cs nil_wq']
- show ?thesis by auto
- qed
- } moreover {
- fix cs'
- assume h: "cs' \<in> ?R"
- have "cs' \<in> ?L"
- proof(cases "cs' = cs")
- case False
- hence eq_wq: "wq (e#s) cs' = wq s cs'" by simp
- from h have "holding s th' cs'" by (auto simp:holdents_def)
- from this[unfolded s_holding_def, folded wq_def, unfolded eq_wq]
- show ?thesis
- by (unfold holdents_def s_holding_def, fold wq_def, insert eq_wq, simp)
- next
- case True
- from h[unfolded this]
- have "holding s th' cs" by (auto simp:holdents_def)
- from held_unique[OF this holding_th_cs_s]
- have "th' = th" .
- with assms show ?thesis by auto
- qed
- } ultimately show ?thesis by auto
-qed
-
-lemma cntCS_kept [simp]:
- assumes "th' \<noteq> th"
- shows "cntCS (e#s) th' = cntCS s th'"
- by (unfold cntCS_def holdents_kept[OF assms], simp)
-
-lemma readys_kept1:
- assumes "th' \<in> readys (e#s)"
- shows "th' \<in> readys s"
-proof -
- { fix cs'
- assume wait: "waiting s th' cs'"
- have n_wait: "\<not> waiting (e#s) th' cs'"
- using assms(1)[unfolded readys_def] by auto
- have False
- proof(cases "cs' = cs")
- case False
- with n_wait wait
- show ?thesis
- by (unfold s_waiting_def, fold wq_def, auto)
- next
- case True
- have "th' \<in> set (th # rest) \<and> th' \<noteq> hd (th # rest)"
- using wait[unfolded True s_waiting_def, folded wq_def, unfolded wq_s_cs] .
- hence "th' \<in> set rest" by auto
- with set_wq' have "th' \<in> set wq'" by metis
- with nil_wq' show ?thesis by simp
- qed
- } thus ?thesis using assms
- by (unfold readys_def, auto)
-qed
-
-lemma readys_kept2:
- assumes "th' \<in> readys s"
- shows "th' \<in> readys (e#s)"
-proof -
- { fix cs'
- assume wait: "waiting (e#s) th' cs'"
- have n_wait: "\<not> waiting s th' cs'"
- using assms[unfolded readys_def] by auto
- have False
- proof(cases "cs' = cs")
- case False
- with n_wait wait
- show ?thesis
- by (unfold s_waiting_def, fold wq_def, auto)
- next
- case True
- have "th' \<in> set [] \<and> th' \<noteq> hd []"
- using wait[unfolded True s_waiting_def, folded wq_def,
- unfolded wq_es_cs nil_wq'] .
- thus ?thesis by simp
- qed
- } with assms show ?thesis
- by (unfold readys_def, auto)
-qed
-
-lemma readys_simp [simp]:
- shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)"
- using readys_kept1[OF assms] readys_kept2[OF assms]
- by metis
-
-lemma cnp_cnv_cncs_kept:
- assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'"
- shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'"
-proof -
- {
- assume eq_th': "th' = th"
- have ?thesis
- apply (unfold eq_th' pvD_th_es cntCS_es_th)
- by (insert assms[unfolded eq_th'], unfold is_v, simp)
- } moreover {
- assume h: "th' \<noteq> th"
- have ?thesis using assms
- apply (unfold cntCS_kept[OF h], insert h, unfold is_v, simp)
- by (fold is_v, unfold pvD_def, simp)
- } ultimately show ?thesis by metis
-qed
-
-end
-
-context valid_trace_v
-begin
-
-lemma cnp_cnv_cncs_kept:
- assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'"
- shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'"
-proof(cases "rest = []")
- case True
- then interpret vt: valid_trace_v_e by (unfold_locales, simp)
- show ?thesis using assms using vt.cnp_cnv_cncs_kept by blast
-next
- case False
- then interpret vt: valid_trace_v_n by (unfold_locales, simp)
- show ?thesis using assms using vt.cnp_cnv_cncs_kept by blast
-qed
-
-end
-
-context valid_trace_create
-begin
-
-lemma th_not_live_s [simp]: "th \<notin> threads s"
-proof -
- from pip_e[unfolded is_create]
- show ?thesis by (cases, simp)
-qed
-
-lemma th_not_ready_s [simp]: "th \<notin> readys s"
- using th_not_live_s by (unfold readys_def, simp)
-
-lemma th_live_es [simp]: "th \<in> threads (e#s)"
- by (unfold is_create, simp)
-
-lemma not_waiting_th_s [simp]: "\<not> waiting s th cs'"
-proof
- assume "waiting s th cs'"
- from this[unfolded s_waiting_def, folded wq_def, unfolded wq_kept]
- have "th \<in> set (wq s cs')" by auto
- from wq_threads[OF this] have "th \<in> threads s" .
- with th_not_live_s show False by simp
-qed
-
-lemma not_holding_th_s [simp]: "\<not> holding s th cs'"
-proof
- assume "holding s th cs'"
- from this[unfolded s_holding_def, folded wq_def, unfolded wq_kept]
- have "th \<in> set (wq s cs')" by auto
- from wq_threads[OF this] have "th \<in> threads s" .
- with th_not_live_s show False by simp
-qed
-
-lemma not_waiting_th_es [simp]: "\<not> waiting (e#s) th cs'"
-proof
- assume "waiting (e # s) th cs'"
- from this[unfolded s_waiting_def, folded wq_def, unfolded wq_kept]
- have "th \<in> set (wq s cs')" by auto
- from wq_threads[OF this] have "th \<in> threads s" .
- with th_not_live_s show False by simp
-qed
-
-lemma not_holding_th_es [simp]: "\<not> holding (e#s) th cs'"
-proof
- assume "holding (e # s) th cs'"
- from this[unfolded s_holding_def, folded wq_def, unfolded wq_kept]
- have "th \<in> set (wq s cs')" by auto
- from wq_threads[OF this] have "th \<in> threads s" .
- with th_not_live_s show False by simp
-qed
-
-lemma ready_th_es [simp]: "th \<in> readys (e#s)"
- by (simp add:readys_def)
-
-lemma holdents_th_s: "holdents s th = {}"
- by (unfold holdents_def, auto)
-
-lemma holdents_th_es: "holdents (e#s) th = {}"
- by (unfold holdents_def, auto)
-
-lemma cntCS_th_s [simp]: "cntCS s th = 0"
- by (unfold cntCS_def, simp add:holdents_th_s)
-
-lemma cntCS_th_es [simp]: "cntCS (e#s) th = 0"
- by (unfold cntCS_def, simp add:holdents_th_es)
-
-lemma pvD_th_s [simp]: "pvD s th = 0"
- by (unfold pvD_def, simp)
-
-lemma pvD_th_es [simp]: "pvD (e#s) th = 0"
- by (unfold pvD_def, simp)
-
-lemma holdents_kept:
- assumes "th' \<noteq> th"
- shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R")
-proof -
- { fix cs'
- assume h: "cs' \<in> ?L"
- hence "cs' \<in> ?R"
- by (unfold holdents_def s_holding_def, fold wq_def,
- unfold wq_kept, auto)
- } moreover {
- fix cs'
- assume h: "cs' \<in> ?R"
- hence "cs' \<in> ?L"
- by (unfold holdents_def s_holding_def, fold wq_def,
- unfold wq_kept, auto)
- } ultimately show ?thesis by auto
-qed
-
-lemma cntCS_kept [simp]:
- assumes "th' \<noteq> th"
- shows "cntCS (e#s) th' = cntCS s th'" (is "?L = ?R")
- using holdents_kept[OF assms]
- by (unfold cntCS_def, simp)
-
-lemma readys_kept1:
- assumes "th' \<noteq> th"
- and "th' \<in> readys (e#s)"
- shows "th' \<in> readys s"
-proof -
- { fix cs'
- assume wait: "waiting s th' cs'"
- have n_wait: "\<not> waiting (e#s) th' cs'"
- using assms by (auto simp:readys_def)
- from wait[unfolded s_waiting_def, folded wq_def]
- n_wait[unfolded s_waiting_def, folded wq_def, unfolded wq_kept]
- have False by auto
- } thus ?thesis using assms
- by (unfold readys_def, auto)
-qed
-
-lemma readys_kept2:
- assumes "th' \<noteq> th"
- and "th' \<in> readys s"
- shows "th' \<in> readys (e#s)"
-proof -
- { fix cs'
- assume wait: "waiting (e#s) th' cs'"
- have n_wait: "\<not> waiting s th' cs'"
- using assms(2) by (auto simp:readys_def)
- from wait[unfolded s_waiting_def, folded wq_def, unfolded wq_kept]
- n_wait[unfolded s_waiting_def, folded wq_def]
- have False by auto
- } with assms show ?thesis
- by (unfold readys_def, auto)
-qed
-
-lemma readys_simp [simp]:
- assumes "th' \<noteq> th"
- shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)"
- using readys_kept1[OF assms] readys_kept2[OF assms]
- by metis
-
-lemma pvD_kept [simp]:
- assumes "th' \<noteq> th"
- shows "pvD (e#s) th' = pvD s th'"
- using assms
- by (unfold pvD_def, simp)
-
-lemma cnp_cnv_cncs_kept:
- assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'"
- shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'"
-proof -
- {
- assume eq_th': "th' = th"
- have ?thesis using assms
- by (unfold eq_th', simp, unfold is_create, simp)
- } moreover {
- assume h: "th' \<noteq> th"
- hence ?thesis using assms
- by (simp, simp add:is_create)
- } ultimately show ?thesis by metis
-qed
-
-end
-
-context valid_trace_exit
-begin
-
-lemma th_live_s [simp]: "th \<in> threads s"
-proof -
- from pip_e[unfolded is_exit]
- show ?thesis
- by (cases, unfold runing_def readys_def, simp)
-qed
-
-lemma th_ready_s [simp]: "th \<in> readys s"
-proof -
- from pip_e[unfolded is_exit]
- show ?thesis
- by (cases, unfold runing_def, simp)
-qed
-
-lemma th_not_live_es [simp]: "th \<notin> threads (e#s)"
- by (unfold is_exit, simp)
-
-lemma not_holding_th_s [simp]: "\<not> holding s th cs'"
-proof -
- from pip_e[unfolded is_exit]
- show ?thesis
- by (cases, unfold holdents_def, auto)
-qed
-
-lemma cntCS_th_s [simp]: "cntCS s th = 0"
-proof -
- from pip_e[unfolded is_exit]
- show ?thesis
- by (cases, unfold cntCS_def, simp)
-qed
-
-lemma not_holding_th_es [simp]: "\<not> holding (e#s) th cs'"
-proof
- assume "holding (e # s) th cs'"
- from this[unfolded s_holding_def, folded wq_def, unfolded wq_kept]
- have "holding s th cs'"
- by (unfold s_holding_def, fold wq_def, auto)
- with not_holding_th_s
- show False by simp
-qed
-
-lemma ready_th_es [simp]: "th \<notin> readys (e#s)"
- by (simp add:readys_def)
-
-lemma holdents_th_s: "holdents s th = {}"
- by (unfold holdents_def, auto)
-
-lemma holdents_th_es: "holdents (e#s) th = {}"
- by (unfold holdents_def, auto)
-
-lemma cntCS_th_es [simp]: "cntCS (e#s) th = 0"
- by (unfold cntCS_def, simp add:holdents_th_es)
-
-lemma pvD_th_s [simp]: "pvD s th = 0"
- by (unfold pvD_def, simp)
-
-lemma pvD_th_es [simp]: "pvD (e#s) th = 0"
- by (unfold pvD_def, simp)
-
-lemma holdents_kept:
- assumes "th' \<noteq> th"
- shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R")
-proof -
- { fix cs'
- assume h: "cs' \<in> ?L"
- hence "cs' \<in> ?R"
- by (unfold holdents_def s_holding_def, fold wq_def,
- unfold wq_kept, auto)
- } moreover {
- fix cs'
- assume h: "cs' \<in> ?R"
- hence "cs' \<in> ?L"
- by (unfold holdents_def s_holding_def, fold wq_def,
- unfold wq_kept, auto)
- } ultimately show ?thesis by auto
-qed
-
-lemma cntCS_kept [simp]:
- assumes "th' \<noteq> th"
- shows "cntCS (e#s) th' = cntCS s th'" (is "?L = ?R")
- using holdents_kept[OF assms]
- by (unfold cntCS_def, simp)
-
-lemma readys_kept1:
- assumes "th' \<noteq> th"
- and "th' \<in> readys (e#s)"
- shows "th' \<in> readys s"
-proof -
- { fix cs'
- assume wait: "waiting s th' cs'"
- have n_wait: "\<not> waiting (e#s) th' cs'"
- using assms by (auto simp:readys_def)
- from wait[unfolded s_waiting_def, folded wq_def]
- n_wait[unfolded s_waiting_def, folded wq_def, unfolded wq_kept]
- have False by auto
- } thus ?thesis using assms
- by (unfold readys_def, auto)
-qed
-
-lemma readys_kept2:
- assumes "th' \<noteq> th"
- and "th' \<in> readys s"
- shows "th' \<in> readys (e#s)"
-proof -
- { fix cs'
- assume wait: "waiting (e#s) th' cs'"
- have n_wait: "\<not> waiting s th' cs'"
- using assms(2) by (auto simp:readys_def)
- from wait[unfolded s_waiting_def, folded wq_def, unfolded wq_kept]
- n_wait[unfolded s_waiting_def, folded wq_def]
- have False by auto
- } with assms show ?thesis
- by (unfold readys_def, auto)
-qed
-
-lemma readys_simp [simp]:
- assumes "th' \<noteq> th"
- shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)"
- using readys_kept1[OF assms] readys_kept2[OF assms]
- by metis
-
-lemma pvD_kept [simp]:
- assumes "th' \<noteq> th"
- shows "pvD (e#s) th' = pvD s th'"
- using assms
- by (unfold pvD_def, simp)
-
-lemma cnp_cnv_cncs_kept:
- assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'"
- shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'"
-proof -
- {
- assume eq_th': "th' = th"
- have ?thesis using assms
- by (unfold eq_th', simp, unfold is_exit, simp)
- } moreover {
- assume h: "th' \<noteq> th"
- hence ?thesis using assms
- by (simp, simp add:is_exit)
- } ultimately show ?thesis by metis
-qed
-
-end
-
-context valid_trace_set
-begin
-
-lemma th_live_s [simp]: "th \<in> threads s"
-proof -
- from pip_e[unfolded is_set]
- show ?thesis
- by (cases, unfold runing_def readys_def, simp)
-qed
-
-lemma th_ready_s [simp]: "th \<in> readys s"
-proof -
- from pip_e[unfolded is_set]
- show ?thesis
- by (cases, unfold runing_def, simp)
-qed
-
-lemma th_not_live_es [simp]: "th \<in> threads (e#s)"
- by (unfold is_set, simp)
-
-
-lemma holdents_kept:
- shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R")
-proof -
- { fix cs'
- assume h: "cs' \<in> ?L"
- hence "cs' \<in> ?R"
- by (unfold holdents_def s_holding_def, fold wq_def,
- unfold wq_kept, auto)
- } moreover {
- fix cs'
- assume h: "cs' \<in> ?R"
- hence "cs' \<in> ?L"
- by (unfold holdents_def s_holding_def, fold wq_def,
- unfold wq_kept, auto)
- } ultimately show ?thesis by auto
-qed
-
-lemma cntCS_kept [simp]:
- shows "cntCS (e#s) th' = cntCS s th'" (is "?L = ?R")
- using holdents_kept
- by (unfold cntCS_def, simp)
-
-lemma threads_kept[simp]:
- "threads (e#s) = threads s"
- by (unfold is_set, simp)
-
-lemma readys_kept1:
- assumes "th' \<in> readys (e#s)"
- shows "th' \<in> readys s"
-proof -
- { fix cs'
- assume wait: "waiting s th' cs'"
- have n_wait: "\<not> waiting (e#s) th' cs'"
- using assms by (auto simp:readys_def)
- from wait[unfolded s_waiting_def, folded wq_def]
- n_wait[unfolded s_waiting_def, folded wq_def, unfolded wq_kept]
- have False by auto
- } moreover have "th' \<in> threads s"
- using assms[unfolded readys_def] by auto
- ultimately show ?thesis
- by (unfold readys_def, auto)
-qed
-
-lemma readys_kept2:
- assumes "th' \<in> readys s"
- shows "th' \<in> readys (e#s)"
-proof -
- { fix cs'
- assume wait: "waiting (e#s) th' cs'"
- have n_wait: "\<not> waiting s th' cs'"
- using assms by (auto simp:readys_def)
- from wait[unfolded s_waiting_def, folded wq_def, unfolded wq_kept]
- n_wait[unfolded s_waiting_def, folded wq_def]
- have False by auto
- } with assms show ?thesis
- by (unfold readys_def, auto)
-qed
-
-lemma readys_simp [simp]:
- shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)"
- using readys_kept1 readys_kept2
- by metis
-
-lemma pvD_kept [simp]:
- shows "pvD (e#s) th' = pvD s th'"
- by (unfold pvD_def, simp)
-
-lemma cnp_cnv_cncs_kept:
- assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'"
- shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'"
- using assms
- by (unfold is_set, simp, fold is_set, simp)
-
-end
-
-context valid_trace
-begin
-
-lemma cnp_cnv_cncs: "cntP s th' = cntV s th' + cntCS s th' + pvD s th'"
-proof(induct rule:ind)
- case Nil
- thus ?case
- by (unfold cntP_def cntV_def pvD_def cntCS_def holdents_def
- s_holding_def, simp)
-next
- case (Cons s e)
- interpret vt_e: valid_trace_e s e using Cons by simp
- show ?case
- proof(cases e)
- case (Create th prio)
- interpret vt_create: valid_trace_create s e th prio
- using Create by (unfold_locales, simp)
- show ?thesis using Cons by (simp add: vt_create.cnp_cnv_cncs_kept)
- next
- case (Exit th)
- interpret vt_exit: valid_trace_exit s e th
- using Exit by (unfold_locales, simp)
- show ?thesis using Cons by (simp add: vt_exit.cnp_cnv_cncs_kept)
- next
- case (P th cs)
- interpret vt_p: valid_trace_p s e th cs using P by (unfold_locales, simp)
- show ?thesis using Cons by (simp add: vt_p.cnp_cnv_cncs_kept)
- next
- case (V th cs)
- interpret vt_v: valid_trace_v s e th cs using V by (unfold_locales, simp)
- show ?thesis using Cons by (simp add: vt_v.cnp_cnv_cncs_kept)
- next
- case (Set th prio)
- interpret vt_set: valid_trace_set s e th prio
- using Set by (unfold_locales, simp)
- show ?thesis using Cons by (simp add: vt_set.cnp_cnv_cncs_kept)
- qed
-qed
-
-end
-
-section {* Corollaries of @{thm valid_trace.cnp_cnv_cncs} *}
-
-context valid_trace
-begin
-
-lemma not_thread_holdents:
- assumes not_in: "th \<notin> threads s"
- shows "holdents s th = {}"
-proof -
- { fix cs
- assume "cs \<in> holdents s th"
- hence "holding s th cs" by (auto simp:holdents_def)
- from this[unfolded s_holding_def, folded wq_def]
- have "th \<in> set (wq s cs)" by auto
- with wq_threads have "th \<in> threads s" by auto
- with assms
- have False by simp
- } thus ?thesis by auto
-qed
-
-lemma not_thread_cncs:
- assumes not_in: "th \<notin> threads s"
- shows "cntCS s th = 0"
- using not_thread_holdents[OF assms]
- by (simp add:cntCS_def)
-
-lemma cnp_cnv_eq:
- assumes "th \<notin> threads s"
- shows "cntP s th = cntV s th"
- using assms cnp_cnv_cncs not_thread_cncs pvD_def
- by (auto)
-
-lemma eq_pv_children:
- assumes eq_pv: "cntP s th = cntV s th"
- shows "children (RAG s) (Th th) = {}"
-proof -
- from cnp_cnv_cncs and eq_pv
- have "cntCS s th = 0"
- by (auto split:if_splits)
- from this[unfolded cntCS_def holdents_alt_def]
- have card_0: "card (the_cs ` children (RAG s) (Th th)) = 0" .
- have "finite (the_cs ` children (RAG s) (Th th))"
- by (simp add: fsbtRAGs.finite_children)
- from card_0[unfolded card_0_eq[OF this]]
- show ?thesis by auto
-qed
-
-lemma eq_pv_holdents:
- assumes eq_pv: "cntP s th = cntV s th"
- shows "holdents s th = {}"
- by (unfold holdents_alt_def eq_pv_children[OF assms], simp)
-
-lemma eq_pv_subtree:
- assumes eq_pv: "cntP s th = cntV s th"
- shows "subtree (RAG s) (Th th) = {Th th}"
- using eq_pv_children[OF assms]
- by (unfold subtree_children, simp)
-
-lemma count_eq_RAG_plus:
- assumes "cntP s th = cntV s th"
- shows "{th'. (Th th', Th th) \<in> (RAG s)^+} = {}"
-proof(rule ccontr)
- assume otherwise: "{th'. (Th th', Th th) \<in> (RAG s)\<^sup>+} \<noteq> {}"
- then obtain th' where "(Th th', Th th) \<in> (RAG s)^+" by auto
- from tranclD2[OF this]
- obtain z where "z \<in> children (RAG s) (Th th)"
- by (auto simp:children_def)
- with eq_pv_children[OF assms]
- show False by simp
-qed
-
-lemma eq_pv_dependants:
- assumes eq_pv: "cntP s th = cntV s th"
- shows "dependants s th = {}"
-proof -
- from count_eq_RAG_plus[OF assms, folded dependants_alt_def1]
- show ?thesis .
-qed
-
-lemma count_eq_tRAG_plus:
- assumes "cntP s th = cntV s th"
- shows "{th'. (Th th', Th th) \<in> (tRAG s)^+} = {}"
- using assms eq_pv_dependants dependants_alt_def eq_dependants by auto
-
-lemma count_eq_RAG_plus_Th:
- assumes "cntP s th = cntV s th"
- shows "{Th th' | th'. (Th th', Th th) \<in> (RAG s)^+} = {}"
- using count_eq_RAG_plus[OF assms] by auto
-
-lemma count_eq_tRAG_plus_Th:
- assumes "cntP s th = cntV s th"
- shows "{Th th' | th'. (Th th', Th th) \<in> (tRAG s)^+} = {}"
- using count_eq_tRAG_plus[OF assms] by auto
-
-end
-
-definition detached :: "state \<Rightarrow> thread \<Rightarrow> bool"
- where "detached s th \<equiv> (\<not>(\<exists> cs. holding s th cs)) \<and> (\<not>(\<exists>cs. waiting s th cs))"
-
-lemma detached_test:
- shows "detached s th = (Th th \<notin> Field (RAG s))"
-apply(simp add: detached_def Field_def)
-apply(simp add: s_RAG_def)
-apply(simp add: s_holding_abv s_waiting_abv)
-apply(simp add: Domain_iff Range_iff)
-apply(simp add: wq_def)
-apply(auto)
-done
-
-context valid_trace
-begin
-
-lemma detached_intro:
- assumes eq_pv: "cntP s th = cntV s th"
- shows "detached s th"
-proof -
- from eq_pv cnp_cnv_cncs
- have "th \<in> readys s \<or> th \<notin> threads s" by (auto simp:pvD_def)
- thus ?thesis
- proof
- assume "th \<notin> threads s"
- with rg_RAG_threads dm_RAG_threads
- show ?thesis
- by (auto simp add: detached_def s_RAG_def s_waiting_abv
- s_holding_abv wq_def Domain_iff Range_iff)
- next
- assume "th \<in> readys s"
- moreover have "Th th \<notin> Range (RAG s)"
- proof -
- from eq_pv_children[OF assms]
- have "children (RAG s) (Th th) = {}" .
- thus ?thesis
- by (unfold children_def, auto)
- qed
- ultimately show ?thesis
- by (auto simp add: detached_def s_RAG_def s_waiting_abv
- s_holding_abv wq_def readys_def)
- qed
-qed
-
-lemma detached_elim:
- assumes dtc: "detached s th"
- shows "cntP s th = cntV s th"
-proof -
- have cncs_z: "cntCS s th = 0"
- proof -
- from dtc have "holdents s th = {}"
- unfolding detached_def holdents_test s_RAG_def
- by (simp add: s_waiting_abv wq_def s_holding_abv Domain_iff Range_iff)
- thus ?thesis by (auto simp:cntCS_def)
- qed
- show ?thesis
- proof(cases "th \<in> threads s")
- case True
- with dtc
- have "th \<in> readys s"
- by (unfold readys_def detached_def Field_def Domain_def Range_def,
- auto simp:waiting_eq s_RAG_def)
- with cncs_z show ?thesis using cnp_cnv_cncs by (simp add:pvD_def)
- next
- case False
- with cncs_z and cnp_cnv_cncs show ?thesis by (simp add:pvD_def)
- qed
-qed
-
-lemma detached_eq:
- shows "(detached s th) = (cntP s th = cntV s th)"
- by (insert vt, auto intro:detached_intro detached_elim)
-
-end
-
-section {* Recursive definition of @{term "cp"} *}
-
-lemma cp_alt_def1:
- "cp s th = Max ((the_preced s o the_thread) ` (subtree (tRAG s) (Th th)))"
-proof -
- have "(the_preced s ` the_thread ` subtree (tRAG s) (Th th)) =
- ((the_preced s \<circ> the_thread) ` subtree (tRAG s) (Th th))"
- by auto
- thus ?thesis by (unfold cp_alt_def, fold threads_set_eq, auto)
-qed
-
-lemma cp_gen_def_cond:
- assumes "x = Th th"
- shows "cp s th = cp_gen s (Th th)"
-by (unfold cp_alt_def1 cp_gen_def, simp)
-
-lemma cp_gen_over_set:
- assumes "\<forall> x \<in> A. \<exists> th. x = Th th"
- shows "cp_gen s ` A = (cp s \<circ> the_thread) ` A"
-proof(rule f_image_eq)
- fix a
- assume "a \<in> A"
- from assms[rule_format, OF this]
- obtain th where eq_a: "a = Th th" by auto
- show "cp_gen s a = (cp s \<circ> the_thread) a"
- by (unfold eq_a, simp, unfold cp_gen_def_cond[OF refl[of "Th th"]], simp)
-qed
-
-
-context valid_trace
-begin
-(* ddd *)
-lemma cp_gen_rec:
- assumes "x = Th th"
- shows "cp_gen s x = Max ({the_preced s th} \<union> (cp_gen s) ` children (tRAG s) x)"
-proof(cases "children (tRAG s) x = {}")
- case True
- show ?thesis
- by (unfold True cp_gen_def subtree_children, simp add:assms)
-next
- case False
- hence [simp]: "children (tRAG s) x \<noteq> {}" by auto
- note fsbttRAGs.finite_subtree[simp]
- have [simp]: "finite (children (tRAG s) x)"
- by (intro rev_finite_subset[OF fsbttRAGs.finite_subtree],
- rule children_subtree)
- { fix r x
- have "subtree r x \<noteq> {}" by (auto simp:subtree_def)
- } note this[simp]
- have [simp]: "\<exists>x\<in>children (tRAG s) x. subtree (tRAG s) x \<noteq> {}"
- proof -
- from False obtain q where "q \<in> children (tRAG s) x" by blast
- moreover have "subtree (tRAG s) q \<noteq> {}" by simp
- ultimately show ?thesis by blast
- qed
- have h: "Max ((the_preced s \<circ> the_thread) `
- ({x} \<union> \<Union>(subtree (tRAG s) ` children (tRAG s) x))) =
- Max ({the_preced s th} \<union> cp_gen s ` children (tRAG s) x)"
- (is "?L = ?R")
- proof -
- let "Max (?f ` (?A \<union> \<Union> (?g ` ?B)))" = ?L
- let "Max (_ \<union> (?h ` ?B))" = ?R
- let ?L1 = "?f ` \<Union>(?g ` ?B)"
- have eq_Max_L1: "Max ?L1 = Max (?h ` ?B)"
- proof -
- have "?L1 = ?f ` (\<Union> x \<in> ?B.(?g x))" by simp
- also have "... = (\<Union> x \<in> ?B. ?f ` (?g x))" by auto
- finally have "Max ?L1 = Max ..." by simp
- also have "... = Max (Max ` (\<lambda>x. ?f ` subtree (tRAG s) x) ` ?B)"
- by (subst Max_UNION, simp+)
- also have "... = Max (cp_gen s ` children (tRAG s) x)"
- by (unfold image_comp cp_gen_alt_def, simp)
- finally show ?thesis .
- qed
- show ?thesis
- proof -
- have "?L = Max (?f ` ?A \<union> ?L1)" by simp
- also have "... = max (the_preced s (the_thread x)) (Max ?L1)"
- by (subst Max_Un, simp+)
- also have "... = max (?f x) (Max (?h ` ?B))"
- by (unfold eq_Max_L1, simp)
- also have "... =?R"
- by (rule max_Max_eq, (simp)+, unfold assms, simp)
- finally show ?thesis .
- qed
- qed thus ?thesis
- by (fold h subtree_children, unfold cp_gen_def, simp)
-qed
-
-lemma cp_rec:
- "cp s th = Max ({the_preced s th} \<union>
- (cp s o the_thread) ` children (tRAG s) (Th th))"
-proof -
- have "Th th = Th th" by simp
- note h = cp_gen_def_cond[OF this] cp_gen_rec[OF this]
- show ?thesis
- proof -
- have "cp_gen s ` children (tRAG s) (Th th) =
- (cp s \<circ> the_thread) ` children (tRAG s) (Th th)"
- proof(rule cp_gen_over_set)
- show " \<forall>x\<in>children (tRAG s) (Th th). \<exists>th. x = Th th"
- by (unfold tRAG_alt_def, auto simp:children_def)
- qed
- thus ?thesis by (subst (1) h(1), unfold h(2), simp)
- qed
-qed
-end
-
-section {* Other properties useful in Implementation.thy or Correctness.thy *}
-
-context valid_trace_e
-begin
-
-lemma actor_inv:
- assumes "\<not> isCreate e"
- shows "actor e \<in> runing s"
- using pip_e assms
- by (induct, auto)
-end
-
-context valid_trace
-begin
-
-lemma readys_root:
- assumes "th \<in> readys s"
- shows "root (RAG s) (Th th)"
-proof -
- { fix x
- assume "x \<in> ancestors (RAG s) (Th th)"
- hence h: "(Th th, x) \<in> (RAG s)^+" by (auto simp:ancestors_def)
- from tranclD[OF this]
- obtain z where "(Th th, z) \<in> RAG s" by auto
- with assms(1) have False
- apply (case_tac z, auto simp:readys_def s_RAG_def s_waiting_def cs_waiting_def)
- by (fold wq_def, blast)
- } thus ?thesis by (unfold root_def, auto)
-qed
-
-lemma readys_in_no_subtree:
- assumes "th \<in> readys s"
- and "th' \<noteq> th"
- shows "Th th \<notin> subtree (RAG s) (Th th')"
-proof
- assume "Th th \<in> subtree (RAG s) (Th th')"
- thus False
- proof(cases rule:subtreeE)
- case 1
- with assms show ?thesis by auto
- next
- case 2
- with readys_root[OF assms(1)]
- show ?thesis by (auto simp:root_def)
- qed
-qed
-
-lemma not_in_thread_isolated:
- assumes "th \<notin> threads s"
- shows "(Th th) \<notin> Field (RAG s)"
-proof
- assume "(Th th) \<in> Field (RAG s)"
- with dm_RAG_threads and rg_RAG_threads assms
- show False by (unfold Field_def, blast)
-qed
-
-lemma next_th_holding:
- assumes nxt: "next_th s th cs th'"
- shows "holding (wq s) th cs"
-proof -
- from nxt[unfolded next_th_def]
- obtain rest where h: "wq s cs = th # rest"
- "rest \<noteq> []"
- "th' = hd (SOME q. distinct q \<and> set q = set rest)" by auto
- thus ?thesis
- by (unfold cs_holding_def, auto)
-qed
-
-lemma next_th_waiting:
- assumes nxt: "next_th s th cs th'"
- shows "waiting (wq s) th' cs"
-proof -
- from nxt[unfolded next_th_def]
- obtain rest where h: "wq s cs = th # rest"
- "rest \<noteq> []"
- "th' = hd (SOME q. distinct q \<and> set q = set rest)" by auto
- from wq_distinct[of cs, unfolded h]
- have dst: "distinct (th # rest)" .
- have in_rest: "th' \<in> set rest"
- proof(unfold h, rule someI2)
- show "distinct rest \<and> set rest = set rest" using dst by auto
- next
- fix x assume "distinct x \<and> set x = set rest"
- with h(2)
- show "hd x \<in> set (rest)" by (cases x, auto)
- qed
- hence "th' \<in> set (wq s cs)" by (unfold h(1), auto)
- moreover have "th' \<noteq> hd (wq s cs)"
- by (unfold h(1), insert in_rest dst, auto)
- ultimately show ?thesis by (auto simp:cs_waiting_def)
-qed
-
-lemma next_th_RAG:
- assumes nxt: "next_th (s::event list) th cs th'"
- shows "{(Cs cs, Th th), (Th th', Cs cs)} \<subseteq> RAG s"
- using vt assms next_th_holding next_th_waiting
- by (unfold s_RAG_def, simp)
-
-end
-
-context valid_trace_p
-begin
-
-find_theorems readys th
-
-end
-
-end
--- a/CpsG_1.thy Tue Jun 14 13:56:51 2016 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,4403 +0,0 @@
-theory CpsG
-imports PIPDefs
-begin
-
-lemma Max_f_mono:
- assumes seq: "A \<subseteq> B"
- and np: "A \<noteq> {}"
- and fnt: "finite B"
- shows "Max (f ` A) \<le> Max (f ` B)"
-proof(rule Max_mono)
- from seq show "f ` A \<subseteq> f ` B" by auto
-next
- from np show "f ` A \<noteq> {}" by auto
-next
- from fnt and seq show "finite (f ` B)" by auto
-qed
-
-(* I am going to use this file as a start point to retrofiting
- PIPBasics.thy, which is originally called CpsG.ghy *)
-
-locale valid_trace =
- fixes s
- assumes vt : "vt s"
-
-locale valid_trace_e = valid_trace +
- fixes e
- assumes vt_e: "vt (e#s)"
-begin
-
-lemma pip_e: "PIP s e"
- using vt_e by (cases, simp)
-
-end
-
-locale valid_trace_create = valid_trace_e +
- fixes th prio
- assumes is_create: "e = Create th prio"
-
-locale valid_trace_exit = valid_trace_e +
- fixes th
- assumes is_exit: "e = Exit th"
-
-locale valid_trace_p = valid_trace_e +
- fixes th cs
- assumes is_p: "e = P th cs"
-
-locale valid_trace_v = valid_trace_e +
- fixes th cs
- assumes is_v: "e = V th cs"
-begin
- definition "rest = tl (wq s cs)"
- definition "wq' = (SOME q. distinct q \<and> set q = set rest)"
-end
-
-locale valid_trace_v_n = valid_trace_v +
- assumes rest_nnl: "rest \<noteq> []"
-
-locale valid_trace_v_e = valid_trace_v +
- assumes rest_nil: "rest = []"
-
-locale valid_trace_set= valid_trace_e +
- fixes th prio
- assumes is_set: "e = Set th prio"
-
-context valid_trace
-begin
-
-lemma ind [consumes 0, case_names Nil Cons, induct type]:
- assumes "PP []"
- and "(\<And>s e. valid_trace_e s e \<Longrightarrow>
- PP s \<Longrightarrow> PIP s e \<Longrightarrow> PP (e # s))"
- shows "PP s"
-proof(induct rule:vt.induct[OF vt, case_names Init Step])
- case Init
- from assms(1) show ?case .
-next
- case (Step s e)
- show ?case
- proof(rule assms(2))
- show "valid_trace_e s e" using Step by (unfold_locales, auto)
- next
- show "PP s" using Step by simp
- next
- show "PIP s e" using Step by simp
- qed
-qed
-
-end
-
-
-lemma waiting_eq: "waiting s th cs = waiting (wq s) th cs"
- by (unfold s_waiting_def cs_waiting_def wq_def, auto)
-
-lemma holding_eq: "holding (s::state) th cs = holding (wq s) th cs"
- by (unfold s_holding_def wq_def cs_holding_def, simp)
-
-lemma runing_ready:
- shows "runing s \<subseteq> readys s"
- unfolding runing_def readys_def
- by auto
-
-lemma readys_threads:
- shows "readys s \<subseteq> threads s"
- unfolding readys_def
- by auto
-
-lemma wq_v_neq [simp]:
- "cs \<noteq> cs' \<Longrightarrow> wq (V thread cs#s) cs' = wq s cs'"
- by (auto simp:wq_def Let_def cp_def split:list.splits)
-
-lemma runing_head:
- assumes "th \<in> runing s"
- and "th \<in> set (wq_fun (schs s) cs)"
- shows "th = hd (wq_fun (schs s) cs)"
- using assms
- by (simp add:runing_def readys_def s_waiting_def wq_def)
-
-context valid_trace
-begin
-
-lemma runing_wqE:
- assumes "th \<in> runing s"
- and "th \<in> set (wq s cs)"
- obtains rest where "wq s cs = th#rest"
-proof -
- from assms(2) obtain th' rest where eq_wq: "wq s cs = th'#rest"
- by (meson list.set_cases)
- have "th' = th"
- proof(rule ccontr)
- assume "th' \<noteq> th"
- hence "th \<noteq> hd (wq s cs)" using eq_wq by auto
- with assms(2)
- have "waiting s th cs"
- by (unfold s_waiting_def, fold wq_def, auto)
- with assms show False
- by (unfold runing_def readys_def, auto)
- qed
- with eq_wq that show ?thesis by metis
-qed
-
-end
-
-context valid_trace_p
-begin
-
-lemma wq_neq_simp [simp]:
- assumes "cs' \<noteq> cs"
- shows "wq (e#s) cs' = wq s cs'"
- using assms unfolding is_p wq_def
- by (auto simp:Let_def)
-
-lemma runing_th_s:
- shows "th \<in> runing s"
-proof -
- from pip_e[unfolded is_p]
- show ?thesis by (cases, simp)
-qed
-
-lemma th_not_waiting:
- "\<not> waiting s th c"
-proof -
- have "th \<in> readys s"
- using runing_ready runing_th_s by blast
- thus ?thesis
- by (unfold readys_def, auto)
-qed
-
-lemma waiting_neq_th:
- assumes "waiting s t c"
- shows "t \<noteq> th"
- using assms using th_not_waiting by blast
-
-lemma th_not_in_wq:
- shows "th \<notin> set (wq s cs)"
-proof
- assume otherwise: "th \<in> set (wq s cs)"
- from runing_wqE[OF runing_th_s this]
- obtain rest where eq_wq: "wq s cs = th#rest" by blast
- with otherwise
- have "holding s th cs"
- by (unfold s_holding_def, fold wq_def, simp)
- hence cs_th_RAG: "(Cs cs, Th th) \<in> RAG s"
- by (unfold s_RAG_def, fold holding_eq, auto)
- from pip_e[unfolded is_p]
- show False
- proof(cases)
- case (thread_P)
- with cs_th_RAG show ?thesis by auto
- qed
-qed
-
-lemma wq_es_cs:
- "wq (e#s) cs = wq s cs @ [th]"
- by (unfold is_p wq_def, auto simp:Let_def)
-
-lemma wq_distinct_kept:
- assumes "distinct (wq s cs')"
- shows "distinct (wq (e#s) cs')"
-proof(cases "cs' = cs")
- case True
- show ?thesis using True assms th_not_in_wq
- by (unfold True wq_es_cs, auto)
-qed (insert assms, simp)
-
-end
-
-
-context valid_trace_v
-begin
-
-lemma wq_neq_simp [simp]:
- assumes "cs' \<noteq> cs"
- shows "wq (e#s) cs' = wq s cs'"
- using assms unfolding is_v wq_def
- by (auto simp:Let_def)
-
-lemma runing_th_s:
- shows "th \<in> runing s"
-proof -
- from pip_e[unfolded is_v]
- show ?thesis by (cases, simp)
-qed
-
-lemma th_not_waiting:
- "\<not> waiting s th c"
-proof -
- have "th \<in> readys s"
- using runing_ready runing_th_s by blast
- thus ?thesis
- by (unfold readys_def, auto)
-qed
-
-lemma waiting_neq_th:
- assumes "waiting s t c"
- shows "t \<noteq> th"
- using assms using th_not_waiting by blast
-
-lemma wq_s_cs:
- "wq s cs = th#rest"
-proof -
- from pip_e[unfolded is_v]
- show ?thesis
- proof(cases)
- case (thread_V)
- from this(2) show ?thesis
- by (unfold rest_def s_holding_def, fold wq_def,
- metis empty_iff list.collapse list.set(1))
- qed
-qed
-
-lemma wq_es_cs:
- "wq (e#s) cs = wq'"
- using wq_s_cs[unfolded wq_def]
- by (auto simp:Let_def wq_def rest_def wq'_def is_v, simp)
-
-lemma wq_distinct_kept:
- assumes "distinct (wq s cs')"
- shows "distinct (wq (e#s) cs')"
-proof(cases "cs' = cs")
- case True
- show ?thesis
- proof(unfold True wq_es_cs wq'_def, rule someI2)
- show "distinct rest \<and> set rest = set rest"
- using assms[unfolded True wq_s_cs] by auto
- qed simp
-qed (insert assms, simp)
-
-end
-
-context valid_trace
-begin
-
-lemma actor_inv:
- assumes "PIP s e"
- and "\<not> isCreate e"
- shows "actor e \<in> runing s"
- using assms
- by (induct, auto)
-
-lemma isP_E:
- assumes "isP e"
- obtains cs where "e = P (actor e) cs"
- using assms by (cases e, auto)
-
-lemma isV_E:
- assumes "isV e"
- obtains cs where "e = V (actor e) cs"
- using assms by (cases e, auto)
-
-lemma wq_distinct: "distinct (wq s cs)"
-proof(induct rule:ind)
- case (Cons s e)
- interpret vt_e: valid_trace_e s e using Cons by simp
- show ?case
- proof(cases e)
- case (V th cs)
- interpret vt_v: valid_trace_v s e th cs using V by (unfold_locales, simp)
- show ?thesis using Cons by (simp add: vt_v.wq_distinct_kept)
- qed
-qed (unfold wq_def Let_def, simp)
-
-end
-
-context valid_trace_e
-begin
-
-text {*
- The following lemma shows that only the @{text "P"}
- operation can add new thread into waiting queues.
- Such kind of lemmas are very obvious, but need to be checked formally.
- This is a kind of confirmation that our modelling is correct.
-*}
-
-lemma wq_in_inv:
- assumes s_ni: "thread \<notin> set (wq s cs)"
- and s_i: "thread \<in> set (wq (e#s) cs)"
- shows "e = P thread cs"
-proof(cases e)
- -- {* This is the only non-trivial case: *}
- case (V th cs1)
- have False
- proof(cases "cs1 = cs")
- case True
- show ?thesis
- proof(cases "(wq s cs1)")
- case (Cons w_hd w_tl)
- have "set (wq (e#s) cs) \<subseteq> set (wq s cs)"
- proof -
- have "(wq (e#s) cs) = (SOME q. distinct q \<and> set q = set w_tl)"
- using Cons V by (auto simp:wq_def Let_def True split:if_splits)
- moreover have "set ... \<subseteq> set (wq s cs)"
- proof(rule someI2)
- show "distinct w_tl \<and> set w_tl = set w_tl"
- by (metis distinct.simps(2) local.Cons wq_distinct)
- qed (insert Cons True, auto)
- ultimately show ?thesis by simp
- qed
- with assms show ?thesis by auto
- qed (insert assms V True, auto simp:wq_def Let_def split:if_splits)
- qed (insert assms V, auto simp:wq_def Let_def split:if_splits)
- thus ?thesis by auto
-qed (insert assms, auto simp:wq_def Let_def split:if_splits)
-
-lemma wq_out_inv:
- assumes s_in: "thread \<in> set (wq s cs)"
- and s_hd: "thread = hd (wq s cs)"
- and s_i: "thread \<noteq> hd (wq (e#s) cs)"
- shows "e = V thread cs"
-proof(cases e)
--- {* There are only two non-trivial cases: *}
- case (V th cs1)
- show ?thesis
- proof(cases "cs1 = cs")
- case True
- have "PIP s (V th cs)" using pip_e[unfolded V[unfolded True]] .
- thus ?thesis
- proof(cases)
- case (thread_V)
- moreover have "th = thread" using thread_V(2) s_hd
- by (unfold s_holding_def wq_def, simp)
- ultimately show ?thesis using V True by simp
- qed
- qed (insert assms V, auto simp:wq_def Let_def split:if_splits)
-next
- case (P th cs1)
- show ?thesis
- proof(cases "cs1 = cs")
- case True
- with P have "wq (e#s) cs = wq_fun (schs s) cs @ [th]"
- by (auto simp:wq_def Let_def split:if_splits)
- with s_i s_hd s_in have False
- by (metis empty_iff hd_append2 list.set(1) wq_def)
- thus ?thesis by simp
- qed (insert assms P, auto simp:wq_def Let_def split:if_splits)
-qed (insert assms, auto simp:wq_def Let_def split:if_splits)
-
-end
-
-
-
-context valid_trace
-begin
-
-
-text {* (* ddd *)
- The nature of the work is like this: since it starts from a very simple and basic
- model, even intuitively very `basic` and `obvious` properties need to derived from scratch.
- For instance, the fact
- that one thread can not be blocked by two critical resources at the same time
- is obvious, because only running threads can make new requests, if one is waiting for
- a critical resource and get blocked, it can not make another resource request and get
- blocked the second time (because it is not running).
-
- To derive this fact, one needs to prove by contraction and
- reason about time (or @{text "moement"}). The reasoning is based on a generic theorem
- named @{text "p_split"}, which is about status changing along the time axis. It says if
- a condition @{text "Q"} is @{text "True"} at a state @{text "s"},
- but it was @{text "False"} at the very beginning, then there must exits a moment @{text "t"}
- in the history of @{text "s"} (notice that @{text "s"} itself is essentially the history
- of events leading to it), such that @{text "Q"} switched
- from being @{text "False"} to @{text "True"} and kept being @{text "True"}
- till the last moment of @{text "s"}.
-
- Suppose a thread @{text "th"} is blocked
- on @{text "cs1"} and @{text "cs2"} in some state @{text "s"},
- since no thread is blocked at the very beginning, by applying
- @{text "p_split"} to these two blocking facts, there exist
- two moments @{text "t1"} and @{text "t2"} in @{text "s"}, such that
- @{text "th"} got blocked on @{text "cs1"} and @{text "cs2"}
- and kept on blocked on them respectively ever since.
-
- Without lost of generality, we assume @{text "t1"} is earlier than @{text "t2"}.
- However, since @{text "th"} was blocked ever since memonent @{text "t1"}, so it was still
- in blocked state at moment @{text "t2"} and could not
- make any request and get blocked the second time: Contradiction.
-*}
-
-lemma waiting_unique_pre: (* ddd *)
- assumes h11: "thread \<in> set (wq s cs1)"
- and h12: "thread \<noteq> hd (wq s cs1)"
- assumes h21: "thread \<in> set (wq s cs2)"
- and h22: "thread \<noteq> hd (wq s cs2)"
- and neq12: "cs1 \<noteq> cs2"
- shows "False"
-proof -
- let "?Q" = "\<lambda> cs s. thread \<in> set (wq s cs) \<and> thread \<noteq> hd (wq s cs)"
- from h11 and h12 have q1: "?Q cs1 s" by simp
- from h21 and h22 have q2: "?Q cs2 s" by simp
- have nq1: "\<not> ?Q cs1 []" by (simp add:wq_def)
- have nq2: "\<not> ?Q cs2 []" by (simp add:wq_def)
- from p_split [of "?Q cs1", OF q1 nq1]
- obtain t1 where lt1: "t1 < length s"
- and np1: "\<not> ?Q cs1 (moment t1 s)"
- and nn1: "(\<forall>i'>t1. ?Q cs1 (moment i' s))" by auto
- from p_split [of "?Q cs2", OF q2 nq2]
- obtain t2 where lt2: "t2 < length s"
- and np2: "\<not> ?Q cs2 (moment t2 s)"
- and nn2: "(\<forall>i'>t2. ?Q cs2 (moment i' s))" by auto
- { fix s cs
- assume q: "?Q cs s"
- have "thread \<notin> runing s"
- proof
- assume "thread \<in> runing s"
- hence " \<forall>cs. \<not> (thread \<in> set (wq_fun (schs s) cs) \<and>
- thread \<noteq> hd (wq_fun (schs s) cs))"
- by (unfold runing_def s_waiting_def readys_def, auto)
- from this[rule_format, of cs] q
- show False by (simp add: wq_def)
- qed
- } note q_not_runing = this
- { fix t1 t2 cs1 cs2
- assume lt1: "t1 < length s"
- and np1: "\<not> ?Q cs1 (moment t1 s)"
- and nn1: "(\<forall>i'>t1. ?Q cs1 (moment i' s))"
- and lt2: "t2 < length s"
- and np2: "\<not> ?Q cs2 (moment t2 s)"
- and nn2: "(\<forall>i'>t2. ?Q cs2 (moment i' s))"
- and lt12: "t1 < t2"
- let ?t3 = "Suc t2"
- from lt2 have le_t3: "?t3 \<le> length s" by auto
- from moment_plus [OF this]
- obtain e where eq_m: "moment ?t3 s = e#moment t2 s" by auto
- have "t2 < ?t3" by simp
- from nn2 [rule_format, OF this] and eq_m
- have h1: "thread \<in> set (wq (e#moment t2 s) cs2)" and
- h2: "thread \<noteq> hd (wq (e#moment t2 s) cs2)" by auto
- have "vt (e#moment t2 s)"
- proof -
- from vt_moment
- have "vt (moment ?t3 s)" .
- with eq_m show ?thesis by simp
- qed
- then interpret vt_e: valid_trace_e "moment t2 s" "e"
- by (unfold_locales, auto, cases, simp)
- have ?thesis
- proof -
- have "thread \<in> runing (moment t2 s)"
- proof(cases "thread \<in> set (wq (moment t2 s) cs2)")
- case True
- have "e = V thread cs2"
- proof -
- have eq_th: "thread = hd (wq (moment t2 s) cs2)"
- using True and np2 by auto
- from vt_e.wq_out_inv[OF True this h2]
- show ?thesis .
- qed
- thus ?thesis using vt_e.actor_inv[OF vt_e.pip_e] by auto
- next
- case False
- have "e = P thread cs2" using vt_e.wq_in_inv[OF False h1] .
- with vt_e.actor_inv[OF vt_e.pip_e]
- show ?thesis by auto
- qed
- moreover have "thread \<notin> runing (moment t2 s)"
- by (rule q_not_runing[OF nn1[rule_format, OF lt12]])
- ultimately show ?thesis by simp
- qed
- } note lt_case = this
- show ?thesis
- proof -
- { assume "t1 < t2"
- from lt_case[OF lt1 np1 nn1 lt2 np2 nn2 this]
- have ?thesis .
- } moreover {
- assume "t2 < t1"
- from lt_case[OF lt2 np2 nn2 lt1 np1 nn1 this]
- have ?thesis .
- } moreover {
- assume eq_12: "t1 = t2"
- let ?t3 = "Suc t2"
- from lt2 have le_t3: "?t3 \<le> length s" by auto
- from moment_plus [OF this]
- obtain e where eq_m: "moment ?t3 s = e#moment t2 s" by auto
- have lt_2: "t2 < ?t3" by simp
- from nn2 [rule_format, OF this] and eq_m
- have h1: "thread \<in> set (wq (e#moment t2 s) cs2)" and
- h2: "thread \<noteq> hd (wq (e#moment t2 s) cs2)" by auto
- from nn1[rule_format, OF lt_2[folded eq_12]] eq_m[folded eq_12]
- have g1: "thread \<in> set (wq (e#moment t1 s) cs1)" and
- g2: "thread \<noteq> hd (wq (e#moment t1 s) cs1)" by auto
- have "vt (e#moment t2 s)"
- proof -
- from vt_moment
- have "vt (moment ?t3 s)" .
- with eq_m show ?thesis by simp
- qed
- then interpret vt_e: valid_trace_e "moment t2 s" "e"
- by (unfold_locales, auto, cases, simp)
- have "e = V thread cs2 \<or> e = P thread cs2"
- proof(cases "thread \<in> set (wq (moment t2 s) cs2)")
- case True
- have "e = V thread cs2"
- proof -
- have eq_th: "thread = hd (wq (moment t2 s) cs2)"
- using True and np2 by auto
- from vt_e.wq_out_inv[OF True this h2]
- show ?thesis .
- qed
- thus ?thesis by auto
- next
- case False
- have "e = P thread cs2" using vt_e.wq_in_inv[OF False h1] .
- thus ?thesis by auto
- qed
- moreover have "e = V thread cs1 \<or> e = P thread cs1"
- proof(cases "thread \<in> set (wq (moment t1 s) cs1)")
- case True
- have eq_th: "thread = hd (wq (moment t1 s) cs1)"
- using True and np1 by auto
- from vt_e.wq_out_inv[folded eq_12, OF True this g2]
- have "e = V thread cs1" .
- thus ?thesis by auto
- next
- case False
- have "e = P thread cs1" using vt_e.wq_in_inv[folded eq_12, OF False g1] .
- thus ?thesis by auto
- qed
- ultimately have ?thesis using neq12 by auto
- } ultimately show ?thesis using nat_neq_iff by blast
- qed
-qed
-
-text {*
- This lemma is a simple corrolary of @{text "waiting_unique_pre"}.
-*}
-
-lemma waiting_unique:
- assumes "waiting s th cs1"
- and "waiting s th cs2"
- shows "cs1 = cs2"
- using waiting_unique_pre assms
- unfolding wq_def s_waiting_def
- by auto
-
-end
-
-(* not used *)
-text {*
- Every thread can only be blocked on one critical resource,
- symmetrically, every critical resource can only be held by one thread.
- This fact is much more easier according to our definition.
-*}
-lemma held_unique:
- assumes "holding (s::event list) th1 cs"
- and "holding s th2 cs"
- shows "th1 = th2"
- by (insert assms, unfold s_holding_def, auto)
-
-
-lemma last_set_lt: "th \<in> threads s \<Longrightarrow> last_set th s < length s"
- apply (induct s, auto)
- by (case_tac a, auto split:if_splits)
-
-lemma last_set_unique:
- "\<lbrakk>last_set th1 s = last_set th2 s; th1 \<in> threads s; th2 \<in> threads s\<rbrakk>
- \<Longrightarrow> th1 = th2"
- apply (induct s, auto)
- by (case_tac a, auto split:if_splits dest:last_set_lt)
-
-lemma preced_unique :
- assumes pcd_eq: "preced th1 s = preced th2 s"
- and th_in1: "th1 \<in> threads s"
- and th_in2: " th2 \<in> threads s"
- shows "th1 = th2"
-proof -
- from pcd_eq have "last_set th1 s = last_set th2 s" by (simp add:preced_def)
- from last_set_unique [OF this th_in1 th_in2]
- show ?thesis .
-qed
-
-lemma preced_linorder:
- assumes neq_12: "th1 \<noteq> th2"
- and th_in1: "th1 \<in> threads s"
- and th_in2: " th2 \<in> threads s"
- shows "preced th1 s < preced th2 s \<or> preced th1 s > preced th2 s"
-proof -
- from preced_unique [OF _ th_in1 th_in2] and neq_12
- have "preced th1 s \<noteq> preced th2 s" by auto
- thus ?thesis by auto
-qed
-
-(* An aux lemma used later *)
-lemma unique_minus:
- assumes unique: "\<And> a b c. \<lbrakk>(a, b) \<in> r; (a, c) \<in> r\<rbrakk> \<Longrightarrow> b = c"
- and xy: "(x, y) \<in> r"
- and xz: "(x, z) \<in> r^+"
- and neq: "y \<noteq> z"
- shows "(y, z) \<in> r^+"
-proof -
- from xz and neq show ?thesis
- proof(induct)
- case (base ya)
- have "(x, ya) \<in> r" by fact
- from unique [OF xy this] have "y = ya" .
- with base show ?case by auto
- next
- case (step ya z)
- show ?case
- proof(cases "y = ya")
- case True
- from step True show ?thesis by simp
- next
- case False
- from step False
- show ?thesis by auto
- qed
- qed
-qed
-
-lemma unique_base:
- assumes unique: "\<And> a b c. \<lbrakk>(a, b) \<in> r; (a, c) \<in> r\<rbrakk> \<Longrightarrow> b = c"
- and xy: "(x, y) \<in> r"
- and xz: "(x, z) \<in> r^+"
- and neq_yz: "y \<noteq> z"
- shows "(y, z) \<in> r^+"
-proof -
- from xz neq_yz show ?thesis
- proof(induct)
- case (base ya)
- from xy unique base show ?case by auto
- next
- case (step ya z)
- show ?case
- proof(cases "y = ya")
- case True
- from True step show ?thesis by auto
- next
- case False
- from False step
- have "(y, ya) \<in> r\<^sup>+" by auto
- with step show ?thesis by auto
- qed
- qed
-qed
-
-lemma unique_chain:
- assumes unique: "\<And> a b c. \<lbrakk>(a, b) \<in> r; (a, c) \<in> r\<rbrakk> \<Longrightarrow> b = c"
- and xy: "(x, y) \<in> r^+"
- and xz: "(x, z) \<in> r^+"
- and neq_yz: "y \<noteq> z"
- shows "(y, z) \<in> r^+ \<or> (z, y) \<in> r^+"
-proof -
- from xy xz neq_yz show ?thesis
- proof(induct)
- case (base y)
- have h1: "(x, y) \<in> r" and h2: "(x, z) \<in> r\<^sup>+" and h3: "y \<noteq> z" using base by auto
- from unique_base [OF _ h1 h2 h3] and unique show ?case by auto
- next
- case (step y za)
- show ?case
- proof(cases "y = z")
- case True
- from True step show ?thesis by auto
- next
- case False
- from False step have "(y, z) \<in> r\<^sup>+ \<or> (z, y) \<in> r\<^sup>+" by auto
- thus ?thesis
- proof
- assume "(z, y) \<in> r\<^sup>+"
- with step have "(z, za) \<in> r\<^sup>+" by auto
- thus ?thesis by auto
- next
- assume h: "(y, z) \<in> r\<^sup>+"
- from step have yza: "(y, za) \<in> r" by simp
- from step have "za \<noteq> z" by simp
- from unique_minus [OF _ yza h this] and unique
- have "(za, z) \<in> r\<^sup>+" by auto
- thus ?thesis by auto
- qed
- qed
- qed
-qed
-
-text {*
- The following three lemmas show that @{text "RAG"} does not change
- by the happening of @{text "Set"}, @{text "Create"} and @{text "Exit"}
- events, respectively.
-*}
-
-lemma RAG_set_unchanged: "(RAG (Set th prio # s)) = RAG s"
-apply (unfold s_RAG_def s_waiting_def wq_def)
-by (simp add:Let_def)
-
-lemma RAG_create_unchanged: "(RAG (Create th prio # s)) = RAG s"
-apply (unfold s_RAG_def s_waiting_def wq_def)
-by (simp add:Let_def)
-
-lemma RAG_exit_unchanged: "(RAG (Exit th # s)) = RAG s"
-apply (unfold s_RAG_def s_waiting_def wq_def)
-by (simp add:Let_def)
-
-
-context valid_trace_v
-begin
-
-
-lemma distinct_rest: "distinct rest"
- by (simp add: distinct_tl rest_def wq_distinct)
-
-definition "wq' = (SOME q. distinct q \<and> set q = set rest)"
-
-lemma runing_th_s:
- shows "th \<in> runing s"
-proof -
- from pip_e[unfolded is_v]
- show ?thesis by (cases, simp)
-qed
-
-lemma holding_cs_eq_th:
- assumes "holding s t cs"
- shows "t = th"
-proof -
- from pip_e[unfolded is_v]
- show ?thesis
- proof(cases)
- case (thread_V)
- from held_unique[OF this(2) assms]
- show ?thesis by simp
- qed
-qed
-
-lemma th_not_waiting:
- "\<not> waiting s th c"
-proof -
- have "th \<in> readys s"
- using runing_ready runing_th_s by blast
- thus ?thesis
- by (unfold readys_def, auto)
-qed
-
-lemma waiting_neq_th:
- assumes "waiting s t c"
- shows "t \<noteq> th"
- using assms using th_not_waiting by blast
-
-lemma wq_s_cs:
- "wq s cs = th#rest"
-proof -
- from pip_e[unfolded is_v]
- show ?thesis
- proof(cases)
- case (thread_V)
- from this(2) show ?thesis
- by (unfold rest_def s_holding_def, fold wq_def,
- metis empty_iff list.collapse list.set(1))
- qed
-qed
-
-lemma wq_es_cs:
- "wq (e#s) cs = wq'"
- using wq_s_cs[unfolded wq_def]
- by (auto simp:Let_def wq_def rest_def wq'_def is_v, simp)
-
-lemma distinct_wq': "distinct wq'"
- by (metis (mono_tags, lifting) distinct_rest some_eq_ex wq'_def)
-
-lemma th'_in_inv:
- assumes "th' \<in> set wq'"
- shows "th' \<in> set rest"
- using assms
- by (metis (mono_tags, lifting) distinct.simps(2)
- rest_def some_eq_ex wq'_def wq_distinct wq_s_cs)
-
-lemma neq_t_th:
- assumes "waiting (e#s) t c"
- shows "t \<noteq> th"
-proof
- assume otherwise: "t = th"
- show False
- proof(cases "c = cs")
- case True
- have "t \<in> set wq'"
- using assms[unfolded True s_waiting_def, folded wq_def, unfolded wq_es_cs]
- by simp
- from th'_in_inv[OF this] have "t \<in> set rest" .
- with wq_s_cs[folded otherwise] wq_distinct[of cs]
- show ?thesis by simp
- next
- case False
- have "wq (e#s) c = wq s c" using False
- by (unfold is_v, simp)
- hence "waiting s t c" using assms
- by (simp add: cs_waiting_def waiting_eq)
- hence "t \<notin> readys s" by (unfold readys_def, auto)
- hence "t \<notin> runing s" using runing_ready by auto
- with runing_th_s[folded otherwise] show ?thesis by auto
- qed
-qed
-
-lemma waiting_esI1:
- assumes "waiting s t c"
- and "c \<noteq> cs"
- shows "waiting (e#s) t c"
-proof -
- have "wq (e#s) c = wq s c"
- using assms(2) is_v by auto
- with assms(1) show ?thesis
- using cs_waiting_def waiting_eq by auto
-qed
-
-lemma holding_esI2:
- assumes "c \<noteq> cs"
- and "holding s t c"
- shows "holding (e#s) t c"
-proof -
- from assms(1) have "wq (e#s) c = wq s c" using is_v by auto
- from assms(2)[unfolded s_holding_def, folded wq_def,
- folded this, unfolded wq_def, folded s_holding_def]
- show ?thesis .
-qed
-
-lemma holding_esI1:
- assumes "holding s t c"
- and "t \<noteq> th"
- shows "holding (e#s) t c"
-proof -
- have "c \<noteq> cs" using assms using holding_cs_eq_th by blast
- from holding_esI2[OF this assms(1)]
- show ?thesis .
-qed
-
-end
-
-context valid_trace_v_n
-begin
-
-lemma neq_wq': "wq' \<noteq> []"
-proof (unfold wq'_def, rule someI2)
- show "distinct rest \<and> set rest = set rest"
- by (simp add: distinct_rest)
-next
- fix x
- assume " distinct x \<and> set x = set rest"
- thus "x \<noteq> []" using rest_nnl by auto
-qed
-
-definition "taker = hd wq'"
-
-definition "rest' = tl wq'"
-
-lemma eq_wq': "wq' = taker # rest'"
- by (simp add: neq_wq' rest'_def taker_def)
-
-lemma next_th_taker:
- shows "next_th s th cs taker"
- using rest_nnl taker_def wq'_def wq_s_cs
- by (auto simp:next_th_def)
-
-lemma taker_unique:
- assumes "next_th s th cs taker'"
- shows "taker' = taker"
-proof -
- from assms
- obtain rest' where
- h: "wq s cs = th # rest'"
- "taker' = hd (SOME q. distinct q \<and> set q = set rest')"
- by (unfold next_th_def, auto)
- with wq_s_cs have "rest' = rest" by auto
- thus ?thesis using h(2) taker_def wq'_def by auto
-qed
-
-lemma waiting_set_eq:
- "{(Th th', Cs cs) |th'. next_th s th cs th'} = {(Th taker, Cs cs)}"
- by (smt all_not_in_conv bot.extremum insertI1 insert_subset
- mem_Collect_eq next_th_taker subsetI subset_antisym taker_def taker_unique)
-
-lemma holding_set_eq:
- "{(Cs cs, Th th') |th'. next_th s th cs th'} = {(Cs cs, Th taker)}"
- using next_th_taker taker_def waiting_set_eq
- by fastforce
-
-lemma holding_taker:
- shows "holding (e#s) taker cs"
- by (unfold s_holding_def, fold wq_def, unfold wq_es_cs,
- auto simp:neq_wq' taker_def)
-
-lemma waiting_esI2:
- assumes "waiting s t cs"
- and "t \<noteq> taker"
- shows "waiting (e#s) t cs"
-proof -
- have "t \<in> set wq'"
- proof(unfold wq'_def, rule someI2)
- show "distinct rest \<and> set rest = set rest"
- by (simp add: distinct_rest)
- next
- fix x
- assume "distinct x \<and> set x = set rest"
- moreover have "t \<in> set rest"
- using assms(1) cs_waiting_def waiting_eq wq_s_cs by auto
- ultimately show "t \<in> set x" by simp
- qed
- moreover have "t \<noteq> hd wq'"
- using assms(2) taker_def by auto
- ultimately show ?thesis
- by (unfold s_waiting_def, fold wq_def, unfold wq_es_cs, simp)
-qed
-
-lemma waiting_esE:
- assumes "waiting (e#s) t c"
- obtains "c \<noteq> cs" "waiting s t c"
- | "c = cs" "t \<noteq> taker" "waiting s t cs" "t \<in> set rest'"
-proof(cases "c = cs")
- case False
- hence "wq (e#s) c = wq s c" using is_v by auto
- with assms have "waiting s t c" using cs_waiting_def waiting_eq by auto
- from that(1)[OF False this] show ?thesis .
-next
- case True
- from assms[unfolded s_waiting_def True, folded wq_def, unfolded wq_es_cs]
- have "t \<noteq> hd wq'" "t \<in> set wq'" by auto
- hence "t \<noteq> taker" by (simp add: taker_def)
- moreover hence "t \<noteq> th" using assms neq_t_th by blast
- moreover have "t \<in> set rest" by (simp add: `t \<in> set wq'` th'_in_inv)
- ultimately have "waiting s t cs"
- by (metis cs_waiting_def list.distinct(2) list.sel(1)
- list.set_sel(2) rest_def waiting_eq wq_s_cs)
- show ?thesis using that(2)
- using True `t \<in> set wq'` `t \<noteq> taker` `waiting s t cs` eq_wq' by auto
-qed
-
-lemma holding_esI1:
- assumes "c = cs"
- and "t = taker"
- shows "holding (e#s) t c"
- by (unfold assms, simp add: holding_taker)
-
-lemma holding_esE:
- assumes "holding (e#s) t c"
- obtains "c = cs" "t = taker"
- | "c \<noteq> cs" "holding s t c"
-proof(cases "c = cs")
- case True
- from assms[unfolded True, unfolded s_holding_def,
- folded wq_def, unfolded wq_es_cs]
- have "t = taker" by (simp add: taker_def)
- from that(1)[OF True this] show ?thesis .
-next
- case False
- hence "wq (e#s) c = wq s c" using is_v by auto
- from assms[unfolded s_holding_def, folded wq_def,
- unfolded this, unfolded wq_def, folded s_holding_def]
- have "holding s t c" .
- from that(2)[OF False this] show ?thesis .
-qed
-
-end
-
-
-context valid_trace_v_n
-begin
-
-lemma nil_wq': "wq' = []"
-proof (unfold wq'_def, rule someI2)
- show "distinct rest \<and> set rest = set rest"
- by (simp add: distinct_rest)
-next
- fix x
- assume " distinct x \<and> set x = set rest"
- thus "x = []" using rest_nil by auto
-qed
-
-lemma no_taker:
- assumes "next_th s th cs taker"
- shows "False"
-proof -
- from assms[unfolded next_th_def]
- obtain rest' where "wq s cs = th # rest'" "rest' \<noteq> []"
- by auto
- thus ?thesis using rest_def rest_nil by auto
-qed
-
-lemma waiting_set_eq:
- "{(Th th', Cs cs) |th'. next_th s th cs th'} = {}"
- using no_taker by auto
-
-lemma holding_set_eq:
- "{(Cs cs, Th th') |th'. next_th s th cs th'} = {}"
- using no_taker by auto
-
-lemma no_holding:
- assumes "holding (e#s) taker cs"
- shows False
-proof -
- from wq_es_cs[unfolded nil_wq']
- have " wq (e # s) cs = []" .
- from assms[unfolded s_holding_def, folded wq_def, unfolded this]
- show ?thesis by auto
-qed
-
-lemma no_waiting:
- assumes "waiting (e#s) t cs"
- shows False
-proof -
- from wq_es_cs[unfolded nil_wq']
- have " wq (e # s) cs = []" .
- from assms[unfolded s_waiting_def, folded wq_def, unfolded this]
- show ?thesis by auto
-qed
-
-lemma waiting_esI2:
- assumes "waiting s t c"
- shows "waiting (e#s) t c"
-proof -
- have "c \<noteq> cs" using assms
- using cs_waiting_def rest_nil waiting_eq wq_s_cs by auto
- from waiting_esI1[OF assms this]
- show ?thesis .
-qed
-
-lemma waiting_esE:
- assumes "waiting (e#s) t c"
- obtains "c \<noteq> cs" "waiting s t c"
-proof(cases "c = cs")
- case False
- hence "wq (e#s) c = wq s c" using is_v by auto
- with assms have "waiting s t c" using cs_waiting_def waiting_eq by auto
- from that(1)[OF False this] show ?thesis .
-next
- case True
- from no_waiting[OF assms[unfolded True]]
- show ?thesis by auto
-qed
-
-lemma holding_esE:
- assumes "holding (e#s) t c"
- obtains "c \<noteq> cs" "holding s t c"
-proof(cases "c = cs")
- case True
- from no_holding[OF assms[unfolded True]]
- show ?thesis by auto
-next
- case False
- hence "wq (e#s) c = wq s c" using is_v by auto
- from assms[unfolded s_holding_def, folded wq_def,
- unfolded this, unfolded wq_def, folded s_holding_def]
- have "holding s t c" .
- from that[OF False this] show ?thesis .
-qed
-
-end (* ccc *)
-
-lemma rel_eqI:
- assumes "\<And> x y. (x,y) \<in> A \<Longrightarrow> (x,y) \<in> B"
- and "\<And> x y. (x,y) \<in> B \<Longrightarrow> (x, y) \<in> A"
- shows "A = B"
- using assms by auto
-
-lemma in_RAG_E:
- assumes "(n1, n2) \<in> RAG (s::state)"
- obtains (waiting) th cs where "n1 = Th th" "n2 = Cs cs" "waiting s th cs"
- | (holding) th cs where "n1 = Cs cs" "n2 = Th th" "holding s th cs"
- using assms[unfolded s_RAG_def, folded waiting_eq holding_eq]
- by auto
-
-context valid_trace_v
-begin
-
-lemma RAG_es:
- "RAG (e # s) =
- RAG s - {(Cs cs, Th th)} -
- {(Th th', Cs cs) |th'. next_th s th cs th'} \<union>
- {(Cs cs, Th th') |th'. next_th s th cs th'}" (is "?L = ?R")
-proof(rule rel_eqI)
- fix n1 n2
- assume "(n1, n2) \<in> ?L"
- thus "(n1, n2) \<in> ?R"
- proof(cases rule:in_RAG_E)
- case (waiting th' cs')
- show ?thesis
- proof(cases "rest = []")
- case False
- interpret h_n: valid_trace_v_n s e th cs
- by (unfold_locales, insert False, simp)
- from waiting(3)
- show ?thesis
- proof(cases rule:h_n.waiting_esE)
- case 1
- with waiting(1,2)
- show ?thesis
- by (unfold h_n.waiting_set_eq h_n.holding_set_eq s_RAG_def,
- fold waiting_eq, auto)
- next
- case 2
- with waiting(1,2)
- show ?thesis
- by (unfold h_n.waiting_set_eq h_n.holding_set_eq s_RAG_def,
- fold waiting_eq, auto)
- qed
- next
- case True
- interpret h_e: valid_trace_v_e s e th cs
- by (unfold_locales, insert True, simp)
- from waiting(3)
- show ?thesis
- proof(cases rule:h_e.waiting_esE)
- case 1
- with waiting(1,2)
- show ?thesis
- by (unfold h_e.waiting_set_eq h_e.holding_set_eq s_RAG_def,
- fold waiting_eq, auto)
- qed
- qed
- next
- case (holding th' cs')
- show ?thesis
- proof(cases "rest = []")
- case False
- interpret h_n: valid_trace_v_n s e th cs
- by (unfold_locales, insert False, simp)
- from holding(3)
- show ?thesis
- proof(cases rule:h_n.holding_esE)
- case 1
- with holding(1,2)
- show ?thesis
- by (unfold h_n.waiting_set_eq h_n.holding_set_eq s_RAG_def,
- fold waiting_eq, auto)
- next
- case 2
- with holding(1,2)
- show ?thesis
- by (unfold h_n.waiting_set_eq h_n.holding_set_eq s_RAG_def,
- fold holding_eq, auto)
- qed
- next
- case True
- interpret h_e: valid_trace_v_e s e th cs
- by (unfold_locales, insert True, simp)
- from holding(3)
- show ?thesis
- proof(cases rule:h_e.holding_esE)
- case 1
- with holding(1,2)
- show ?thesis
- by (unfold h_e.waiting_set_eq h_e.holding_set_eq s_RAG_def,
- fold holding_eq, auto)
- qed
- qed
- qed
-next
- fix n1 n2
- assume h: "(n1, n2) \<in> ?R"
- show "(n1, n2) \<in> ?L"
- proof(cases "rest = []")
- case False
- interpret h_n: valid_trace_v_n s e th cs
- by (unfold_locales, insert False, simp)
- from h[unfolded h_n.waiting_set_eq h_n.holding_set_eq]
- have "((n1, n2) \<in> RAG s \<and> (n1 \<noteq> Cs cs \<or> n2 \<noteq> Th th)
- \<and> (n1 \<noteq> Th h_n.taker \<or> n2 \<noteq> Cs cs)) \<or>
- (n2 = Th h_n.taker \<and> n1 = Cs cs)"
- by auto
- thus ?thesis
- proof
- assume "n2 = Th h_n.taker \<and> n1 = Cs cs"
- with h_n.holding_taker
- show ?thesis
- by (unfold s_RAG_def, fold holding_eq, auto)
- next
- assume h: "(n1, n2) \<in> RAG s \<and>
- (n1 \<noteq> Cs cs \<or> n2 \<noteq> Th th) \<and> (n1 \<noteq> Th h_n.taker \<or> n2 \<noteq> Cs cs)"
- hence "(n1, n2) \<in> RAG s" by simp
- thus ?thesis
- proof(cases rule:in_RAG_E)
- case (waiting th' cs')
- from h and this(1,2)
- have "th' \<noteq> h_n.taker \<or> cs' \<noteq> cs" by auto
- hence "waiting (e#s) th' cs'"
- proof
- assume "cs' \<noteq> cs"
- from waiting_esI1[OF waiting(3) this]
- show ?thesis .
- next
- assume neq_th': "th' \<noteq> h_n.taker"
- show ?thesis
- proof(cases "cs' = cs")
- case False
- from waiting_esI1[OF waiting(3) this]
- show ?thesis .
- next
- case True
- from h_n.waiting_esI2[OF waiting(3)[unfolded True] neq_th', folded True]
- show ?thesis .
- qed
- qed
- thus ?thesis using waiting(1,2)
- by (unfold s_RAG_def, fold waiting_eq, auto)
- next
- case (holding th' cs')
- from h this(1,2)
- have "cs' \<noteq> cs \<or> th' \<noteq> th" by auto
- hence "holding (e#s) th' cs'"
- proof
- assume "cs' \<noteq> cs"
- from holding_esI2[OF this holding(3)]
- show ?thesis .
- next
- assume "th' \<noteq> th"
- from holding_esI1[OF holding(3) this]
- show ?thesis .
- qed
- thus ?thesis using holding(1,2)
- by (unfold s_RAG_def, fold holding_eq, auto)
- qed
- qed
- next
- case True
- interpret h_e: valid_trace_v_e s e th cs
- by (unfold_locales, insert True, simp)
- from h[unfolded h_e.waiting_set_eq h_e.holding_set_eq]
- have h_s: "(n1, n2) \<in> RAG s" "(n1, n2) \<noteq> (Cs cs, Th th)"
- by auto
- from h_s(1)
- show ?thesis
- proof(cases rule:in_RAG_E)
- case (waiting th' cs')
- from h_e.waiting_esI2[OF this(3)]
- show ?thesis using waiting(1,2)
- by (unfold s_RAG_def, fold waiting_eq, auto)
- next
- case (holding th' cs')
- with h_s(2)
- have "cs' \<noteq> cs \<or> th' \<noteq> th" by auto
- thus ?thesis
- proof
- assume neq_cs: "cs' \<noteq> cs"
- from holding_esI2[OF this holding(3)]
- show ?thesis using holding(1,2)
- by (unfold s_RAG_def, fold holding_eq, auto)
- next
- assume "th' \<noteq> th"
- from holding_esI1[OF holding(3) this]
- show ?thesis using holding(1,2)
- by (unfold s_RAG_def, fold holding_eq, auto)
- qed
- qed
- qed
-qed
-
-end
-
-
-
-context valid_trace
-begin
-
-lemma finite_threads:
- shows "finite (threads s)"
-using vt by (induct) (auto elim: step.cases)
-
-lemma cp_eq_cpreced: "cp s th = cpreced (wq s) s th"
-unfolding cp_def wq_def
-apply(induct s rule: schs.induct)
-apply(simp add: Let_def cpreced_initial)
-apply(simp add: Let_def)
-apply(simp add: Let_def)
-apply(simp add: Let_def)
-apply(subst (2) schs.simps)
-apply(simp add: Let_def)
-apply(subst (2) schs.simps)
-apply(simp add: Let_def)
-done
-
-lemma RAG_target_th: "(Th th, x) \<in> RAG (s::state) \<Longrightarrow> \<exists> cs. x = Cs cs"
- by (unfold s_RAG_def, auto)
-
-lemma wq_threads:
- assumes h: "th \<in> set (wq s cs)"
- shows "th \<in> threads s"
-
-
-lemma wq_threads:
- assumes h: "th \<in> set (wq s cs)"
- shows "th \<in> threads s"
-proof -
- from vt and h show ?thesis
- proof(induct arbitrary: th cs)
- case (vt_cons s e)
- interpret vt_s: valid_trace s
- using vt_cons(1) by (unfold_locales, auto)
- assume ih: "\<And>th cs. th \<in> set (wq s cs) \<Longrightarrow> th \<in> threads s"
- and stp: "step s e"
- and vt: "vt s"
- and h: "th \<in> set (wq (e # s) cs)"
- show ?case
- proof(cases e)
- case (Create th' prio)
- with ih h show ?thesis
- by (auto simp:wq_def Let_def)
- next
- case (Exit th')
- with stp ih h show ?thesis
- apply (auto simp:wq_def Let_def)
- apply (ind_cases "step s (Exit th')")
- apply (auto simp:runing_def readys_def s_holding_def s_waiting_def holdents_def
- s_RAG_def s_holding_def cs_holding_def)
- done
- next
- case (V th' cs')
- show ?thesis
- proof(cases "cs' = cs")
- case False
- with h
- show ?thesis
- apply(unfold wq_def V, auto simp:Let_def V split:prod.splits, fold wq_def)
- by (drule_tac ih, simp)
- next
- case True
- from h
- show ?thesis
- proof(unfold V wq_def)
- assume th_in: "th \<in> set (wq_fun (schs (V th' cs' # s)) cs)" (is "th \<in> set ?l")
- show "th \<in> threads (V th' cs' # s)"
- proof(cases "cs = cs'")
- case False
- hence "?l = wq_fun (schs s) cs" by (simp add:Let_def)
- with th_in have " th \<in> set (wq s cs)"
- by (fold wq_def, simp)
- from ih [OF this] show ?thesis by simp
- next
- case True
- show ?thesis
- proof(cases "wq_fun (schs s) cs'")
- case Nil
- with h V show ?thesis
- apply (auto simp:wq_def Let_def split:if_splits)
- by (fold wq_def, drule_tac ih, simp)
- next
- case (Cons a rest)
- assume eq_wq: "wq_fun (schs s) cs' = a # rest"
- with h V show ?thesis
- apply (auto simp:Let_def wq_def split:if_splits)
- proof -
- assume th_in: "th \<in> set (SOME q. distinct q \<and> set q = set rest)"
- have "set (SOME q. distinct q \<and> set q = set rest) = set rest"
- proof(rule someI2)
- from vt_s.wq_distinct[of cs'] and eq_wq[folded wq_def]
- show "distinct rest \<and> set rest = set rest" by auto
- next
- show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest"
- by auto
- qed
- with eq_wq th_in have "th \<in> set (wq_fun (schs s) cs')" by auto
- from ih[OF this[folded wq_def]] show "th \<in> threads s" .
- next
- assume th_in: "th \<in> set (wq_fun (schs s) cs)"
- from ih[OF this[folded wq_def]]
- show "th \<in> threads s" .
- qed
- qed
- qed
- qed
- qed
- next
- case (P th' cs')
- from h stp
- show ?thesis
- apply (unfold P wq_def)
- apply (auto simp:Let_def split:if_splits, fold wq_def)
- apply (auto intro:ih)
- apply(ind_cases "step s (P th' cs')")
- by (unfold runing_def readys_def, auto)
- next
- case (Set thread prio)
- with ih h show ?thesis
- by (auto simp:wq_def Let_def)
- qed
- next
- case vt_nil
- thus ?case by (auto simp:wq_def)
- qed
-qed
-
-lemma dm_RAG_threads:
- assumes in_dom: "(Th th) \<in> Domain (RAG s)"
- shows "th \<in> threads s"
-proof -
- from in_dom obtain n where "(Th th, n) \<in> RAG s" by auto
- moreover from RAG_target_th[OF this] obtain cs where "n = Cs cs" by auto
- ultimately have "(Th th, Cs cs) \<in> RAG s" by simp
- hence "th \<in> set (wq s cs)"
- by (unfold s_RAG_def, auto simp:cs_waiting_def)
- from wq_threads [OF this] show ?thesis .
-qed
-
-
-lemma cp_le:
- assumes th_in: "th \<in> threads s"
- shows "cp s th \<le> Max ((\<lambda> th. (preced th s)) ` threads s)"
-proof(unfold cp_eq_cpreced cpreced_def cs_dependants_def)
- show "Max ((\<lambda>th. preced th s) ` ({th} \<union> {th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+}))
- \<le> Max ((\<lambda>th. preced th s) ` threads s)"
- (is "Max (?f ` ?A) \<le> Max (?f ` ?B)")
- proof(rule Max_f_mono)
- show "{th} \<union> {th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+} \<noteq> {}" by simp
- next
- from finite_threads
- show "finite (threads s)" .
- next
- from th_in
- show "{th} \<union> {th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+} \<subseteq> threads s"
- apply (auto simp:Domain_def)
- apply (rule_tac dm_RAG_threads)
- apply (unfold trancl_domain [of "RAG s", symmetric])
- by (unfold cs_RAG_def s_RAG_def, auto simp:Domain_def)
- qed
-qed
-
-lemma le_cp:
- shows "preced th s \<le> cp s th"
-proof(unfold cp_eq_cpreced preced_def cpreced_def, simp)
- show "Prc (priority th s) (last_set th s)
- \<le> Max (insert (Prc (priority th s) (last_set th s))
- ((\<lambda>th. Prc (priority th s) (last_set th s)) ` dependants (wq s) th))"
- (is "?l \<le> Max (insert ?l ?A)")
- proof(cases "?A = {}")
- case False
- have "finite ?A" (is "finite (?f ` ?B)")
- proof -
- have "finite ?B"
- proof-
- have "finite {th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+}"
- proof -
- let ?F = "\<lambda> (x, y). the_th x"
- have "{th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+} \<subseteq> ?F ` ((RAG (wq s))\<^sup>+)"
- apply (auto simp:image_def)
- by (rule_tac x = "(Th x, Th th)" in bexI, auto)
- moreover have "finite \<dots>"
- proof -
- from finite_RAG have "finite (RAG s)" .
- hence "finite ((RAG (wq s))\<^sup>+)"
- apply (unfold finite_trancl)
- by (auto simp: s_RAG_def cs_RAG_def wq_def)
- thus ?thesis by auto
- qed
- ultimately show ?thesis by (auto intro:finite_subset)
- qed
- thus ?thesis by (simp add:cs_dependants_def)
- qed
- thus ?thesis by simp
- qed
- from Max_insert [OF this False, of ?l] show ?thesis by auto
- next
- case True
- thus ?thesis by auto
- qed
-qed
-
-lemma max_cp_eq:
- shows "Max ((cp s) ` threads s) = Max ((\<lambda> th. (preced th s)) ` threads s)"
- (is "?l = ?r")
-proof(cases "threads s = {}")
- case True
- thus ?thesis by auto
-next
- case False
- have "?l \<in> ((cp s) ` threads s)"
- proof(rule Max_in)
- from finite_threads
- show "finite (cp s ` threads s)" by auto
- next
- from False show "cp s ` threads s \<noteq> {}" by auto
- qed
- then obtain th
- where th_in: "th \<in> threads s" and eq_l: "?l = cp s th" by auto
- have "\<dots> \<le> ?r" by (rule cp_le[OF th_in])
- moreover have "?r \<le> cp s th" (is "Max (?f ` ?A) \<le> cp s th")
- proof -
- have "?r \<in> (?f ` ?A)"
- proof(rule Max_in)
- from finite_threads
- show " finite ((\<lambda>th. preced th s) ` threads s)" by auto
- next
- from False show " (\<lambda>th. preced th s) ` threads s \<noteq> {}" by auto
- qed
- then obtain th' where
- th_in': "th' \<in> ?A " and eq_r: "?r = ?f th'" by auto
- from le_cp [of th'] eq_r
- have "?r \<le> cp s th'" by auto
- moreover have "\<dots> \<le> cp s th"
- proof(fold eq_l)
- show " cp s th' \<le> Max (cp s ` threads s)"
- proof(rule Max_ge)
- from th_in' show "cp s th' \<in> cp s ` threads s"
- by auto
- next
- from finite_threads
- show "finite (cp s ` threads s)" by auto
- qed
- qed
- ultimately show ?thesis by auto
- qed
- ultimately show ?thesis using eq_l by auto
-qed
-
-lemma max_cp_eq_the_preced:
- shows "Max ((cp s) ` threads s) = Max (the_preced s ` threads s)"
- using max_cp_eq using the_preced_def by presburger
-
-end
-
-lemma preced_v [simp]: "preced th' (V th cs#s) = preced th' s"
- by (unfold preced_def, simp)
-
-lemma the_preced_v[simp]: "the_preced (V th cs#s) = the_preced s"
-proof
- fix th'
- show "the_preced (V th cs # s) th' = the_preced s th'"
- by (unfold the_preced_def preced_def, simp)
-qed
-
-lemma step_RAG_v:
-assumes vt:
- "vt (V th cs#s)"
-shows "
- RAG (V th cs # s) =
- RAG s - {(Cs cs, Th th)} -
- {(Th th', Cs cs) |th'. next_th s th cs th'} \<union>
- {(Cs cs, Th th') |th'. next_th s th cs th'}" (is "?L = ?R")
-proof -
- interpret vt_v: valid_trace_v s "V th cs"
- using assms step_back_vt by (unfold_locales, auto)
- show ?thesis using vt_v.RAG_es .
-qed
-
-
-
-
-
-text {* (* ddd *)
- The following @{text "step_RAG_v"} lemma charaterizes how @{text "RAG"} is changed
- with the happening of @{text "V"}-events:
-*}
-lemma step_RAG_v:
-assumes vt:
- "vt (V th cs#s)"
-shows "
- RAG (V th cs # s) =
- RAG s - {(Cs cs, Th th)} -
- {(Th th', Cs cs) |th'. next_th s th cs th'} \<union>
- {(Cs cs, Th th') |th'. next_th s th cs th'}"
- apply (insert vt, unfold s_RAG_def)
- apply (auto split:if_splits list.splits simp:Let_def)
- apply (auto elim: step_v_waiting_mono step_v_hold_inv
- step_v_release step_v_wait_inv
- step_v_get_hold step_v_release_inv)
- apply (erule_tac step_v_not_wait, auto)
- done
-
-text {*
- The following @{text "step_RAG_p"} lemma charaterizes how @{text "RAG"} is changed
- with the happening of @{text "P"}-events:
-*}
-lemma step_RAG_p:
- "vt (P th cs#s) \<Longrightarrow>
- RAG (P th cs # s) = (if (wq s cs = []) then RAG s \<union> {(Cs cs, Th th)}
- else RAG s \<union> {(Th th, Cs cs)})"
- apply(simp only: s_RAG_def wq_def)
- apply (auto split:list.splits prod.splits simp:Let_def wq_def cs_waiting_def cs_holding_def)
- apply(case_tac "csa = cs", auto)
- apply(fold wq_def)
- apply(drule_tac step_back_step)
- apply(ind_cases " step s (P (hd (wq s cs)) cs)")
- apply(simp add:s_RAG_def wq_def cs_holding_def)
- apply(auto)
- done
-
-
-lemma RAG_target_th: "(Th th, x) \<in> RAG (s::state) \<Longrightarrow> \<exists> cs. x = Cs cs"
- by (unfold s_RAG_def, auto)
-
-context valid_trace
-begin
-
-text {*
- The following lemma shows that @{text "RAG"} is acyclic.
- The overall structure is by induction on the formation of @{text "vt s"}
- and then case analysis on event @{text "e"}, where the non-trivial cases
- for those for @{text "V"} and @{text "P"} events.
-*}
-lemma acyclic_RAG:
- shows "acyclic (RAG s)"
-using vt
-proof(induct)
- case (vt_cons s e)
- interpret vt_s: valid_trace s using vt_cons(1)
- by (unfold_locales, simp)
- assume ih: "acyclic (RAG s)"
- and stp: "step s e"
- and vt: "vt s"
- show ?case
- proof(cases e)
- case (Create th prio)
- with ih
- show ?thesis by (simp add:RAG_create_unchanged)
- next
- case (Exit th)
- with ih show ?thesis by (simp add:RAG_exit_unchanged)
- next
- case (V th cs)
- from V vt stp have vtt: "vt (V th cs#s)" by auto
- from step_RAG_v [OF this]
- have eq_de:
- "RAG (e # s) =
- RAG s - {(Cs cs, Th th)} - {(Th th', Cs cs) |th'. next_th s th cs th'} \<union>
- {(Cs cs, Th th') |th'. next_th s th cs th'}"
- (is "?L = (?A - ?B - ?C) \<union> ?D") by (simp add:V)
- from ih have ac: "acyclic (?A - ?B - ?C)" by (auto elim:acyclic_subset)
- from step_back_step [OF vtt]
- have "step s (V th cs)" .
- thus ?thesis
- proof(cases)
- assume "holding s th cs"
- hence th_in: "th \<in> set (wq s cs)" and
- eq_hd: "th = hd (wq s cs)" unfolding s_holding_def wq_def by auto
- then obtain rest where
- eq_wq: "wq s cs = th#rest"
- by (cases "wq s cs", auto)
- show ?thesis
- proof(cases "rest = []")
- case False
- let ?th' = "hd (SOME q. distinct q \<and> set q = set rest)"
- from eq_wq False have eq_D: "?D = {(Cs cs, Th ?th')}"
- by (unfold next_th_def, auto)
- let ?E = "(?A - ?B - ?C)"
- have "(Th ?th', Cs cs) \<notin> ?E\<^sup>*"
- proof
- assume "(Th ?th', Cs cs) \<in> ?E\<^sup>*"
- hence " (Th ?th', Cs cs) \<in> ?E\<^sup>+" by (simp add: rtrancl_eq_or_trancl)
- from tranclD [OF this]
- obtain x where th'_e: "(Th ?th', x) \<in> ?E" by blast
- hence th_d: "(Th ?th', x) \<in> ?A" by simp
- from RAG_target_th [OF this]
- obtain cs' where eq_x: "x = Cs cs'" by auto
- with th_d have "(Th ?th', Cs cs') \<in> ?A" by simp
- hence wt_th': "waiting s ?th' cs'"
- unfolding s_RAG_def s_waiting_def cs_waiting_def wq_def by simp
- hence "cs' = cs"
- proof(rule vt_s.waiting_unique)
- from eq_wq vt_s.wq_distinct[of cs]
- show "waiting s ?th' cs"
- apply (unfold s_waiting_def wq_def, auto)
- proof -
- assume hd_in: "hd (SOME q. distinct q \<and> set q = set rest) \<notin> set rest"
- and eq_wq: "wq_fun (schs s) cs = th # rest"
- have "(SOME q. distinct q \<and> set q = set rest) \<noteq> []"
- proof(rule someI2)
- from vt_s.wq_distinct[of cs] and eq_wq
- show "distinct rest \<and> set rest = set rest" unfolding wq_def by auto
- next
- fix x assume "distinct x \<and> set x = set rest"
- with False show "x \<noteq> []" by auto
- qed
- hence "hd (SOME q. distinct q \<and> set q = set rest) \<in>
- set (SOME q. distinct q \<and> set q = set rest)" by auto
- moreover have "\<dots> = set rest"
- proof(rule someI2)
- from vt_s.wq_distinct[of cs] and eq_wq
- show "distinct rest \<and> set rest = set rest" unfolding wq_def by auto
- next
- show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest" by auto
- qed
- moreover note hd_in
- ultimately show "hd (SOME q. distinct q \<and> set q = set rest) = th" by auto
- next
- assume hd_in: "hd (SOME q. distinct q \<and> set q = set rest) \<notin> set rest"
- and eq_wq: "wq s cs = hd (SOME q. distinct q \<and> set q = set rest) # rest"
- have "(SOME q. distinct q \<and> set q = set rest) \<noteq> []"
- proof(rule someI2)
- from vt_s.wq_distinct[of cs] and eq_wq
- show "distinct rest \<and> set rest = set rest" by auto
- next
- fix x assume "distinct x \<and> set x = set rest"
- with False show "x \<noteq> []" by auto
- qed
- hence "hd (SOME q. distinct q \<and> set q = set rest) \<in>
- set (SOME q. distinct q \<and> set q = set rest)" by auto
- moreover have "\<dots> = set rest"
- proof(rule someI2)
- from vt_s.wq_distinct[of cs] and eq_wq
- show "distinct rest \<and> set rest = set rest" by auto
- next
- show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest" by auto
- qed
- moreover note hd_in
- ultimately show False by auto
- qed
- qed
- with th'_e eq_x have "(Th ?th', Cs cs) \<in> ?E" by simp
- with False
- show "False" by (auto simp: next_th_def eq_wq)
- qed
- with acyclic_insert[symmetric] and ac
- and eq_de eq_D show ?thesis by auto
- next
- case True
- with eq_wq
- have eq_D: "?D = {}"
- by (unfold next_th_def, auto)
- with eq_de ac
- show ?thesis by auto
- qed
- qed
- next
- case (P th cs)
- from P vt stp have vtt: "vt (P th cs#s)" by auto
- from step_RAG_p [OF this] P
- have "RAG (e # s) =
- (if wq s cs = [] then RAG s \<union> {(Cs cs, Th th)} else
- RAG s \<union> {(Th th, Cs cs)})" (is "?L = ?R")
- by simp
- moreover have "acyclic ?R"
- proof(cases "wq s cs = []")
- case True
- hence eq_r: "?R = RAG s \<union> {(Cs cs, Th th)}" by simp
- have "(Th th, Cs cs) \<notin> (RAG s)\<^sup>*"
- proof
- assume "(Th th, Cs cs) \<in> (RAG s)\<^sup>*"
- hence "(Th th, Cs cs) \<in> (RAG s)\<^sup>+" by (simp add: rtrancl_eq_or_trancl)
- from tranclD2 [OF this]
- obtain x where "(x, Cs cs) \<in> RAG s" by auto
- with True show False by (auto simp:s_RAG_def cs_waiting_def)
- qed
- with acyclic_insert ih eq_r show ?thesis by auto
- next
- case False
- hence eq_r: "?R = RAG s \<union> {(Th th, Cs cs)}" by simp
- have "(Cs cs, Th th) \<notin> (RAG s)\<^sup>*"
- proof
- assume "(Cs cs, Th th) \<in> (RAG s)\<^sup>*"
- hence "(Cs cs, Th th) \<in> (RAG s)\<^sup>+" by (simp add: rtrancl_eq_or_trancl)
- moreover from step_back_step [OF vtt] have "step s (P th cs)" .
- ultimately show False
- proof -
- show " \<lbrakk>(Cs cs, Th th) \<in> (RAG s)\<^sup>+; step s (P th cs)\<rbrakk> \<Longrightarrow> False"
- by (ind_cases "step s (P th cs)", simp)
- qed
- qed
- with acyclic_insert ih eq_r show ?thesis by auto
- qed
- ultimately show ?thesis by simp
- next
- case (Set thread prio)
- with ih
- thm RAG_set_unchanged
- show ?thesis by (simp add:RAG_set_unchanged)
- qed
- next
- case vt_nil
- show "acyclic (RAG ([]::state))"
- by (auto simp: s_RAG_def cs_waiting_def
- cs_holding_def wq_def acyclic_def)
-qed
-
-
-lemma finite_RAG:
- shows "finite (RAG s)"
-proof -
- from vt show ?thesis
- proof(induct)
- case (vt_cons s e)
- interpret vt_s: valid_trace s using vt_cons(1)
- by (unfold_locales, simp)
- assume ih: "finite (RAG s)"
- and stp: "step s e"
- and vt: "vt s"
- show ?case
- proof(cases e)
- case (Create th prio)
- with ih
- show ?thesis by (simp add:RAG_create_unchanged)
- next
- case (Exit th)
- with ih show ?thesis by (simp add:RAG_exit_unchanged)
- next
- case (V th cs)
- from V vt stp have vtt: "vt (V th cs#s)" by auto
- from step_RAG_v [OF this]
- have eq_de: "RAG (e # s) =
- RAG s - {(Cs cs, Th th)} - {(Th th', Cs cs) |th'. next_th s th cs th'} \<union>
- {(Cs cs, Th th') |th'. next_th s th cs th'}
-"
- (is "?L = (?A - ?B - ?C) \<union> ?D") by (simp add:V)
- moreover from ih have ac: "finite (?A - ?B - ?C)" by simp
- moreover have "finite ?D"
- proof -
- have "?D = {} \<or> (\<exists> a. ?D = {a})"
- by (unfold next_th_def, auto)
- thus ?thesis
- proof
- assume h: "?D = {}"
- show ?thesis by (unfold h, simp)
- next
- assume "\<exists> a. ?D = {a}"
- thus ?thesis
- by (metis finite.simps)
- qed
- qed
- ultimately show ?thesis by simp
- next
- case (P th cs)
- from P vt stp have vtt: "vt (P th cs#s)" by auto
- from step_RAG_p [OF this] P
- have "RAG (e # s) =
- (if wq s cs = [] then RAG s \<union> {(Cs cs, Th th)} else
- RAG s \<union> {(Th th, Cs cs)})" (is "?L = ?R")
- by simp
- moreover have "finite ?R"
- proof(cases "wq s cs = []")
- case True
- hence eq_r: "?R = RAG s \<union> {(Cs cs, Th th)}" by simp
- with True and ih show ?thesis by auto
- next
- case False
- hence "?R = RAG s \<union> {(Th th, Cs cs)}" by simp
- with False and ih show ?thesis by auto
- qed
- ultimately show ?thesis by auto
- next
- case (Set thread prio)
- with ih
- show ?thesis by (simp add:RAG_set_unchanged)
- qed
- next
- case vt_nil
- show "finite (RAG ([]::state))"
- by (auto simp: s_RAG_def cs_waiting_def
- cs_holding_def wq_def acyclic_def)
- qed
-qed
-
-text {* Several useful lemmas *}
-
-lemma wf_dep_converse:
- shows "wf ((RAG s)^-1)"
-proof(rule finite_acyclic_wf_converse)
- from finite_RAG
- show "finite (RAG s)" .
-next
- from acyclic_RAG
- show "acyclic (RAG s)" .
-qed
-
-end
-
-lemma hd_np_in: "x \<in> set l \<Longrightarrow> hd l \<in> set l"
- by (induct l, auto)
-
-lemma th_chasing: "(Th th, Cs cs) \<in> RAG (s::state) \<Longrightarrow> \<exists> th'. (Cs cs, Th th') \<in> RAG s"
- by (auto simp:s_RAG_def s_holding_def cs_holding_def cs_waiting_def wq_def dest:hd_np_in)
-
-context valid_trace
-begin
-
-lemma wq_threads:
- assumes h: "th \<in> set (wq s cs)"
- shows "th \<in> threads s"
-proof -
- from vt and h show ?thesis
- proof(induct arbitrary: th cs)
- case (vt_cons s e)
- interpret vt_s: valid_trace s
- using vt_cons(1) by (unfold_locales, auto)
- assume ih: "\<And>th cs. th \<in> set (wq s cs) \<Longrightarrow> th \<in> threads s"
- and stp: "step s e"
- and vt: "vt s"
- and h: "th \<in> set (wq (e # s) cs)"
- show ?case
- proof(cases e)
- case (Create th' prio)
- with ih h show ?thesis
- by (auto simp:wq_def Let_def)
- next
- case (Exit th')
- with stp ih h show ?thesis
- apply (auto simp:wq_def Let_def)
- apply (ind_cases "step s (Exit th')")
- apply (auto simp:runing_def readys_def s_holding_def s_waiting_def holdents_def
- s_RAG_def s_holding_def cs_holding_def)
- done
- next
- case (V th' cs')
- show ?thesis
- proof(cases "cs' = cs")
- case False
- with h
- show ?thesis
- apply(unfold wq_def V, auto simp:Let_def V split:prod.splits, fold wq_def)
- by (drule_tac ih, simp)
- next
- case True
- from h
- show ?thesis
- proof(unfold V wq_def)
- assume th_in: "th \<in> set (wq_fun (schs (V th' cs' # s)) cs)" (is "th \<in> set ?l")
- show "th \<in> threads (V th' cs' # s)"
- proof(cases "cs = cs'")
- case False
- hence "?l = wq_fun (schs s) cs" by (simp add:Let_def)
- with th_in have " th \<in> set (wq s cs)"
- by (fold wq_def, simp)
- from ih [OF this] show ?thesis by simp
- next
- case True
- show ?thesis
- proof(cases "wq_fun (schs s) cs'")
- case Nil
- with h V show ?thesis
- apply (auto simp:wq_def Let_def split:if_splits)
- by (fold wq_def, drule_tac ih, simp)
- next
- case (Cons a rest)
- assume eq_wq: "wq_fun (schs s) cs' = a # rest"
- with h V show ?thesis
- apply (auto simp:Let_def wq_def split:if_splits)
- proof -
- assume th_in: "th \<in> set (SOME q. distinct q \<and> set q = set rest)"
- have "set (SOME q. distinct q \<and> set q = set rest) = set rest"
- proof(rule someI2)
- from vt_s.wq_distinct[of cs'] and eq_wq[folded wq_def]
- show "distinct rest \<and> set rest = set rest" by auto
- next
- show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest"
- by auto
- qed
- with eq_wq th_in have "th \<in> set (wq_fun (schs s) cs')" by auto
- from ih[OF this[folded wq_def]] show "th \<in> threads s" .
- next
- assume th_in: "th \<in> set (wq_fun (schs s) cs)"
- from ih[OF this[folded wq_def]]
- show "th \<in> threads s" .
- qed
- qed
- qed
- qed
- qed
- next
- case (P th' cs')
- from h stp
- show ?thesis
- apply (unfold P wq_def)
- apply (auto simp:Let_def split:if_splits, fold wq_def)
- apply (auto intro:ih)
- apply(ind_cases "step s (P th' cs')")
- by (unfold runing_def readys_def, auto)
- next
- case (Set thread prio)
- with ih h show ?thesis
- by (auto simp:wq_def Let_def)
- qed
- next
- case vt_nil
- thus ?case by (auto simp:wq_def)
- qed
-qed
-
-lemma range_in: "\<lbrakk>(Th th) \<in> Range (RAG (s::state))\<rbrakk> \<Longrightarrow> th \<in> threads s"
- apply(unfold s_RAG_def cs_waiting_def cs_holding_def)
- by (auto intro:wq_threads)
-
-lemma readys_v_eq:
- assumes neq_th: "th \<noteq> thread"
- and eq_wq: "wq s cs = thread#rest"
- and not_in: "th \<notin> set rest"
- shows "(th \<in> readys (V thread cs#s)) = (th \<in> readys s)"
-proof -
- from assms show ?thesis
- apply (auto simp:readys_def)
- apply(simp add:s_waiting_def[folded wq_def])
- apply (erule_tac x = csa in allE)
- apply (simp add:s_waiting_def wq_def Let_def split:if_splits)
- apply (case_tac "csa = cs", simp)
- apply (erule_tac x = cs in allE)
- apply(auto simp add: s_waiting_def[folded wq_def] Let_def split: list.splits)
- apply(auto simp add: wq_def)
- apply (auto simp:s_waiting_def wq_def Let_def split:list.splits)
- proof -
- assume th_nin: "th \<notin> set rest"
- and th_in: "th \<in> set (SOME q. distinct q \<and> set q = set rest)"
- and eq_wq: "wq_fun (schs s) cs = thread # rest"
- have "set (SOME q. distinct q \<and> set q = set rest) = set rest"
- proof(rule someI2)
- from wq_distinct[of cs, unfolded wq_def] and eq_wq[unfolded wq_def]
- show "distinct rest \<and> set rest = set rest" by auto
- next
- show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest" by auto
- qed
- with th_nin th_in show False by auto
- qed
-qed
-
-text {* \noindent
- The following lemmas shows that: starting from any node in @{text "RAG"},
- by chasing out-going edges, it is always possible to reach a node representing a ready
- thread. In this lemma, it is the @{text "th'"}.
-*}
-
-lemma chain_building:
- shows "node \<in> Domain (RAG s) \<longrightarrow> (\<exists> th'. th' \<in> readys s \<and> (node, Th th') \<in> (RAG s)^+)"
-proof -
- from wf_dep_converse
- have h: "wf ((RAG s)\<inverse>)" .
- show ?thesis
- proof(induct rule:wf_induct [OF h])
- fix x
- assume ih [rule_format]:
- "\<forall>y. (y, x) \<in> (RAG s)\<inverse> \<longrightarrow>
- y \<in> Domain (RAG s) \<longrightarrow> (\<exists>th'. th' \<in> readys s \<and> (y, Th th') \<in> (RAG s)\<^sup>+)"
- show "x \<in> Domain (RAG s) \<longrightarrow> (\<exists>th'. th' \<in> readys s \<and> (x, Th th') \<in> (RAG s)\<^sup>+)"
- proof
- assume x_d: "x \<in> Domain (RAG s)"
- show "\<exists>th'. th' \<in> readys s \<and> (x, Th th') \<in> (RAG s)\<^sup>+"
- proof(cases x)
- case (Th th)
- from x_d Th obtain cs where x_in: "(Th th, Cs cs) \<in> RAG s" by (auto simp:s_RAG_def)
- with Th have x_in_r: "(Cs cs, x) \<in> (RAG s)^-1" by simp
- from th_chasing [OF x_in] obtain th' where "(Cs cs, Th th') \<in> RAG s" by blast
- hence "Cs cs \<in> Domain (RAG s)" by auto
- from ih [OF x_in_r this] obtain th'
- where th'_ready: " th' \<in> readys s" and cs_in: "(Cs cs, Th th') \<in> (RAG s)\<^sup>+" by auto
- have "(x, Th th') \<in> (RAG s)\<^sup>+" using Th x_in cs_in by auto
- with th'_ready show ?thesis by auto
- next
- case (Cs cs)
- from x_d Cs obtain th' where th'_d: "(Th th', x) \<in> (RAG s)^-1" by (auto simp:s_RAG_def)
- show ?thesis
- proof(cases "th' \<in> readys s")
- case True
- from True and th'_d show ?thesis by auto
- next
- case False
- from th'_d and range_in have "th' \<in> threads s" by auto
- with False have "Th th' \<in> Domain (RAG s)"
- by (auto simp:readys_def wq_def s_waiting_def s_RAG_def cs_waiting_def Domain_def)
- from ih [OF th'_d this]
- obtain th'' where
- th''_r: "th'' \<in> readys s" and
- th''_in: "(Th th', Th th'') \<in> (RAG s)\<^sup>+" by auto
- from th'_d and th''_in
- have "(x, Th th'') \<in> (RAG s)\<^sup>+" by auto
- with th''_r show ?thesis by auto
- qed
- qed
- qed
- qed
-qed
-
-text {* \noindent
- The following is just an instance of @{text "chain_building"}.
-*}
-lemma th_chain_to_ready:
- assumes th_in: "th \<in> threads s"
- shows "th \<in> readys s \<or> (\<exists> th'. th' \<in> readys s \<and> (Th th, Th th') \<in> (RAG s)^+)"
-proof(cases "th \<in> readys s")
- case True
- thus ?thesis by auto
-next
- case False
- from False and th_in have "Th th \<in> Domain (RAG s)"
- by (auto simp:readys_def s_waiting_def s_RAG_def wq_def cs_waiting_def Domain_def)
- from chain_building [rule_format, OF this]
- show ?thesis by auto
-qed
-
-end
-
-
-
-lemma holding_unique: "\<lbrakk>holding (s::state) th1 cs; holding s th2 cs\<rbrakk> \<Longrightarrow> th1 = th2"
- by (unfold s_holding_def cs_holding_def, auto)
-
-context valid_trace
-begin
-
-lemma unique_RAG: "\<lbrakk>(n, n1) \<in> RAG s; (n, n2) \<in> RAG s\<rbrakk> \<Longrightarrow> n1 = n2"
- apply(unfold s_RAG_def, auto, fold waiting_eq holding_eq)
- by(auto elim:waiting_unique holding_unique)
-
-end
-
-
-lemma trancl_split: "(a, b) \<in> r^+ \<Longrightarrow> \<exists> c. (a, c) \<in> r"
-by (induct rule:trancl_induct, auto)
-
-context valid_trace
-begin
-
-lemma dchain_unique:
- assumes th1_d: "(n, Th th1) \<in> (RAG s)^+"
- and th1_r: "th1 \<in> readys s"
- and th2_d: "(n, Th th2) \<in> (RAG s)^+"
- and th2_r: "th2 \<in> readys s"
- shows "th1 = th2"
-proof -
- { assume neq: "th1 \<noteq> th2"
- hence "Th th1 \<noteq> Th th2" by simp
- from unique_chain [OF _ th1_d th2_d this] and unique_RAG
- have "(Th th1, Th th2) \<in> (RAG s)\<^sup>+ \<or> (Th th2, Th th1) \<in> (RAG s)\<^sup>+" by auto
- hence "False"
- proof
- assume "(Th th1, Th th2) \<in> (RAG s)\<^sup>+"
- from trancl_split [OF this]
- obtain n where dd: "(Th th1, n) \<in> RAG s" by auto
- then obtain cs where eq_n: "n = Cs cs"
- by (auto simp:s_RAG_def s_holding_def cs_holding_def cs_waiting_def wq_def dest:hd_np_in)
- from dd eq_n have "th1 \<notin> readys s"
- by (auto simp:readys_def s_RAG_def wq_def s_waiting_def cs_waiting_def)
- with th1_r show ?thesis by auto
- next
- assume "(Th th2, Th th1) \<in> (RAG s)\<^sup>+"
- from trancl_split [OF this]
- obtain n where dd: "(Th th2, n) \<in> RAG s" by auto
- then obtain cs where eq_n: "n = Cs cs"
- by (auto simp:s_RAG_def s_holding_def cs_holding_def cs_waiting_def wq_def dest:hd_np_in)
- from dd eq_n have "th2 \<notin> readys s"
- by (auto simp:readys_def wq_def s_RAG_def s_waiting_def cs_waiting_def)
- with th2_r show ?thesis by auto
- qed
- } thus ?thesis by auto
-qed
-
-end
-
-
-lemma step_holdents_p_add:
- assumes vt: "vt (P th cs#s)"
- and "wq s cs = []"
- shows "holdents (P th cs#s) th = holdents s th \<union> {cs}"
-proof -
- from assms show ?thesis
- unfolding holdents_test step_RAG_p[OF vt] by (auto)
-qed
-
-lemma step_holdents_p_eq:
- assumes vt: "vt (P th cs#s)"
- and "wq s cs \<noteq> []"
- shows "holdents (P th cs#s) th = holdents s th"
-proof -
- from assms show ?thesis
- unfolding holdents_test step_RAG_p[OF vt] by auto
-qed
-
-
-lemma (in valid_trace) finite_holding :
- shows "finite (holdents s th)"
-proof -
- let ?F = "\<lambda> (x, y). the_cs x"
- from finite_RAG
- have "finite (RAG s)" .
- hence "finite (?F `(RAG s))" by simp
- moreover have "{cs . (Cs cs, Th th) \<in> RAG s} \<subseteq> \<dots>"
- proof -
- { have h: "\<And> a A f. a \<in> A \<Longrightarrow> f a \<in> f ` A" by auto
- fix x assume "(Cs x, Th th) \<in> RAG s"
- hence "?F (Cs x, Th th) \<in> ?F `(RAG s)" by (rule h)
- moreover have "?F (Cs x, Th th) = x" by simp
- ultimately have "x \<in> (\<lambda>(x, y). the_cs x) ` RAG s" by simp
- } thus ?thesis by auto
- qed
- ultimately show ?thesis by (unfold holdents_test, auto intro:finite_subset)
-qed
-
-lemma cntCS_v_dec:
- assumes vtv: "vt (V thread cs#s)"
- shows "(cntCS (V thread cs#s) thread + 1) = cntCS s thread"
-proof -
- from vtv interpret vt_s: valid_trace s
- by (cases, unfold_locales, simp)
- from vtv interpret vt_v: valid_trace "V thread cs#s"
- by (unfold_locales, simp)
- from step_back_step[OF vtv]
- have cs_in: "cs \<in> holdents s thread"
- apply (cases, unfold holdents_test s_RAG_def, simp)
- by (unfold cs_holding_def s_holding_def wq_def, auto)
- moreover have cs_not_in:
- "(holdents (V thread cs#s) thread) = holdents s thread - {cs}"
- apply (insert vt_s.wq_distinct[of cs])
- apply (unfold holdents_test, unfold step_RAG_v[OF vtv],
- auto simp:next_th_def)
- proof -
- fix rest
- assume dst: "distinct (rest::thread list)"
- and ne: "rest \<noteq> []"
- and hd_ni: "hd (SOME q. distinct q \<and> set q = set rest) \<notin> set rest"
- moreover have "set (SOME q. distinct q \<and> set q = set rest) = set rest"
- proof(rule someI2)
- from dst show "distinct rest \<and> set rest = set rest" by auto
- next
- show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest" by auto
- qed
- ultimately have "hd (SOME q. distinct q \<and> set q = set rest) \<notin>
- set (SOME q. distinct q \<and> set q = set rest)" by simp
- moreover have "(SOME q. distinct q \<and> set q = set rest) \<noteq> []"
- proof(rule someI2)
- from dst show "distinct rest \<and> set rest = set rest" by auto
- next
- fix x assume " distinct x \<and> set x = set rest" with ne
- show "x \<noteq> []" by auto
- qed
- ultimately
- show "(Cs cs, Th (hd (SOME q. distinct q \<and> set q = set rest))) \<in> RAG s"
- by auto
- next
- fix rest
- assume dst: "distinct (rest::thread list)"
- and ne: "rest \<noteq> []"
- and hd_ni: "hd (SOME q. distinct q \<and> set q = set rest) \<notin> set rest"
- moreover have "set (SOME q. distinct q \<and> set q = set rest) = set rest"
- proof(rule someI2)
- from dst show "distinct rest \<and> set rest = set rest" by auto
- next
- show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest" by auto
- qed
- ultimately have "hd (SOME q. distinct q \<and> set q = set rest) \<notin>
- set (SOME q. distinct q \<and> set q = set rest)" by simp
- moreover have "(SOME q. distinct q \<and> set q = set rest) \<noteq> []"
- proof(rule someI2)
- from dst show "distinct rest \<and> set rest = set rest" by auto
- next
- fix x assume " distinct x \<and> set x = set rest" with ne
- show "x \<noteq> []" by auto
- qed
- ultimately show "False" by auto
- qed
- ultimately
- have "holdents s thread = insert cs (holdents (V thread cs#s) thread)"
- by auto
- moreover have "card \<dots> =
- Suc (card ((holdents (V thread cs#s) thread) - {cs}))"
- proof(rule card_insert)
- from vt_v.finite_holding
- show " finite (holdents (V thread cs # s) thread)" .
- qed
- moreover from cs_not_in
- have "cs \<notin> (holdents (V thread cs#s) thread)" by auto
- ultimately show ?thesis by (simp add:cntCS_def)
-qed
-
-lemma count_rec1 [simp]:
- assumes "Q e"
- shows "count Q (e#es) = Suc (count Q es)"
- using assms
- by (unfold count_def, auto)
-
-lemma count_rec2 [simp]:
- assumes "\<not>Q e"
- shows "count Q (e#es) = (count Q es)"
- using assms
- by (unfold count_def, auto)
-
-lemma count_rec3 [simp]:
- shows "count Q [] = 0"
- by (unfold count_def, auto)
-
-lemma cntP_diff_inv:
- assumes "cntP (e#s) th \<noteq> cntP s th"
- shows "isP e \<and> actor e = th"
-proof(cases e)
- case (P th' pty)
- show ?thesis
- by (cases "(\<lambda>e. \<exists>cs. e = P th cs) (P th' pty)",
- insert assms P, auto simp:cntP_def)
-qed (insert assms, auto simp:cntP_def)
-
-lemma cntV_diff_inv:
- assumes "cntV (e#s) th \<noteq> cntV s th"
- shows "isV e \<and> actor e = th"
-proof(cases e)
- case (V th' pty)
- show ?thesis
- by (cases "(\<lambda>e. \<exists>cs. e = V th cs) (V th' pty)",
- insert assms V, auto simp:cntV_def)
-qed (insert assms, auto simp:cntV_def)
-
-context valid_trace
-begin
-
-text {* (* ddd *) \noindent
- The relationship between @{text "cntP"}, @{text "cntV"} and @{text "cntCS"}
- of one particular thread. t
-*}
-
-lemma cnp_cnv_cncs:
- shows "cntP s th = cntV s th + (if (th \<in> readys s \<or> th \<notin> threads s)
- then cntCS s th else cntCS s th + 1)"
-proof -
- from vt show ?thesis
- proof(induct arbitrary:th)
- case (vt_cons s e)
- interpret vt_s: valid_trace s using vt_cons(1) by (unfold_locales, simp)
- assume vt: "vt s"
- and ih: "\<And>th. cntP s th = cntV s th +
- (if (th \<in> readys s \<or> th \<notin> threads s) then cntCS s th else cntCS s th + 1)"
- and stp: "step s e"
- from stp show ?case
- proof(cases)
- case (thread_create thread prio)
- assume eq_e: "e = Create thread prio"
- and not_in: "thread \<notin> threads s"
- show ?thesis
- proof -
- { fix cs
- assume "thread \<in> set (wq s cs)"
- from vt_s.wq_threads [OF this] have "thread \<in> threads s" .
- with not_in have "False" by simp
- } with eq_e have eq_readys: "readys (e#s) = readys s \<union> {thread}"
- by (auto simp:readys_def threads.simps s_waiting_def
- wq_def cs_waiting_def Let_def)
- from eq_e have eq_cnp: "cntP (e#s) th = cntP s th" by (simp add:cntP_def count_def)
- from eq_e have eq_cnv: "cntV (e#s) th = cntV s th" by (simp add:cntV_def count_def)
- have eq_cncs: "cntCS (e#s) th = cntCS s th"
- unfolding cntCS_def holdents_test
- by (simp add:RAG_create_unchanged eq_e)
- { assume "th \<noteq> thread"
- with eq_readys eq_e
- have "(th \<in> readys (e # s) \<or> th \<notin> threads (e # s)) =
- (th \<in> readys (s) \<or> th \<notin> threads (s))"
- by (simp add:threads.simps)
- with eq_cnp eq_cnv eq_cncs ih not_in
- have ?thesis by simp
- } moreover {
- assume eq_th: "th = thread"
- with not_in ih have " cntP s th = cntV s th + cntCS s th" by simp
- moreover from eq_th and eq_readys have "th \<in> readys (e#s)" by simp
- moreover note eq_cnp eq_cnv eq_cncs
- ultimately have ?thesis by auto
- } ultimately show ?thesis by blast
- qed
- next
- case (thread_exit thread)
- assume eq_e: "e = Exit thread"
- and is_runing: "thread \<in> runing s"
- and no_hold: "holdents s thread = {}"
- from eq_e have eq_cnp: "cntP (e#s) th = cntP s th" by (simp add:cntP_def count_def)
- from eq_e have eq_cnv: "cntV (e#s) th = cntV s th" by (simp add:cntV_def count_def)
- have eq_cncs: "cntCS (e#s) th = cntCS s th"
- unfolding cntCS_def holdents_test
- by (simp add:RAG_exit_unchanged eq_e)
- { assume "th \<noteq> thread"
- with eq_e
- have "(th \<in> readys (e # s) \<or> th \<notin> threads (e # s)) =
- (th \<in> readys (s) \<or> th \<notin> threads (s))"
- apply (simp add:threads.simps readys_def)
- apply (subst s_waiting_def)
- apply (simp add:Let_def)
- apply (subst s_waiting_def, simp)
- done
- with eq_cnp eq_cnv eq_cncs ih
- have ?thesis by simp
- } moreover {
- assume eq_th: "th = thread"
- with ih is_runing have " cntP s th = cntV s th + cntCS s th"
- by (simp add:runing_def)
- moreover from eq_th eq_e have "th \<notin> threads (e#s)"
- by simp
- moreover note eq_cnp eq_cnv eq_cncs
- ultimately have ?thesis by auto
- } ultimately show ?thesis by blast
- next
- case (thread_P thread cs)
- assume eq_e: "e = P thread cs"
- and is_runing: "thread \<in> runing s"
- and no_dep: "(Cs cs, Th thread) \<notin> (RAG s)\<^sup>+"
- from thread_P vt stp ih have vtp: "vt (P thread cs#s)" by auto
- then interpret vt_p: valid_trace "(P thread cs#s)"
- by (unfold_locales, simp)
- show ?thesis
- proof -
- { have hh: "\<And> A B C. (B = C) \<Longrightarrow> (A \<and> B) = (A \<and> C)" by blast
- assume neq_th: "th \<noteq> thread"
- with eq_e
- have eq_readys: "(th \<in> readys (e#s)) = (th \<in> readys (s))"
- apply (simp add:readys_def s_waiting_def wq_def Let_def)
- apply (rule_tac hh)
- apply (intro iffI allI, clarify)
- apply (erule_tac x = csa in allE, auto)
- apply (subgoal_tac "wq_fun (schs s) cs \<noteq> []", auto)
- apply (erule_tac x = cs in allE, auto)
- by (case_tac "(wq_fun (schs s) cs)", auto)
- moreover from neq_th eq_e have "cntCS (e # s) th = cntCS s th"
- apply (simp add:cntCS_def holdents_test)
- by (unfold step_RAG_p [OF vtp], auto)
- moreover from eq_e neq_th have "cntP (e # s) th = cntP s th"
- by (simp add:cntP_def count_def)
- moreover from eq_e neq_th have "cntV (e#s) th = cntV s th"
- by (simp add:cntV_def count_def)
- moreover from eq_e neq_th have "threads (e#s) = threads s" by simp
- moreover note ih [of th]
- ultimately have ?thesis by simp
- } moreover {
- assume eq_th: "th = thread"
- have ?thesis
- proof -
- from eq_e eq_th have eq_cnp: "cntP (e # s) th = 1 + (cntP s th)"
- by (simp add:cntP_def count_def)
- from eq_e eq_th have eq_cnv: "cntV (e#s) th = cntV s th"
- by (simp add:cntV_def count_def)
- show ?thesis
- proof (cases "wq s cs = []")
- case True
- with is_runing
- have "th \<in> readys (e#s)"
- apply (unfold eq_e wq_def, unfold readys_def s_RAG_def)
- apply (simp add: wq_def[symmetric] runing_def eq_th s_waiting_def)
- by (auto simp:readys_def wq_def Let_def s_waiting_def wq_def)
- moreover have "cntCS (e # s) th = 1 + cntCS s th"
- proof -
- have "card {csa. csa = cs \<or> (Cs csa, Th thread) \<in> RAG s} =
- Suc (card {cs. (Cs cs, Th thread) \<in> RAG s})" (is "card ?L = Suc (card ?R)")
- proof -
- have "?L = insert cs ?R" by auto
- moreover have "card \<dots> = Suc (card (?R - {cs}))"
- proof(rule card_insert)
- from vt_s.finite_holding [of thread]
- show " finite {cs. (Cs cs, Th thread) \<in> RAG s}"
- by (unfold holdents_test, simp)
- qed
- moreover have "?R - {cs} = ?R"
- proof -
- have "cs \<notin> ?R"
- proof
- assume "cs \<in> {cs. (Cs cs, Th thread) \<in> RAG s}"
- with no_dep show False by auto
- qed
- thus ?thesis by auto
- qed
- ultimately show ?thesis by auto
- qed
- thus ?thesis
- apply (unfold eq_e eq_th cntCS_def)
- apply (simp add: holdents_test)
- by (unfold step_RAG_p [OF vtp], auto simp:True)
- qed
- moreover from is_runing have "th \<in> readys s"
- by (simp add:runing_def eq_th)
- moreover note eq_cnp eq_cnv ih [of th]
- ultimately show ?thesis by auto
- next
- case False
- have eq_wq: "wq (e#s) cs = wq s cs @ [th]"
- by (unfold eq_th eq_e wq_def, auto simp:Let_def)
- have "th \<notin> readys (e#s)"
- proof
- assume "th \<in> readys (e#s)"
- hence "\<forall>cs. \<not> waiting (e # s) th cs" by (simp add:readys_def)
- from this[rule_format, of cs] have " \<not> waiting (e # s) th cs" .
- hence "th \<in> set (wq (e#s) cs) \<Longrightarrow> th = hd (wq (e#s) cs)"
- by (simp add:s_waiting_def wq_def)
- moreover from eq_wq have "th \<in> set (wq (e#s) cs)" by auto
- ultimately have "th = hd (wq (e#s) cs)" by blast
- with eq_wq have "th = hd (wq s cs @ [th])" by simp
- hence "th = hd (wq s cs)" using False by auto
- with False eq_wq vt_p.wq_distinct [of cs]
- show False by (fold eq_e, auto)
- qed
- moreover from is_runing have "th \<in> threads (e#s)"
- by (unfold eq_e, auto simp:runing_def readys_def eq_th)
- moreover have "cntCS (e # s) th = cntCS s th"
- apply (unfold cntCS_def holdents_test eq_e step_RAG_p[OF vtp])
- by (auto simp:False)
- moreover note eq_cnp eq_cnv ih[of th]
- moreover from is_runing have "th \<in> readys s"
- by (simp add:runing_def eq_th)
- ultimately show ?thesis by auto
- qed
- qed
- } ultimately show ?thesis by blast
- qed
- next
- case (thread_V thread cs)
- from assms vt stp ih thread_V have vtv: "vt (V thread cs # s)" by auto
- then interpret vt_v: valid_trace "(V thread cs # s)" by (unfold_locales, simp)
- assume eq_e: "e = V thread cs"
- and is_runing: "thread \<in> runing s"
- and hold: "holding s thread cs"
- from hold obtain rest
- where eq_wq: "wq s cs = thread # rest"
- by (case_tac "wq s cs", auto simp: wq_def s_holding_def)
- have eq_threads: "threads (e#s) = threads s" by (simp add: eq_e)
- have eq_set: "set (SOME q. distinct q \<and> set q = set rest) = set rest"
- proof(rule someI2)
- from vt_v.wq_distinct[of cs] and eq_wq
- show "distinct rest \<and> set rest = set rest"
- by (metis distinct.simps(2) vt_s.wq_distinct)
- next
- show "\<And>x. distinct x \<and> set x = set rest \<Longrightarrow> set x = set rest"
- by auto
- qed
- show ?thesis
- proof -
- { assume eq_th: "th = thread"
- from eq_th have eq_cnp: "cntP (e # s) th = cntP s th"
- by (unfold eq_e, simp add:cntP_def count_def)
- moreover from eq_th have eq_cnv: "cntV (e#s) th = 1 + cntV s th"
- by (unfold eq_e, simp add:cntV_def count_def)
- moreover from cntCS_v_dec [OF vtv]
- have "cntCS (e # s) thread + 1 = cntCS s thread"
- by (simp add:eq_e)
- moreover from is_runing have rd_before: "thread \<in> readys s"
- by (unfold runing_def, simp)
- moreover have "thread \<in> readys (e # s)"
- proof -
- from is_runing
- have "thread \<in> threads (e#s)"
- by (unfold eq_e, auto simp:runing_def readys_def)
- moreover have "\<forall> cs1. \<not> waiting (e#s) thread cs1"
- proof
- fix cs1
- { assume eq_cs: "cs1 = cs"
- have "\<not> waiting (e # s) thread cs1"
- proof -
- from eq_wq
- have "thread \<notin> set (wq (e#s) cs1)"
- apply(unfold eq_e wq_def eq_cs s_holding_def)
- apply (auto simp:Let_def)
- proof -
- assume "thread \<in> set (SOME q. distinct q \<and> set q = set rest)"
- with eq_set have "thread \<in> set rest" by simp
- with vt_v.wq_distinct[of cs]
- and eq_wq show False
- by (metis distinct.simps(2) vt_s.wq_distinct)
- qed
- thus ?thesis by (simp add:wq_def s_waiting_def)
- qed
- } moreover {
- assume neq_cs: "cs1 \<noteq> cs"
- have "\<not> waiting (e # s) thread cs1"
- proof -
- from wq_v_neq [OF neq_cs[symmetric]]
- have "wq (V thread cs # s) cs1 = wq s cs1" .
- moreover have "\<not> waiting s thread cs1"
- proof -
- from runing_ready and is_runing
- have "thread \<in> readys s" by auto
- thus ?thesis by (simp add:readys_def)
- qed
- ultimately show ?thesis
- by (auto simp:wq_def s_waiting_def eq_e)
- qed
- } ultimately show "\<not> waiting (e # s) thread cs1" by blast
- qed
- ultimately show ?thesis by (simp add:readys_def)
- qed
- moreover note eq_th ih
- ultimately have ?thesis by auto
- } moreover {
- assume neq_th: "th \<noteq> thread"
- from neq_th eq_e have eq_cnp: "cntP (e # s) th = cntP s th"
- by (simp add:cntP_def count_def)
- from neq_th eq_e have eq_cnv: "cntV (e # s) th = cntV s th"
- by (simp add:cntV_def count_def)
- have ?thesis
- proof(cases "th \<in> set rest")
- case False
- have "(th \<in> readys (e # s)) = (th \<in> readys s)"
- apply (insert step_back_vt[OF vtv])
- by (simp add: False eq_e eq_wq neq_th vt_s.readys_v_eq)
- moreover have "cntCS (e#s) th = cntCS s th"
- apply (insert neq_th, unfold eq_e cntCS_def holdents_test step_RAG_v[OF vtv], auto)
- proof -
- have "{csa. (Cs csa, Th th) \<in> RAG s \<or> csa = cs \<and> next_th s thread cs th} =
- {cs. (Cs cs, Th th) \<in> RAG s}"
- proof -
- from False eq_wq
- have " next_th s thread cs th \<Longrightarrow> (Cs cs, Th th) \<in> RAG s"
- apply (unfold next_th_def, auto)
- proof -
- assume ne: "rest \<noteq> []"
- and ni: "hd (SOME q. distinct q \<and> set q = set rest) \<notin> set rest"
- and eq_wq: "wq s cs = thread # rest"
- from eq_set ni have "hd (SOME q. distinct q \<and> set q = set rest) \<notin>
- set (SOME q. distinct q \<and> set q = set rest)
- " by simp
- moreover have "(SOME q. distinct q \<and> set q = set rest) \<noteq> []"
- proof(rule someI2)
- from vt_s.wq_distinct[ of cs] and eq_wq
- show "distinct rest \<and> set rest = set rest" by auto
- next
- fix x assume "distinct x \<and> set x = set rest"
- with ne show "x \<noteq> []" by auto
- qed
- ultimately show
- "(Cs cs, Th (hd (SOME q. distinct q \<and> set q = set rest))) \<in> RAG s"
- by auto
- qed
- thus ?thesis by auto
- qed
- thus "card {csa. (Cs csa, Th th) \<in> RAG s \<or> csa = cs \<and> next_th s thread cs th} =
- card {cs. (Cs cs, Th th) \<in> RAG s}" by simp
- qed
- moreover note ih eq_cnp eq_cnv eq_threads
- ultimately show ?thesis by auto
- next
- case True
- assume th_in: "th \<in> set rest"
- show ?thesis
- proof(cases "next_th s thread cs th")
- case False
- with eq_wq and th_in have
- neq_hd: "th \<noteq> hd (SOME q. distinct q \<and> set q = set rest)" (is "th \<noteq> hd ?rest")
- by (auto simp:next_th_def)
- have "(th \<in> readys (e # s)) = (th \<in> readys s)"
- proof -
- from eq_wq and th_in
- have "\<not> th \<in> readys s"
- apply (auto simp:readys_def s_waiting_def)
- apply (rule_tac x = cs in exI, auto)
- by (insert vt_s.wq_distinct[of cs], auto simp add: wq_def)
- moreover
- from eq_wq and th_in and neq_hd
- have "\<not> (th \<in> readys (e # s))"
- apply (auto simp:readys_def s_waiting_def eq_e wq_def Let_def split:list.splits)
- by (rule_tac x = cs in exI, auto simp:eq_set)
- ultimately show ?thesis by auto
- qed
- moreover have "cntCS (e#s) th = cntCS s th"
- proof -
- from eq_wq and th_in and neq_hd
- have "(holdents (e # s) th) = (holdents s th)"
- apply (unfold eq_e step_RAG_v[OF vtv],
- auto simp:next_th_def eq_set s_RAG_def holdents_test wq_def
- Let_def cs_holding_def)
- by (insert vt_s.wq_distinct[of cs], auto simp:wq_def)
- thus ?thesis by (simp add:cntCS_def)
- qed
- moreover note ih eq_cnp eq_cnv eq_threads
- ultimately show ?thesis by auto
- next
- case True
- let ?rest = " (SOME q. distinct q \<and> set q = set rest)"
- let ?t = "hd ?rest"
- from True eq_wq th_in neq_th
- have "th \<in> readys (e # s)"
- apply (auto simp:eq_e readys_def s_waiting_def wq_def
- Let_def next_th_def)
- proof -
- assume eq_wq: "wq_fun (schs s) cs = thread # rest"
- and t_in: "?t \<in> set rest"
- show "?t \<in> threads s"
- proof(rule vt_s.wq_threads)
- from eq_wq and t_in
- show "?t \<in> set (wq s cs)" by (auto simp:wq_def)
- qed
- next
- fix csa
- assume eq_wq: "wq_fun (schs s) cs = thread # rest"
- and t_in: "?t \<in> set rest"
- and neq_cs: "csa \<noteq> cs"
- and t_in': "?t \<in> set (wq_fun (schs s) csa)"
- show "?t = hd (wq_fun (schs s) csa)"
- proof -
- { assume neq_hd': "?t \<noteq> hd (wq_fun (schs s) csa)"
- from vt_s.wq_distinct[of cs] and
- eq_wq[folded wq_def] and t_in eq_wq
- have "?t \<noteq> thread" by auto
- with eq_wq and t_in
- have w1: "waiting s ?t cs"
- by (auto simp:s_waiting_def wq_def)
- from t_in' neq_hd'
- have w2: "waiting s ?t csa"
- by (auto simp:s_waiting_def wq_def)
- from vt_s.waiting_unique[OF w1 w2]
- and neq_cs have "False" by auto
- } thus ?thesis by auto
- qed
- qed
- moreover have "cntP s th = cntV s th + cntCS s th + 1"
- proof -
- have "th \<notin> readys s"
- proof -
- from True eq_wq neq_th th_in
- show ?thesis
- apply (unfold readys_def s_waiting_def, auto)
- by (rule_tac x = cs in exI, auto simp add: wq_def)
- qed
- moreover have "th \<in> threads s"
- proof -
- from th_in eq_wq
- have "th \<in> set (wq s cs)" by simp
- from vt_s.wq_threads [OF this]
- show ?thesis .
- qed
- ultimately show ?thesis using ih by auto
- qed
- moreover from True neq_th have "cntCS (e # s) th = 1 + cntCS s th"
- apply (unfold cntCS_def holdents_test eq_e step_RAG_v[OF vtv], auto)
- proof -
- show "card {csa. (Cs csa, Th th) \<in> RAG s \<or> csa = cs} =
- Suc (card {cs. (Cs cs, Th th) \<in> RAG s})"
- (is "card ?A = Suc (card ?B)")
- proof -
- have "?A = insert cs ?B" by auto
- hence "card ?A = card (insert cs ?B)" by simp
- also have "\<dots> = Suc (card ?B)"
- proof(rule card_insert_disjoint)
- have "?B \<subseteq> ((\<lambda> (x, y). the_cs x) ` RAG s)"
- apply (auto simp:image_def)
- by (rule_tac x = "(Cs x, Th th)" in bexI, auto)
- with vt_s.finite_RAG
- show "finite {cs. (Cs cs, Th th) \<in> RAG s}" by (auto intro:finite_subset)
- next
- show "cs \<notin> {cs. (Cs cs, Th th) \<in> RAG s}"
- proof
- assume "cs \<in> {cs. (Cs cs, Th th) \<in> RAG s}"
- hence "(Cs cs, Th th) \<in> RAG s" by simp
- with True neq_th eq_wq show False
- by (auto simp:next_th_def s_RAG_def cs_holding_def)
- qed
- qed
- finally show ?thesis .
- qed
- qed
- moreover note eq_cnp eq_cnv
- ultimately show ?thesis by simp
- qed
- qed
- } ultimately show ?thesis by blast
- qed
- next
- case (thread_set thread prio)
- assume eq_e: "e = Set thread prio"
- and is_runing: "thread \<in> runing s"
- show ?thesis
- proof -
- from eq_e have eq_cnp: "cntP (e#s) th = cntP s th" by (simp add:cntP_def count_def)
- from eq_e have eq_cnv: "cntV (e#s) th = cntV s th" by (simp add:cntV_def count_def)
- have eq_cncs: "cntCS (e#s) th = cntCS s th"
- unfolding cntCS_def holdents_test
- by (simp add:RAG_set_unchanged eq_e)
- from eq_e have eq_readys: "readys (e#s) = readys s"
- by (simp add:readys_def cs_waiting_def s_waiting_def wq_def,
- auto simp:Let_def)
- { assume "th \<noteq> thread"
- with eq_readys eq_e
- have "(th \<in> readys (e # s) \<or> th \<notin> threads (e # s)) =
- (th \<in> readys (s) \<or> th \<notin> threads (s))"
- by (simp add:threads.simps)
- with eq_cnp eq_cnv eq_cncs ih is_runing
- have ?thesis by simp
- } moreover {
- assume eq_th: "th = thread"
- with is_runing ih have " cntP s th = cntV s th + cntCS s th"
- by (unfold runing_def, auto)
- moreover from eq_th and eq_readys is_runing have "th \<in> readys (e#s)"
- by (simp add:runing_def)
- moreover note eq_cnp eq_cnv eq_cncs
- ultimately have ?thesis by auto
- } ultimately show ?thesis by blast
- qed
- qed
- next
- case vt_nil
- show ?case
- by (unfold cntP_def cntV_def cntCS_def,
- auto simp:count_def holdents_test s_RAG_def wq_def cs_holding_def)
- qed
-qed
-
-lemma not_thread_cncs:
- assumes not_in: "th \<notin> threads s"
- shows "cntCS s th = 0"
-proof -
- from vt not_in show ?thesis
- proof(induct arbitrary:th)
- case (vt_cons s e th)
- interpret vt_s: valid_trace s using vt_cons(1)
- by (unfold_locales, simp)
- assume vt: "vt s"
- and ih: "\<And>th. th \<notin> threads s \<Longrightarrow> cntCS s th = 0"
- and stp: "step s e"
- and not_in: "th \<notin> threads (e # s)"
- from stp show ?case
- proof(cases)
- case (thread_create thread prio)
- assume eq_e: "e = Create thread prio"
- and not_in': "thread \<notin> threads s"
- have "cntCS (e # s) th = cntCS s th"
- apply (unfold eq_e cntCS_def holdents_test)
- by (simp add:RAG_create_unchanged)
- moreover have "th \<notin> threads s"
- proof -
- from not_in eq_e show ?thesis by simp
- qed
- moreover note ih ultimately show ?thesis by auto
- next
- case (thread_exit thread)
- assume eq_e: "e = Exit thread"
- and nh: "holdents s thread = {}"
- have eq_cns: "cntCS (e # s) th = cntCS s th"
- apply (unfold eq_e cntCS_def holdents_test)
- by (simp add:RAG_exit_unchanged)
- show ?thesis
- proof(cases "th = thread")
- case True
- have "cntCS s th = 0" by (unfold cntCS_def, auto simp:nh True)
- with eq_cns show ?thesis by simp
- next
- case False
- with not_in and eq_e
- have "th \<notin> threads s" by simp
- from ih[OF this] and eq_cns show ?thesis by simp
- qed
- next
- case (thread_P thread cs)
- assume eq_e: "e = P thread cs"
- and is_runing: "thread \<in> runing s"
- from assms thread_P ih vt stp thread_P have vtp: "vt (P thread cs#s)" by auto
- have neq_th: "th \<noteq> thread"
- proof -
- from not_in eq_e have "th \<notin> threads s" by simp
- moreover from is_runing have "thread \<in> threads s"
- by (simp add:runing_def readys_def)
- ultimately show ?thesis by auto
- qed
- hence "cntCS (e # s) th = cntCS s th "
- apply (unfold cntCS_def holdents_test eq_e)
- by (unfold step_RAG_p[OF vtp], auto)
- moreover have "cntCS s th = 0"
- proof(rule ih)
- from not_in eq_e show "th \<notin> threads s" by simp
- qed
- ultimately show ?thesis by simp
- next
- case (thread_V thread cs)
- assume eq_e: "e = V thread cs"
- and is_runing: "thread \<in> runing s"
- and hold: "holding s thread cs"
- have neq_th: "th \<noteq> thread"
- proof -
- from not_in eq_e have "th \<notin> threads s" by simp
- moreover from is_runing have "thread \<in> threads s"
- by (simp add:runing_def readys_def)
- ultimately show ?thesis by auto
- qed
- from assms thread_V vt stp ih
- have vtv: "vt (V thread cs#s)" by auto
- then interpret vt_v: valid_trace "(V thread cs#s)"
- by (unfold_locales, simp)
- from hold obtain rest
- where eq_wq: "wq s cs = thread # rest"
- by (case_tac "wq s cs", auto simp: wq_def s_holding_def)
- from not_in eq_e eq_wq
- have "\<not> next_th s thread cs th"
- apply (auto simp:next_th_def)
- proof -
- assume ne: "rest \<noteq> []"
- and ni: "hd (SOME q. distinct q \<and> set q = set rest) \<notin> threads s" (is "?t \<notin> threads s")
- have "?t \<in> set rest"
- proof(rule someI2)
- from vt_v.wq_distinct[of cs] and eq_wq
- show "distinct rest \<and> set rest = set rest"
- by (metis distinct.simps(2) vt_s.wq_distinct)
- next
- fix x assume "distinct x \<and> set x = set rest" with ne
- show "hd x \<in> set rest" by (cases x, auto)
- qed
- with eq_wq have "?t \<in> set (wq s cs)" by simp
- from vt_s.wq_threads[OF this] and ni
- show False
- using `hd (SOME q. distinct q \<and> set q = set rest) \<in> set (wq s cs)`
- ni vt_s.wq_threads by blast
- qed
- moreover note neq_th eq_wq
- ultimately have "cntCS (e # s) th = cntCS s th"
- by (unfold eq_e cntCS_def holdents_test step_RAG_v[OF vtv], auto)
- moreover have "cntCS s th = 0"
- proof(rule ih)
- from not_in eq_e show "th \<notin> threads s" by simp
- qed
- ultimately show ?thesis by simp
- next
- case (thread_set thread prio)
- print_facts
- assume eq_e: "e = Set thread prio"
- and is_runing: "thread \<in> runing s"
- from not_in and eq_e have "th \<notin> threads s" by auto
- from ih [OF this] and eq_e
- show ?thesis
- apply (unfold eq_e cntCS_def holdents_test)
- by (simp add:RAG_set_unchanged)
- qed
- next
- case vt_nil
- show ?case
- by (unfold cntCS_def,
- auto simp:count_def holdents_test s_RAG_def wq_def cs_holding_def)
- qed
-qed
-
-end
-
-
-context valid_trace
-begin
-
-lemma dm_RAG_threads:
- assumes in_dom: "(Th th) \<in> Domain (RAG s)"
- shows "th \<in> threads s"
-proof -
- from in_dom obtain n where "(Th th, n) \<in> RAG s" by auto
- moreover from RAG_target_th[OF this] obtain cs where "n = Cs cs" by auto
- ultimately have "(Th th, Cs cs) \<in> RAG s" by simp
- hence "th \<in> set (wq s cs)"
- by (unfold s_RAG_def, auto simp:cs_waiting_def)
- from wq_threads [OF this] show ?thesis .
-qed
-
-end
-
-lemma cp_eq_cpreced: "cp s th = cpreced (wq s) s th"
-unfolding cp_def wq_def
-apply(induct s rule: schs.induct)
-thm cpreced_initial
-apply(simp add: Let_def cpreced_initial)
-apply(simp add: Let_def)
-apply(simp add: Let_def)
-apply(simp add: Let_def)
-apply(subst (2) schs.simps)
-apply(simp add: Let_def)
-apply(subst (2) schs.simps)
-apply(simp add: Let_def)
-done
-
-context valid_trace
-begin
-
-lemma runing_unique:
- assumes runing_1: "th1 \<in> runing s"
- and runing_2: "th2 \<in> runing s"
- shows "th1 = th2"
-proof -
- from runing_1 and runing_2 have "cp s th1 = cp s th2"
- unfolding runing_def
- apply(simp)
- done
- hence eq_max: "Max ((\<lambda>th. preced th s) ` ({th1} \<union> dependants (wq s) th1)) =
- Max ((\<lambda>th. preced th s) ` ({th2} \<union> dependants (wq s) th2))"
- (is "Max (?f ` ?A) = Max (?f ` ?B)")
- unfolding cp_eq_cpreced
- unfolding cpreced_def .
- obtain th1' where th1_in: "th1' \<in> ?A" and eq_f_th1: "?f th1' = Max (?f ` ?A)"
- proof -
- have h1: "finite (?f ` ?A)"
- proof -
- have "finite ?A"
- proof -
- have "finite (dependants (wq s) th1)"
- proof-
- have "finite {th'. (Th th', Th th1) \<in> (RAG (wq s))\<^sup>+}"
- proof -
- let ?F = "\<lambda> (x, y). the_th x"
- have "{th'. (Th th', Th th1) \<in> (RAG (wq s))\<^sup>+} \<subseteq> ?F ` ((RAG (wq s))\<^sup>+)"
- apply (auto simp:image_def)
- by (rule_tac x = "(Th x, Th th1)" in bexI, auto)
- moreover have "finite \<dots>"
- proof -
- from finite_RAG have "finite (RAG s)" .
- hence "finite ((RAG (wq s))\<^sup>+)"
- apply (unfold finite_trancl)
- by (auto simp: s_RAG_def cs_RAG_def wq_def)
- thus ?thesis by auto
- qed
- ultimately show ?thesis by (auto intro:finite_subset)
- qed
- thus ?thesis by (simp add:cs_dependants_def)
- qed
- thus ?thesis by simp
- qed
- thus ?thesis by auto
- qed
- moreover have h2: "(?f ` ?A) \<noteq> {}"
- proof -
- have "?A \<noteq> {}" by simp
- thus ?thesis by simp
- qed
- from Max_in [OF h1 h2]
- have "Max (?f ` ?A) \<in> (?f ` ?A)" .
- thus ?thesis
- thm cpreced_def
- unfolding cpreced_def[symmetric]
- unfolding cp_eq_cpreced[symmetric]
- unfolding cpreced_def
- using that[intro] by (auto)
- qed
- obtain th2' where th2_in: "th2' \<in> ?B" and eq_f_th2: "?f th2' = Max (?f ` ?B)"
- proof -
- have h1: "finite (?f ` ?B)"
- proof -
- have "finite ?B"
- proof -
- have "finite (dependants (wq s) th2)"
- proof-
- have "finite {th'. (Th th', Th th2) \<in> (RAG (wq s))\<^sup>+}"
- proof -
- let ?F = "\<lambda> (x, y). the_th x"
- have "{th'. (Th th', Th th2) \<in> (RAG (wq s))\<^sup>+} \<subseteq> ?F ` ((RAG (wq s))\<^sup>+)"
- apply (auto simp:image_def)
- by (rule_tac x = "(Th x, Th th2)" in bexI, auto)
- moreover have "finite \<dots>"
- proof -
- from finite_RAG have "finite (RAG s)" .
- hence "finite ((RAG (wq s))\<^sup>+)"
- apply (unfold finite_trancl)
- by (auto simp: s_RAG_def cs_RAG_def wq_def)
- thus ?thesis by auto
- qed
- ultimately show ?thesis by (auto intro:finite_subset)
- qed
- thus ?thesis by (simp add:cs_dependants_def)
- qed
- thus ?thesis by simp
- qed
- thus ?thesis by auto
- qed
- moreover have h2: "(?f ` ?B) \<noteq> {}"
- proof -
- have "?B \<noteq> {}" by simp
- thus ?thesis by simp
- qed
- from Max_in [OF h1 h2]
- have "Max (?f ` ?B) \<in> (?f ` ?B)" .
- thus ?thesis by (auto intro:that)
- qed
- from eq_f_th1 eq_f_th2 eq_max
- have eq_preced: "preced th1' s = preced th2' s" by auto
- hence eq_th12: "th1' = th2'"
- proof (rule preced_unique)
- from th1_in have "th1' = th1 \<or> (th1' \<in> dependants (wq s) th1)" by simp
- thus "th1' \<in> threads s"
- proof
- assume "th1' \<in> dependants (wq s) th1"
- hence "(Th th1') \<in> Domain ((RAG s)^+)"
- apply (unfold cs_dependants_def cs_RAG_def s_RAG_def)
- by (auto simp:Domain_def)
- hence "(Th th1') \<in> Domain (RAG s)" by (simp add:trancl_domain)
- from dm_RAG_threads[OF this] show ?thesis .
- next
- assume "th1' = th1"
- with runing_1 show ?thesis
- by (unfold runing_def readys_def, auto)
- qed
- next
- from th2_in have "th2' = th2 \<or> (th2' \<in> dependants (wq s) th2)" by simp
- thus "th2' \<in> threads s"
- proof
- assume "th2' \<in> dependants (wq s) th2"
- hence "(Th th2') \<in> Domain ((RAG s)^+)"
- apply (unfold cs_dependants_def cs_RAG_def s_RAG_def)
- by (auto simp:Domain_def)
- hence "(Th th2') \<in> Domain (RAG s)" by (simp add:trancl_domain)
- from dm_RAG_threads[OF this] show ?thesis .
- next
- assume "th2' = th2"
- with runing_2 show ?thesis
- by (unfold runing_def readys_def, auto)
- qed
- qed
- from th1_in have "th1' = th1 \<or> th1' \<in> dependants (wq s) th1" by simp
- thus ?thesis
- proof
- assume eq_th': "th1' = th1"
- from th2_in have "th2' = th2 \<or> th2' \<in> dependants (wq s) th2" by simp
- thus ?thesis
- proof
- assume "th2' = th2" thus ?thesis using eq_th' eq_th12 by simp
- next
- assume "th2' \<in> dependants (wq s) th2"
- with eq_th12 eq_th' have "th1 \<in> dependants (wq s) th2" by simp
- hence "(Th th1, Th th2) \<in> (RAG s)^+"
- by (unfold cs_dependants_def s_RAG_def cs_RAG_def, simp)
- hence "Th th1 \<in> Domain ((RAG s)^+)"
- apply (unfold cs_dependants_def cs_RAG_def s_RAG_def)
- by (auto simp:Domain_def)
- hence "Th th1 \<in> Domain (RAG s)" by (simp add:trancl_domain)
- then obtain n where d: "(Th th1, n) \<in> RAG s" by (auto simp:Domain_def)
- from RAG_target_th [OF this]
- obtain cs' where "n = Cs cs'" by auto
- with d have "(Th th1, Cs cs') \<in> RAG s" by simp
- with runing_1 have "False"
- apply (unfold runing_def readys_def s_RAG_def)
- by (auto simp:waiting_eq)
- thus ?thesis by simp
- qed
- next
- assume th1'_in: "th1' \<in> dependants (wq s) th1"
- from th2_in have "th2' = th2 \<or> th2' \<in> dependants (wq s) th2" by simp
- thus ?thesis
- proof
- assume "th2' = th2"
- with th1'_in eq_th12 have "th2 \<in> dependants (wq s) th1" by simp
- hence "(Th th2, Th th1) \<in> (RAG s)^+"
- by (unfold cs_dependants_def s_RAG_def cs_RAG_def, simp)
- hence "Th th2 \<in> Domain ((RAG s)^+)"
- apply (unfold cs_dependants_def cs_RAG_def s_RAG_def)
- by (auto simp:Domain_def)
- hence "Th th2 \<in> Domain (RAG s)" by (simp add:trancl_domain)
- then obtain n where d: "(Th th2, n) \<in> RAG s" by (auto simp:Domain_def)
- from RAG_target_th [OF this]
- obtain cs' where "n = Cs cs'" by auto
- with d have "(Th th2, Cs cs') \<in> RAG s" by simp
- with runing_2 have "False"
- apply (unfold runing_def readys_def s_RAG_def)
- by (auto simp:waiting_eq)
- thus ?thesis by simp
- next
- assume "th2' \<in> dependants (wq s) th2"
- with eq_th12 have "th1' \<in> dependants (wq s) th2" by simp
- hence h1: "(Th th1', Th th2) \<in> (RAG s)^+"
- by (unfold cs_dependants_def s_RAG_def cs_RAG_def, simp)
- from th1'_in have h2: "(Th th1', Th th1) \<in> (RAG s)^+"
- by (unfold cs_dependants_def s_RAG_def cs_RAG_def, simp)
- show ?thesis
- proof(rule dchain_unique[OF h1 _ h2, symmetric])
- from runing_1 show "th1 \<in> readys s" by (simp add:runing_def)
- from runing_2 show "th2 \<in> readys s" by (simp add:runing_def)
- qed
- qed
- qed
-qed
-
-
-lemma "card (runing s) \<le> 1"
-apply(subgoal_tac "finite (runing s)")
-prefer 2
-apply (metis finite_nat_set_iff_bounded lessI runing_unique)
-apply(rule ccontr)
-apply(simp)
-apply(case_tac "Suc (Suc 0) \<le> card (runing s)")
-apply(subst (asm) card_le_Suc_iff)
-apply(simp)
-apply(auto)[1]
-apply (metis insertCI runing_unique)
-apply(auto)
-done
-
-end
-
-
-lemma create_pre:
- assumes stp: "step s e"
- and not_in: "th \<notin> threads s"
- and is_in: "th \<in> threads (e#s)"
- obtains prio where "e = Create th prio"
-proof -
- from assms
- show ?thesis
- proof(cases)
- case (thread_create thread prio)
- with is_in not_in have "e = Create th prio" by simp
- from that[OF this] show ?thesis .
- next
- case (thread_exit thread)
- with assms show ?thesis by (auto intro!:that)
- next
- case (thread_P thread)
- with assms show ?thesis by (auto intro!:that)
- next
- case (thread_V thread)
- with assms show ?thesis by (auto intro!:that)
- next
- case (thread_set thread)
- with assms show ?thesis by (auto intro!:that)
- qed
-qed
-
-context valid_trace
-begin
-
-lemma cnp_cnv_eq:
- assumes "th \<notin> threads s"
- shows "cntP s th = cntV s th"
- using assms
- using cnp_cnv_cncs not_thread_cncs by auto
-
-end
-
-
-lemma eq_RAG:
- "RAG (wq s) = RAG s"
-by (unfold cs_RAG_def s_RAG_def, auto)
-
-context valid_trace
-begin
-
-lemma count_eq_dependants:
- assumes eq_pv: "cntP s th = cntV s th"
- shows "dependants (wq s) th = {}"
-proof -
- from cnp_cnv_cncs and eq_pv
- have "cntCS s th = 0"
- by (auto split:if_splits)
- moreover have "finite {cs. (Cs cs, Th th) \<in> RAG s}"
- proof -
- from finite_holding[of th] show ?thesis
- by (simp add:holdents_test)
- qed
- ultimately have h: "{cs. (Cs cs, Th th) \<in> RAG s} = {}"
- by (unfold cntCS_def holdents_test cs_dependants_def, auto)
- show ?thesis
- proof(unfold cs_dependants_def)
- { assume "{th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+} \<noteq> {}"
- then obtain th' where "(Th th', Th th) \<in> (RAG (wq s))\<^sup>+" by auto
- hence "False"
- proof(cases)
- assume "(Th th', Th th) \<in> RAG (wq s)"
- thus "False" by (auto simp:cs_RAG_def)
- next
- fix c
- assume "(c, Th th) \<in> RAG (wq s)"
- with h and eq_RAG show "False"
- by (cases c, auto simp:cs_RAG_def)
- qed
- } thus "{th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+} = {}" by auto
- qed
-qed
-
-lemma dependants_threads:
- shows "dependants (wq s) th \<subseteq> threads s"
-proof
- { fix th th'
- assume h: "th \<in> {th'a. (Th th'a, Th th') \<in> (RAG (wq s))\<^sup>+}"
- have "Th th \<in> Domain (RAG s)"
- proof -
- from h obtain th' where "(Th th, Th th') \<in> (RAG (wq s))\<^sup>+" by auto
- hence "(Th th) \<in> Domain ( (RAG (wq s))\<^sup>+)" by (auto simp:Domain_def)
- with trancl_domain have "(Th th) \<in> Domain (RAG (wq s))" by simp
- thus ?thesis using eq_RAG by simp
- qed
- from dm_RAG_threads[OF this]
- have "th \<in> threads s" .
- } note hh = this
- fix th1
- assume "th1 \<in> dependants (wq s) th"
- hence "th1 \<in> {th'a. (Th th'a, Th th) \<in> (RAG (wq s))\<^sup>+}"
- by (unfold cs_dependants_def, simp)
- from hh [OF this] show "th1 \<in> threads s" .
-qed
-
-lemma finite_threads:
- shows "finite (threads s)"
-using vt by (induct) (auto elim: step.cases)
-
-end
-
-lemma Max_f_mono:
- assumes seq: "A \<subseteq> B"
- and np: "A \<noteq> {}"
- and fnt: "finite B"
- shows "Max (f ` A) \<le> Max (f ` B)"
-proof(rule Max_mono)
- from seq show "f ` A \<subseteq> f ` B" by auto
-next
- from np show "f ` A \<noteq> {}" by auto
-next
- from fnt and seq show "finite (f ` B)" by auto
-qed
-
-context valid_trace
-begin
-
-lemma cp_le:
- assumes th_in: "th \<in> threads s"
- shows "cp s th \<le> Max ((\<lambda> th. (preced th s)) ` threads s)"
-proof(unfold cp_eq_cpreced cpreced_def cs_dependants_def)
- show "Max ((\<lambda>th. preced th s) ` ({th} \<union> {th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+}))
- \<le> Max ((\<lambda>th. preced th s) ` threads s)"
- (is "Max (?f ` ?A) \<le> Max (?f ` ?B)")
- proof(rule Max_f_mono)
- show "{th} \<union> {th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+} \<noteq> {}" by simp
- next
- from finite_threads
- show "finite (threads s)" .
- next
- from th_in
- show "{th} \<union> {th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+} \<subseteq> threads s"
- apply (auto simp:Domain_def)
- apply (rule_tac dm_RAG_threads)
- apply (unfold trancl_domain [of "RAG s", symmetric])
- by (unfold cs_RAG_def s_RAG_def, auto simp:Domain_def)
- qed
-qed
-
-lemma le_cp:
- shows "preced th s \<le> cp s th"
-proof(unfold cp_eq_cpreced preced_def cpreced_def, simp)
- show "Prc (priority th s) (last_set th s)
- \<le> Max (insert (Prc (priority th s) (last_set th s))
- ((\<lambda>th. Prc (priority th s) (last_set th s)) ` dependants (wq s) th))"
- (is "?l \<le> Max (insert ?l ?A)")
- proof(cases "?A = {}")
- case False
- have "finite ?A" (is "finite (?f ` ?B)")
- proof -
- have "finite ?B"
- proof-
- have "finite {th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+}"
- proof -
- let ?F = "\<lambda> (x, y). the_th x"
- have "{th'. (Th th', Th th) \<in> (RAG (wq s))\<^sup>+} \<subseteq> ?F ` ((RAG (wq s))\<^sup>+)"
- apply (auto simp:image_def)
- by (rule_tac x = "(Th x, Th th)" in bexI, auto)
- moreover have "finite \<dots>"
- proof -
- from finite_RAG have "finite (RAG s)" .
- hence "finite ((RAG (wq s))\<^sup>+)"
- apply (unfold finite_trancl)
- by (auto simp: s_RAG_def cs_RAG_def wq_def)
- thus ?thesis by auto
- qed
- ultimately show ?thesis by (auto intro:finite_subset)
- qed
- thus ?thesis by (simp add:cs_dependants_def)
- qed
- thus ?thesis by simp
- qed
- from Max_insert [OF this False, of ?l] show ?thesis by auto
- next
- case True
- thus ?thesis by auto
- qed
-qed
-
-lemma max_cp_eq:
- shows "Max ((cp s) ` threads s) = Max ((\<lambda> th. (preced th s)) ` threads s)"
- (is "?l = ?r")
-proof(cases "threads s = {}")
- case True
- thus ?thesis by auto
-next
- case False
- have "?l \<in> ((cp s) ` threads s)"
- proof(rule Max_in)
- from finite_threads
- show "finite (cp s ` threads s)" by auto
- next
- from False show "cp s ` threads s \<noteq> {}" by auto
- qed
- then obtain th
- where th_in: "th \<in> threads s" and eq_l: "?l = cp s th" by auto
- have "\<dots> \<le> ?r" by (rule cp_le[OF th_in])
- moreover have "?r \<le> cp s th" (is "Max (?f ` ?A) \<le> cp s th")
- proof -
- have "?r \<in> (?f ` ?A)"
- proof(rule Max_in)
- from finite_threads
- show " finite ((\<lambda>th. preced th s) ` threads s)" by auto
- next
- from False show " (\<lambda>th. preced th s) ` threads s \<noteq> {}" by auto
- qed
- then obtain th' where
- th_in': "th' \<in> ?A " and eq_r: "?r = ?f th'" by auto
- from le_cp [of th'] eq_r
- have "?r \<le> cp s th'" by auto
- moreover have "\<dots> \<le> cp s th"
- proof(fold eq_l)
- show " cp s th' \<le> Max (cp s ` threads s)"
- proof(rule Max_ge)
- from th_in' show "cp s th' \<in> cp s ` threads s"
- by auto
- next
- from finite_threads
- show "finite (cp s ` threads s)" by auto
- qed
- qed
- ultimately show ?thesis by auto
- qed
- ultimately show ?thesis using eq_l by auto
-qed
-
-lemma max_cp_readys_threads_pre:
- assumes np: "threads s \<noteq> {}"
- shows "Max (cp s ` readys s) = Max (cp s ` threads s)"
-proof(unfold max_cp_eq)
- show "Max (cp s ` readys s) = Max ((\<lambda>th. preced th s) ` threads s)"
- proof -
- let ?p = "Max ((\<lambda>th. preced th s) ` threads s)"
- let ?f = "(\<lambda>th. preced th s)"
- have "?p \<in> ((\<lambda>th. preced th s) ` threads s)"
- proof(rule Max_in)
- from finite_threads show "finite (?f ` threads s)" by simp
- next
- from np show "?f ` threads s \<noteq> {}" by simp
- qed
- then obtain tm where tm_max: "?f tm = ?p" and tm_in: "tm \<in> threads s"
- by (auto simp:Image_def)
- from th_chain_to_ready [OF tm_in]
- have "tm \<in> readys s \<or> (\<exists>th'. th' \<in> readys s \<and> (Th tm, Th th') \<in> (RAG s)\<^sup>+)" .
- thus ?thesis
- proof
- assume "\<exists>th'. th' \<in> readys s \<and> (Th tm, Th th') \<in> (RAG s)\<^sup>+ "
- then obtain th' where th'_in: "th' \<in> readys s"
- and tm_chain:"(Th tm, Th th') \<in> (RAG s)\<^sup>+" by auto
- have "cp s th' = ?f tm"
- proof(subst cp_eq_cpreced, subst cpreced_def, rule Max_eqI)
- from dependants_threads finite_threads
- show "finite ((\<lambda>th. preced th s) ` ({th'} \<union> dependants (wq s) th'))"
- by (auto intro:finite_subset)
- next
- fix p assume p_in: "p \<in> (\<lambda>th. preced th s) ` ({th'} \<union> dependants (wq s) th')"
- from tm_max have " preced tm s = Max ((\<lambda>th. preced th s) ` threads s)" .
- moreover have "p \<le> \<dots>"
- proof(rule Max_ge)
- from finite_threads
- show "finite ((\<lambda>th. preced th s) ` threads s)" by simp
- next
- from p_in and th'_in and dependants_threads[of th']
- show "p \<in> (\<lambda>th. preced th s) ` threads s"
- by (auto simp:readys_def)
- qed
- ultimately show "p \<le> preced tm s" by auto
- next
- show "preced tm s \<in> (\<lambda>th. preced th s) ` ({th'} \<union> dependants (wq s) th')"
- proof -
- from tm_chain
- have "tm \<in> dependants (wq s) th'"
- by (unfold cs_dependants_def s_RAG_def cs_RAG_def, auto)
- thus ?thesis by auto
- qed
- qed
- with tm_max
- have h: "cp s th' = Max ((\<lambda>th. preced th s) ` threads s)" by simp
- show ?thesis
- proof (fold h, rule Max_eqI)
- fix q
- assume "q \<in> cp s ` readys s"
- then obtain th1 where th1_in: "th1 \<in> readys s"
- and eq_q: "q = cp s th1" by auto
- show "q \<le> cp s th'"
- apply (unfold h eq_q)
- apply (unfold cp_eq_cpreced cpreced_def)
- apply (rule Max_mono)
- proof -
- from dependants_threads [of th1] th1_in
- show "(\<lambda>th. preced th s) ` ({th1} \<union> dependants (wq s) th1) \<subseteq>
- (\<lambda>th. preced th s) ` threads s"
- by (auto simp:readys_def)
- next
- show "(\<lambda>th. preced th s) ` ({th1} \<union> dependants (wq s) th1) \<noteq> {}" by simp
- next
- from finite_threads
- show " finite ((\<lambda>th. preced th s) ` threads s)" by simp
- qed
- next
- from finite_threads
- show "finite (cp s ` readys s)" by (auto simp:readys_def)
- next
- from th'_in
- show "cp s th' \<in> cp s ` readys s" by simp
- qed
- next
- assume tm_ready: "tm \<in> readys s"
- show ?thesis
- proof(fold tm_max)
- have cp_eq_p: "cp s tm = preced tm s"
- proof(unfold cp_eq_cpreced cpreced_def, rule Max_eqI)
- fix y
- assume hy: "y \<in> (\<lambda>th. preced th s) ` ({tm} \<union> dependants (wq s) tm)"
- show "y \<le> preced tm s"
- proof -
- { fix y'
- assume hy' : "y' \<in> ((\<lambda>th. preced th s) ` dependants (wq s) tm)"
- have "y' \<le> preced tm s"
- proof(unfold tm_max, rule Max_ge)
- from hy' dependants_threads[of tm]
- show "y' \<in> (\<lambda>th. preced th s) ` threads s" by auto
- next
- from finite_threads
- show "finite ((\<lambda>th. preced th s) ` threads s)" by simp
- qed
- } with hy show ?thesis by auto
- qed
- next
- from dependants_threads[of tm] finite_threads
- show "finite ((\<lambda>th. preced th s) ` ({tm} \<union> dependants (wq s) tm))"
- by (auto intro:finite_subset)
- next
- show "preced tm s \<in> (\<lambda>th. preced th s) ` ({tm} \<union> dependants (wq s) tm)"
- by simp
- qed
- moreover have "Max (cp s ` readys s) = cp s tm"
- proof(rule Max_eqI)
- from tm_ready show "cp s tm \<in> cp s ` readys s" by simp
- next
- from finite_threads
- show "finite (cp s ` readys s)" by (auto simp:readys_def)
- next
- fix y assume "y \<in> cp s ` readys s"
- then obtain th1 where th1_readys: "th1 \<in> readys s"
- and h: "y = cp s th1" by auto
- show "y \<le> cp s tm"
- apply(unfold cp_eq_p h)
- apply(unfold cp_eq_cpreced cpreced_def tm_max, rule Max_mono)
- proof -
- from finite_threads
- show "finite ((\<lambda>th. preced th s) ` threads s)" by simp
- next
- show "(\<lambda>th. preced th s) ` ({th1} \<union> dependants (wq s) th1) \<noteq> {}"
- by simp
- next
- from dependants_threads[of th1] th1_readys
- show "(\<lambda>th. preced th s) ` ({th1} \<union> dependants (wq s) th1)
- \<subseteq> (\<lambda>th. preced th s) ` threads s"
- by (auto simp:readys_def)
- qed
- qed
- ultimately show " Max (cp s ` readys s) = preced tm s" by simp
- qed
- qed
- qed
-qed
-
-text {* (* ccc *) \noindent
- Since the current precedence of the threads in ready queue will always be boosted,
- there must be one inside it has the maximum precedence of the whole system.
-*}
-lemma max_cp_readys_threads:
- shows "Max (cp s ` readys s) = Max (cp s ` threads s)"
-proof(cases "threads s = {}")
- case True
- thus ?thesis
- by (auto simp:readys_def)
-next
- case False
- show ?thesis by (rule max_cp_readys_threads_pre[OF False])
-qed
-
-end
-
-lemma eq_holding: "holding (wq s) th cs = holding s th cs"
- apply (unfold s_holding_def cs_holding_def wq_def, simp)
- done
-
-lemma f_image_eq:
- assumes h: "\<And> a. a \<in> A \<Longrightarrow> f a = g a"
- shows "f ` A = g ` A"
-proof
- show "f ` A \<subseteq> g ` A"
- by(rule image_subsetI, auto intro:h)
-next
- show "g ` A \<subseteq> f ` A"
- by (rule image_subsetI, auto intro:h[symmetric])
-qed
-
-
-definition detached :: "state \<Rightarrow> thread \<Rightarrow> bool"
- where "detached s th \<equiv> (\<not>(\<exists> cs. holding s th cs)) \<and> (\<not>(\<exists>cs. waiting s th cs))"
-
-lemma detached_test:
- shows "detached s th = (Th th \<notin> Field (RAG s))"
-apply(simp add: detached_def Field_def)
-apply(simp add: s_RAG_def)
-apply(simp add: s_holding_abv s_waiting_abv)
-apply(simp add: Domain_iff Range_iff)
-apply(simp add: wq_def)
-apply(auto)
-done
-
-context valid_trace
-begin
-
-lemma detached_intro:
- assumes eq_pv: "cntP s th = cntV s th"
- shows "detached s th"
-proof -
- from cnp_cnv_cncs
- have eq_cnt: "cntP s th =
- cntV s th + (if th \<in> readys s \<or> th \<notin> threads s then cntCS s th else cntCS s th + 1)" .
- hence cncs_zero: "cntCS s th = 0"
- by (auto simp:eq_pv split:if_splits)
- with eq_cnt
- have "th \<in> readys s \<or> th \<notin> threads s" by (auto simp:eq_pv)
- thus ?thesis
- proof
- assume "th \<notin> threads s"
- with range_in dm_RAG_threads
- show ?thesis
- by (auto simp add: detached_def s_RAG_def s_waiting_abv s_holding_abv wq_def Domain_iff Range_iff)
- next
- assume "th \<in> readys s"
- moreover have "Th th \<notin> Range (RAG s)"
- proof -
- from card_0_eq [OF finite_holding] and cncs_zero
- have "holdents s th = {}"
- by (simp add:cntCS_def)
- thus ?thesis
- apply(auto simp:holdents_test)
- apply(case_tac a)
- apply(auto simp:holdents_test s_RAG_def)
- done
- qed
- ultimately show ?thesis
- by (auto simp add: detached_def s_RAG_def s_waiting_abv s_holding_abv wq_def readys_def)
- qed
-qed
-
-lemma detached_elim:
- assumes dtc: "detached s th"
- shows "cntP s th = cntV s th"
-proof -
- from cnp_cnv_cncs
- have eq_pv: " cntP s th =
- cntV s th + (if th \<in> readys s \<or> th \<notin> threads s then cntCS s th else cntCS s th + 1)" .
- have cncs_z: "cntCS s th = 0"
- proof -
- from dtc have "holdents s th = {}"
- unfolding detached_def holdents_test s_RAG_def
- by (simp add: s_waiting_abv wq_def s_holding_abv Domain_iff Range_iff)
- thus ?thesis by (auto simp:cntCS_def)
- qed
- show ?thesis
- proof(cases "th \<in> threads s")
- case True
- with dtc
- have "th \<in> readys s"
- by (unfold readys_def detached_def Field_def Domain_def Range_def,
- auto simp:waiting_eq s_RAG_def)
- with cncs_z and eq_pv show ?thesis by simp
- next
- case False
- with cncs_z and eq_pv show ?thesis by simp
- qed
-qed
-
-lemma detached_eq:
- shows "(detached s th) = (cntP s th = cntV s th)"
- by (insert vt, auto intro:detached_intro detached_elim)
-
-end
-
-text {*
- The lemmas in this .thy file are all obvious lemmas, however, they still needs to be derived
- from the concise and miniature model of PIP given in PrioGDef.thy.
-*}
-
-lemma eq_dependants: "dependants (wq s) = dependants s"
- by (simp add: s_dependants_abv wq_def)
-
-lemma next_th_unique:
- assumes nt1: "next_th s th cs th1"
- and nt2: "next_th s th cs th2"
- shows "th1 = th2"
-using assms by (unfold next_th_def, auto)
-
-lemma birth_time_lt: "s \<noteq> [] \<Longrightarrow> last_set th s < length s"
- apply (induct s, simp)
-proof -
- fix a s
- assume ih: "s \<noteq> [] \<Longrightarrow> last_set th s < length s"
- and eq_as: "a # s \<noteq> []"
- show "last_set th (a # s) < length (a # s)"
- proof(cases "s \<noteq> []")
- case False
- from False show ?thesis
- by (cases a, auto simp:last_set.simps)
- next
- case True
- from ih [OF True] show ?thesis
- by (cases a, auto simp:last_set.simps)
- qed
-qed
-
-lemma th_in_ne: "th \<in> threads s \<Longrightarrow> s \<noteq> []"
- by (induct s, auto simp:threads.simps)
-
-lemma preced_tm_lt: "th \<in> threads s \<Longrightarrow> preced th s = Prc x y \<Longrightarrow> y < length s"
- apply (drule_tac th_in_ne)
- by (unfold preced_def, auto intro: birth_time_lt)
-
-lemma inj_the_preced:
- "inj_on (the_preced s) (threads s)"
- by (metis inj_onI preced_unique the_preced_def)
-
-lemma tRAG_alt_def:
- "tRAG s = {(Th th1, Th th2) | th1 th2.
- \<exists> cs. (Th th1, Cs cs) \<in> RAG s \<and> (Cs cs, Th th2) \<in> RAG s}"
- by (auto simp:tRAG_def RAG_split wRAG_def hRAG_def)
-
-lemma tRAG_Field:
- "Field (tRAG s) \<subseteq> Field (RAG s)"
- by (unfold tRAG_alt_def Field_def, auto)
-
-lemma tRAG_ancestorsE:
- assumes "x \<in> ancestors (tRAG s) u"
- obtains th where "x = Th th"
-proof -
- from assms have "(u, x) \<in> (tRAG s)^+"
- by (unfold ancestors_def, auto)
- from tranclE[OF this] obtain c where "(c, x) \<in> tRAG s" by auto
- then obtain th where "x = Th th"
- by (unfold tRAG_alt_def, auto)
- from that[OF this] show ?thesis .
-qed
-
-lemma tRAG_mono:
- assumes "RAG s' \<subseteq> RAG s"
- shows "tRAG s' \<subseteq> tRAG s"
- using assms
- by (unfold tRAG_alt_def, auto)
-
-lemma holding_next_thI:
- assumes "holding s th cs"
- and "length (wq s cs) > 1"
- obtains th' where "next_th s th cs th'"
-proof -
- from assms(1)[folded eq_holding, unfolded cs_holding_def]
- have " th \<in> set (wq s cs) \<and> th = hd (wq s cs)" .
- then obtain rest where h1: "wq s cs = th#rest"
- by (cases "wq s cs", auto)
- with assms(2) have h2: "rest \<noteq> []" by auto
- let ?th' = "hd (SOME q. distinct q \<and> set q = set rest)"
- have "next_th s th cs ?th'" using h1(1) h2
- by (unfold next_th_def, auto)
- from that[OF this] show ?thesis .
-qed
-
-lemma RAG_tRAG_transfer:
- assumes "vt s'"
- assumes "RAG s = RAG s' \<union> {(Th th, Cs cs)}"
- and "(Cs cs, Th th'') \<in> RAG s'"
- shows "tRAG s = tRAG s' \<union> {(Th th, Th th'')}" (is "?L = ?R")
-proof -
- interpret vt_s': valid_trace "s'" using assms(1)
- by (unfold_locales, simp)
- interpret rtree: rtree "RAG s'"
- proof
- show "single_valued (RAG s')"
- apply (intro_locales)
- by (unfold single_valued_def,
- auto intro:vt_s'.unique_RAG)
-
- show "acyclic (RAG s')"
- by (rule vt_s'.acyclic_RAG)
- qed
- { fix n1 n2
- assume "(n1, n2) \<in> ?L"
- from this[unfolded tRAG_alt_def]
- obtain th1 th2 cs' where
- h: "n1 = Th th1" "n2 = Th th2"
- "(Th th1, Cs cs') \<in> RAG s"
- "(Cs cs', Th th2) \<in> RAG s" by auto
- from h(4) and assms(2) have cs_in: "(Cs cs', Th th2) \<in> RAG s'" by auto
- from h(3) and assms(2)
- have "(Th th1, Cs cs') = (Th th, Cs cs) \<or>
- (Th th1, Cs cs') \<in> RAG s'" by auto
- hence "(n1, n2) \<in> ?R"
- proof
- assume h1: "(Th th1, Cs cs') = (Th th, Cs cs)"
- hence eq_th1: "th1 = th" by simp
- moreover have "th2 = th''"
- proof -
- from h1 have "cs' = cs" by simp
- from assms(3) cs_in[unfolded this] rtree.sgv
- show ?thesis
- by (unfold single_valued_def, auto)
- qed
- ultimately show ?thesis using h(1,2) by auto
- next
- assume "(Th th1, Cs cs') \<in> RAG s'"
- with cs_in have "(Th th1, Th th2) \<in> tRAG s'"
- by (unfold tRAG_alt_def, auto)
- from this[folded h(1, 2)] show ?thesis by auto
- qed
- } moreover {
- fix n1 n2
- assume "(n1, n2) \<in> ?R"
- hence "(n1, n2) \<in>tRAG s' \<or> (n1, n2) = (Th th, Th th'')" by auto
- hence "(n1, n2) \<in> ?L"
- proof
- assume "(n1, n2) \<in> tRAG s'"
- moreover have "... \<subseteq> ?L"
- proof(rule tRAG_mono)
- show "RAG s' \<subseteq> RAG s" by (unfold assms(2), auto)
- qed
- ultimately show ?thesis by auto
- next
- assume eq_n: "(n1, n2) = (Th th, Th th'')"
- from assms(2, 3) have "(Cs cs, Th th'') \<in> RAG s" by auto
- moreover have "(Th th, Cs cs) \<in> RAG s" using assms(2) by auto
- ultimately show ?thesis
- by (unfold eq_n tRAG_alt_def, auto)
- qed
- } ultimately show ?thesis by auto
-qed
-
-context valid_trace
-begin
-
-lemmas RAG_tRAG_transfer = RAG_tRAG_transfer[OF vt]
-
-end
-
-lemma cp_alt_def:
- "cp s th =
- Max ((the_preced s) ` {th'. Th th' \<in> (subtree (RAG s) (Th th))})"
-proof -
- have "Max (the_preced s ` ({th} \<union> dependants (wq s) th)) =
- Max (the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th)})"
- (is "Max (_ ` ?L) = Max (_ ` ?R)")
- proof -
- have "?L = ?R"
- by (auto dest:rtranclD simp:cs_dependants_def cs_RAG_def s_RAG_def subtree_def)
- thus ?thesis by simp
- qed
- thus ?thesis by (unfold cp_eq_cpreced cpreced_def, fold the_preced_def, simp)
-qed
-
-lemma cp_gen_alt_def:
- "cp_gen s = (Max \<circ> (\<lambda>x. (the_preced s \<circ> the_thread) ` subtree (tRAG s) x))"
- by (auto simp:cp_gen_def)
-
-lemma tRAG_nodeE:
- assumes "(n1, n2) \<in> tRAG s"
- obtains th1 th2 where "n1 = Th th1" "n2 = Th th2"
- using assms
- by (auto simp: tRAG_def wRAG_def hRAG_def tRAG_def)
-
-lemma subtree_nodeE:
- assumes "n \<in> subtree (tRAG s) (Th th)"
- obtains th1 where "n = Th th1"
-proof -
- show ?thesis
- proof(rule subtreeE[OF assms])
- assume "n = Th th"
- from that[OF this] show ?thesis .
- next
- assume "Th th \<in> ancestors (tRAG s) n"
- hence "(n, Th th) \<in> (tRAG s)^+" by (auto simp:ancestors_def)
- hence "\<exists> th1. n = Th th1"
- proof(induct)
- case (base y)
- from tRAG_nodeE[OF this] show ?case by metis
- next
- case (step y z)
- thus ?case by auto
- qed
- with that show ?thesis by auto
- qed
-qed
-
-lemma tRAG_star_RAG: "(tRAG s)^* \<subseteq> (RAG s)^*"
-proof -
- have "(wRAG s O hRAG s)^* \<subseteq> (RAG s O RAG s)^*"
- by (rule rtrancl_mono, auto simp:RAG_split)
- also have "... \<subseteq> ((RAG s)^*)^*"
- by (rule rtrancl_mono, auto)
- also have "... = (RAG s)^*" by simp
- finally show ?thesis by (unfold tRAG_def, simp)
-qed
-
-lemma tRAG_subtree_RAG: "subtree (tRAG s) x \<subseteq> subtree (RAG s) x"
-proof -
- { fix a
- assume "a \<in> subtree (tRAG s) x"
- hence "(a, x) \<in> (tRAG s)^*" by (auto simp:subtree_def)
- with tRAG_star_RAG[of s]
- have "(a, x) \<in> (RAG s)^*" by auto
- hence "a \<in> subtree (RAG s) x" by (auto simp:subtree_def)
- } thus ?thesis by auto
-qed
-
-lemma tRAG_trancl_eq:
- "{th'. (Th th', Th th) \<in> (tRAG s)^+} =
- {th'. (Th th', Th th) \<in> (RAG s)^+}"
- (is "?L = ?R")
-proof -
- { fix th'
- assume "th' \<in> ?L"
- hence "(Th th', Th th) \<in> (tRAG s)^+" by auto
- from tranclD[OF this]
- obtain z where h: "(Th th', z) \<in> tRAG s" "(z, Th th) \<in> (tRAG s)\<^sup>*" by auto
- from tRAG_subtree_RAG[of s] and this(2)
- have "(z, Th th) \<in> (RAG s)^*" by (meson subsetCE tRAG_star_RAG)
- moreover from h(1) have "(Th th', z) \<in> (RAG s)^+" using tRAG_alt_def by auto
- ultimately have "th' \<in> ?R" by auto
- } moreover
- { fix th'
- assume "th' \<in> ?R"
- hence "(Th th', Th th) \<in> (RAG s)^+" by (auto)
- from plus_rpath[OF this]
- obtain xs where rp: "rpath (RAG s) (Th th') xs (Th th)" "xs \<noteq> []" by auto
- hence "(Th th', Th th) \<in> (tRAG s)^+"
- proof(induct xs arbitrary:th' th rule:length_induct)
- case (1 xs th' th)
- then obtain x1 xs1 where Cons1: "xs = x1#xs1" by (cases xs, auto)
- show ?case
- proof(cases "xs1")
- case Nil
- from 1(2)[unfolded Cons1 Nil]
- have rp: "rpath (RAG s) (Th th') [x1] (Th th)" .
- hence "(Th th', x1) \<in> (RAG s)" by (cases, simp)
- then obtain cs where "x1 = Cs cs"
- by (unfold s_RAG_def, auto)
- from rpath_nnl_lastE[OF rp[unfolded this]]
- show ?thesis by auto
- next
- case (Cons x2 xs2)
- from 1(2)[unfolded Cons1[unfolded this]]
- have rp: "rpath (RAG s) (Th th') (x1 # x2 # xs2) (Th th)" .
- from rpath_edges_on[OF this]
- have eds: "edges_on (Th th' # x1 # x2 # xs2) \<subseteq> RAG s" .
- have "(Th th', x1) \<in> edges_on (Th th' # x1 # x2 # xs2)"
- by (simp add: edges_on_unfold)
- with eds have rg1: "(Th th', x1) \<in> RAG s" by auto
- then obtain cs1 where eq_x1: "x1 = Cs cs1" by (unfold s_RAG_def, auto)
- have "(x1, x2) \<in> edges_on (Th th' # x1 # x2 # xs2)"
- by (simp add: edges_on_unfold)
- from this eds
- have rg2: "(x1, x2) \<in> RAG s" by auto
- from this[unfolded eq_x1]
- obtain th1 where eq_x2: "x2 = Th th1" by (unfold s_RAG_def, auto)
- from rg1[unfolded eq_x1] rg2[unfolded eq_x1 eq_x2]
- have rt1: "(Th th', Th th1) \<in> tRAG s" by (unfold tRAG_alt_def, auto)
- from rp have "rpath (RAG s) x2 xs2 (Th th)"
- by (elim rpath_ConsE, simp)
- from this[unfolded eq_x2] have rp': "rpath (RAG s) (Th th1) xs2 (Th th)" .
- show ?thesis
- proof(cases "xs2 = []")
- case True
- from rpath_nilE[OF rp'[unfolded this]]
- have "th1 = th" by auto
- from rt1[unfolded this] show ?thesis by auto
- next
- case False
- from 1(1)[rule_format, OF _ rp' this, unfolded Cons1 Cons]
- have "(Th th1, Th th) \<in> (tRAG s)\<^sup>+" by simp
- with rt1 show ?thesis by auto
- qed
- qed
- qed
- hence "th' \<in> ?L" by auto
- } ultimately show ?thesis by blast
-qed
-
-lemma tRAG_trancl_eq_Th:
- "{Th th' | th'. (Th th', Th th) \<in> (tRAG s)^+} =
- {Th th' | th'. (Th th', Th th) \<in> (RAG s)^+}"
- using tRAG_trancl_eq by auto
-
-lemma dependants_alt_def:
- "dependants s th = {th'. (Th th', Th th) \<in> (tRAG s)^+}"
- by (metis eq_RAG s_dependants_def tRAG_trancl_eq)
-
-context valid_trace
-begin
-
-lemma count_eq_tRAG_plus:
- assumes "cntP s th = cntV s th"
- shows "{th'. (Th th', Th th) \<in> (tRAG s)^+} = {}"
- using assms count_eq_dependants dependants_alt_def eq_dependants by auto
-
-lemma count_eq_RAG_plus:
- assumes "cntP s th = cntV s th"
- shows "{th'. (Th th', Th th) \<in> (RAG s)^+} = {}"
- using assms count_eq_dependants cs_dependants_def eq_RAG by auto
-
-lemma count_eq_RAG_plus_Th:
- assumes "cntP s th = cntV s th"
- shows "{Th th' | th'. (Th th', Th th) \<in> (RAG s)^+} = {}"
- using count_eq_RAG_plus[OF assms] by auto
-
-lemma count_eq_tRAG_plus_Th:
- assumes "cntP s th = cntV s th"
- shows "{Th th' | th'. (Th th', Th th) \<in> (tRAG s)^+} = {}"
- using count_eq_tRAG_plus[OF assms] by auto
-
-end
-
-lemma tRAG_subtree_eq:
- "(subtree (tRAG s) (Th th)) = {Th th' | th'. Th th' \<in> (subtree (RAG s) (Th th))}"
- (is "?L = ?R")
-proof -
- { fix n
- assume h: "n \<in> ?L"
- hence "n \<in> ?R"
- by (smt mem_Collect_eq subsetCE subtree_def subtree_nodeE tRAG_subtree_RAG)
- } moreover {
- fix n
- assume "n \<in> ?R"
- then obtain th' where h: "n = Th th'" "(Th th', Th th) \<in> (RAG s)^*"
- by (auto simp:subtree_def)
- from rtranclD[OF this(2)]
- have "n \<in> ?L"
- proof
- assume "Th th' \<noteq> Th th \<and> (Th th', Th th) \<in> (RAG s)\<^sup>+"
- with h have "n \<in> {Th th' | th'. (Th th', Th th) \<in> (RAG s)^+}" by auto
- thus ?thesis using subtree_def tRAG_trancl_eq by fastforce
- qed (insert h, auto simp:subtree_def)
- } ultimately show ?thesis by auto
-qed
-
-lemma threads_set_eq:
- "the_thread ` (subtree (tRAG s) (Th th)) =
- {th'. Th th' \<in> (subtree (RAG s) (Th th))}" (is "?L = ?R")
- by (auto intro:rev_image_eqI simp:tRAG_subtree_eq)
-
-lemma cp_alt_def1:
- "cp s th = Max ((the_preced s o the_thread) ` (subtree (tRAG s) (Th th)))"
-proof -
- have "(the_preced s ` the_thread ` subtree (tRAG s) (Th th)) =
- ((the_preced s \<circ> the_thread) ` subtree (tRAG s) (Th th))"
- by auto
- thus ?thesis by (unfold cp_alt_def, fold threads_set_eq, auto)
-qed
-
-lemma cp_gen_def_cond:
- assumes "x = Th th"
- shows "cp s th = cp_gen s (Th th)"
-by (unfold cp_alt_def1 cp_gen_def, simp)
-
-lemma cp_gen_over_set:
- assumes "\<forall> x \<in> A. \<exists> th. x = Th th"
- shows "cp_gen s ` A = (cp s \<circ> the_thread) ` A"
-proof(rule f_image_eq)
- fix a
- assume "a \<in> A"
- from assms[rule_format, OF this]
- obtain th where eq_a: "a = Th th" by auto
- show "cp_gen s a = (cp s \<circ> the_thread) a"
- by (unfold eq_a, simp, unfold cp_gen_def_cond[OF refl[of "Th th"]], simp)
-qed
-
-
-context valid_trace
-begin
-
-lemma RAG_threads:
- assumes "(Th th) \<in> Field (RAG s)"
- shows "th \<in> threads s"
- using assms
- by (metis Field_def UnE dm_RAG_threads range_in vt)
-
-lemma subtree_tRAG_thread:
- assumes "th \<in> threads s"
- shows "subtree (tRAG s) (Th th) \<subseteq> Th ` threads s" (is "?L \<subseteq> ?R")
-proof -
- have "?L = {Th th' |th'. Th th' \<in> subtree (RAG s) (Th th)}"
- by (unfold tRAG_subtree_eq, simp)
- also have "... \<subseteq> ?R"
- proof
- fix x
- assume "x \<in> {Th th' |th'. Th th' \<in> subtree (RAG s) (Th th)}"
- then obtain th' where h: "x = Th th'" "Th th' \<in> subtree (RAG s) (Th th)" by auto
- from this(2)
- show "x \<in> ?R"
- proof(cases rule:subtreeE)
- case 1
- thus ?thesis by (simp add: assms h(1))
- next
- case 2
- thus ?thesis by (metis ancestors_Field dm_RAG_threads h(1) image_eqI)
- qed
- qed
- finally show ?thesis .
-qed
-
-lemma readys_root:
- assumes "th \<in> readys s"
- shows "root (RAG s) (Th th)"
-proof -
- { fix x
- assume "x \<in> ancestors (RAG s) (Th th)"
- hence h: "(Th th, x) \<in> (RAG s)^+" by (auto simp:ancestors_def)
- from tranclD[OF this]
- obtain z where "(Th th, z) \<in> RAG s" by auto
- with assms(1) have False
- apply (case_tac z, auto simp:readys_def s_RAG_def s_waiting_def cs_waiting_def)
- by (fold wq_def, blast)
- } thus ?thesis by (unfold root_def, auto)
-qed
-
-lemma readys_in_no_subtree:
- assumes "th \<in> readys s"
- and "th' \<noteq> th"
- shows "Th th \<notin> subtree (RAG s) (Th th')"
-proof
- assume "Th th \<in> subtree (RAG s) (Th th')"
- thus False
- proof(cases rule:subtreeE)
- case 1
- with assms show ?thesis by auto
- next
- case 2
- with readys_root[OF assms(1)]
- show ?thesis by (auto simp:root_def)
- qed
-qed
-
-lemma not_in_thread_isolated:
- assumes "th \<notin> threads s"
- shows "(Th th) \<notin> Field (RAG s)"
-proof
- assume "(Th th) \<in> Field (RAG s)"
- with dm_RAG_threads and range_in assms
- show False by (unfold Field_def, blast)
-qed
-
-lemma wf_RAG: "wf (RAG s)"
-proof(rule finite_acyclic_wf)
- from finite_RAG show "finite (RAG s)" .
-next
- from acyclic_RAG show "acyclic (RAG s)" .
-qed
-
-lemma sgv_wRAG: "single_valued (wRAG s)"
- using waiting_unique
- by (unfold single_valued_def wRAG_def, auto)
-
-lemma sgv_hRAG: "single_valued (hRAG s)"
- using holding_unique
- by (unfold single_valued_def hRAG_def, auto)
-
-lemma sgv_tRAG: "single_valued (tRAG s)"
- by (unfold tRAG_def, rule single_valued_relcomp,
- insert sgv_wRAG sgv_hRAG, auto)
-
-lemma acyclic_tRAG: "acyclic (tRAG s)"
-proof(unfold tRAG_def, rule acyclic_compose)
- show "acyclic (RAG s)" using acyclic_RAG .
-next
- show "wRAG s \<subseteq> RAG s" unfolding RAG_split by auto
-next
- show "hRAG s \<subseteq> RAG s" unfolding RAG_split by auto
-qed
-
-lemma sgv_RAG: "single_valued (RAG s)"
- using unique_RAG by (auto simp:single_valued_def)
-
-lemma rtree_RAG: "rtree (RAG s)"
- using sgv_RAG acyclic_RAG
- by (unfold rtree_def rtree_axioms_def sgv_def, auto)
-
-end
-
-sublocale valid_trace < rtree_RAG: rtree "RAG s"
-proof
- show "single_valued (RAG s)"
- apply (intro_locales)
- by (unfold single_valued_def,
- auto intro:unique_RAG)
-
- show "acyclic (RAG s)"
- by (rule acyclic_RAG)
-qed
-
-sublocale valid_trace < rtree_s: rtree "tRAG s"
-proof(unfold_locales)
- from sgv_tRAG show "single_valued (tRAG s)" .
-next
- from acyclic_tRAG show "acyclic (tRAG s)" .
-qed
-
-sublocale valid_trace < fsbtRAGs : fsubtree "RAG s"
-proof -
- show "fsubtree (RAG s)"
- proof(intro_locales)
- show "fbranch (RAG s)" using finite_fbranchI[OF finite_RAG] .
- next
- show "fsubtree_axioms (RAG s)"
- proof(unfold fsubtree_axioms_def)
- from wf_RAG show "wf (RAG s)" .
- qed
- qed
-qed
-
-sublocale valid_trace < fsbttRAGs: fsubtree "tRAG s"
-proof -
- have "fsubtree (tRAG s)"
- proof -
- have "fbranch (tRAG s)"
- proof(unfold tRAG_def, rule fbranch_compose)
- show "fbranch (wRAG s)"
- proof(rule finite_fbranchI)
- from finite_RAG show "finite (wRAG s)"
- by (unfold RAG_split, auto)
- qed
- next
- show "fbranch (hRAG s)"
- proof(rule finite_fbranchI)
- from finite_RAG
- show "finite (hRAG s)" by (unfold RAG_split, auto)
- qed
- qed
- moreover have "wf (tRAG s)"
- proof(rule wf_subset)
- show "wf (RAG s O RAG s)" using wf_RAG
- by (fold wf_comp_self, simp)
- next
- show "tRAG s \<subseteq> (RAG s O RAG s)"
- by (unfold tRAG_alt_def, auto)
- qed
- ultimately show ?thesis
- by (unfold fsubtree_def fsubtree_axioms_def,auto)
- qed
- from this[folded tRAG_def] show "fsubtree (tRAG s)" .
-qed
-
-lemma Max_UNION:
- assumes "finite A"
- and "A \<noteq> {}"
- and "\<forall> M \<in> f ` A. finite M"
- and "\<forall> M \<in> f ` A. M \<noteq> {}"
- shows "Max (\<Union>x\<in> A. f x) = Max (Max ` f ` A)" (is "?L = ?R")
- using assms[simp]
-proof -
- have "?L = Max (\<Union>(f ` A))"
- by (fold Union_image_eq, simp)
- also have "... = ?R"
- by (subst Max_Union, simp+)
- finally show ?thesis .
-qed
-
-lemma max_Max_eq:
- assumes "finite A"
- and "A \<noteq> {}"
- and "x = y"
- shows "max x (Max A) = Max ({y} \<union> A)" (is "?L = ?R")
-proof -
- have "?R = Max (insert y A)" by simp
- also from assms have "... = ?L"
- by (subst Max.insert, simp+)
- finally show ?thesis by simp
-qed
-
-context valid_trace
-begin
-
-(* ddd *)
-lemma cp_gen_rec:
- assumes "x = Th th"
- shows "cp_gen s x = Max ({the_preced s th} \<union> (cp_gen s) ` children (tRAG s) x)"
-proof(cases "children (tRAG s) x = {}")
- case True
- show ?thesis
- by (unfold True cp_gen_def subtree_children, simp add:assms)
-next
- case False
- hence [simp]: "children (tRAG s) x \<noteq> {}" by auto
- note fsbttRAGs.finite_subtree[simp]
- have [simp]: "finite (children (tRAG s) x)"
- by (intro rev_finite_subset[OF fsbttRAGs.finite_subtree],
- rule children_subtree)
- { fix r x
- have "subtree r x \<noteq> {}" by (auto simp:subtree_def)
- } note this[simp]
- have [simp]: "\<exists>x\<in>children (tRAG s) x. subtree (tRAG s) x \<noteq> {}"
- proof -
- from False obtain q where "q \<in> children (tRAG s) x" by blast
- moreover have "subtree (tRAG s) q \<noteq> {}" by simp
- ultimately show ?thesis by blast
- qed
- have h: "Max ((the_preced s \<circ> the_thread) `
- ({x} \<union> \<Union>(subtree (tRAG s) ` children (tRAG s) x))) =
- Max ({the_preced s th} \<union> cp_gen s ` children (tRAG s) x)"
- (is "?L = ?R")
- proof -
- let "Max (?f ` (?A \<union> \<Union> (?g ` ?B)))" = ?L
- let "Max (_ \<union> (?h ` ?B))" = ?R
- let ?L1 = "?f ` \<Union>(?g ` ?B)"
- have eq_Max_L1: "Max ?L1 = Max (?h ` ?B)"
- proof -
- have "?L1 = ?f ` (\<Union> x \<in> ?B.(?g x))" by simp
- also have "... = (\<Union> x \<in> ?B. ?f ` (?g x))" by auto
- finally have "Max ?L1 = Max ..." by simp
- also have "... = Max (Max ` (\<lambda>x. ?f ` subtree (tRAG s) x) ` ?B)"
- by (subst Max_UNION, simp+)
- also have "... = Max (cp_gen s ` children (tRAG s) x)"
- by (unfold image_comp cp_gen_alt_def, simp)
- finally show ?thesis .
- qed
- show ?thesis
- proof -
- have "?L = Max (?f ` ?A \<union> ?L1)" by simp
- also have "... = max (the_preced s (the_thread x)) (Max ?L1)"
- by (subst Max_Un, simp+)
- also have "... = max (?f x) (Max (?h ` ?B))"
- by (unfold eq_Max_L1, simp)
- also have "... =?R"
- by (rule max_Max_eq, (simp)+, unfold assms, simp)
- finally show ?thesis .
- qed
- qed thus ?thesis
- by (fold h subtree_children, unfold cp_gen_def, simp)
-qed
-
-lemma cp_rec:
- "cp s th = Max ({the_preced s th} \<union>
- (cp s o the_thread) ` children (tRAG s) (Th th))"
-proof -
- have "Th th = Th th" by simp
- note h = cp_gen_def_cond[OF this] cp_gen_rec[OF this]
- show ?thesis
- proof -
- have "cp_gen s ` children (tRAG s) (Th th) =
- (cp s \<circ> the_thread) ` children (tRAG s) (Th th)"
- proof(rule cp_gen_over_set)
- show " \<forall>x\<in>children (tRAG s) (Th th). \<exists>th. x = Th th"
- by (unfold tRAG_alt_def, auto simp:children_def)
- qed
- thus ?thesis by (subst (1) h(1), unfold h(2), simp)
- qed
-qed
-
-end
-
-(* keep *)
-lemma next_th_holding:
- assumes vt: "vt s"
- and nxt: "next_th s th cs th'"
- shows "holding (wq s) th cs"
-proof -
- from nxt[unfolded next_th_def]
- obtain rest where h: "wq s cs = th # rest"
- "rest \<noteq> []"
- "th' = hd (SOME q. distinct q \<and> set q = set rest)" by auto
- thus ?thesis
- by (unfold cs_holding_def, auto)
-qed
-
-context valid_trace
-begin
-
-lemma next_th_waiting:
- assumes nxt: "next_th s th cs th'"
- shows "waiting (wq s) th' cs"
-proof -
- from nxt[unfolded next_th_def]
- obtain rest where h: "wq s cs = th # rest"
- "rest \<noteq> []"
- "th' = hd (SOME q. distinct q \<and> set q = set rest)" by auto
- from wq_distinct[of cs, unfolded h]
- have dst: "distinct (th # rest)" .
- have in_rest: "th' \<in> set rest"
- proof(unfold h, rule someI2)
- show "distinct rest \<and> set rest = set rest" using dst by auto
- next
- fix x assume "distinct x \<and> set x = set rest"
- with h(2)
- show "hd x \<in> set (rest)" by (cases x, auto)
- qed
- hence "th' \<in> set (wq s cs)" by (unfold h(1), auto)
- moreover have "th' \<noteq> hd (wq s cs)"
- by (unfold h(1), insert in_rest dst, auto)
- ultimately show ?thesis by (auto simp:cs_waiting_def)
-qed
-
-lemma next_th_RAG:
- assumes nxt: "next_th (s::event list) th cs th'"
- shows "{(Cs cs, Th th), (Th th', Cs cs)} \<subseteq> RAG s"
- using vt assms next_th_holding next_th_waiting
- by (unfold s_RAG_def, simp)
-
-end
-
--- {* A useless definition *}
-definition cps:: "state \<Rightarrow> (thread \<times> precedence) set"
-where "cps s = {(th, cp s th) | th . th \<in> threads s}"
-
-lemma "wq (V th cs # s) cs1 = ttt"
- apply (unfold wq_def, auto simp:Let_def)
-
-end
-
--- a/CpsG_2.thy Tue Jun 14 13:56:51 2016 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,3557 +0,0 @@
-theory CpsG
-imports PIPDefs
-begin
-
-lemma Max_fg_mono:
- assumes "finite A"
- and "\<forall> a \<in> A. f a \<le> g a"
- shows "Max (f ` A) \<le> Max (g ` A)"
-proof(cases "A = {}")
- case True
- thus ?thesis by auto
-next
- case False
- show ?thesis
- proof(rule Max.boundedI)
- from assms show "finite (f ` A)" by auto
- next
- from False show "f ` A \<noteq> {}" by auto
- next
- fix fa
- assume "fa \<in> f ` A"
- then obtain a where h_fa: "a \<in> A" "fa = f a" by auto
- show "fa \<le> Max (g ` A)"
- proof(rule Max_ge_iff[THEN iffD2])
- from assms show "finite (g ` A)" by auto
- next
- from False show "g ` A \<noteq> {}" by auto
- next
- from h_fa have "g a \<in> g ` A" by auto
- moreover have "fa \<le> g a" using h_fa assms(2) by auto
- ultimately show "\<exists>a\<in>g ` A. fa \<le> a" by auto
- qed
- qed
-qed
-
-lemma Max_f_mono:
- assumes seq: "A \<subseteq> B"
- and np: "A \<noteq> {}"
- and fnt: "finite B"
- shows "Max (f ` A) \<le> Max (f ` B)"
-proof(rule Max_mono)
- from seq show "f ` A \<subseteq> f ` B" by auto
-next
- from np show "f ` A \<noteq> {}" by auto
-next
- from fnt and seq show "finite (f ` B)" by auto
-qed
-
-lemma eq_RAG:
- "RAG (wq s) = RAG s"
- by (unfold cs_RAG_def s_RAG_def, auto)
-
-lemma waiting_holding:
- assumes "waiting (s::state) th cs"
- obtains th' where "holding s th' cs"
-proof -
- from assms[unfolded s_waiting_def, folded wq_def]
- obtain th' where "th' \<in> set (wq s cs)" "th' = hd (wq s cs)"
- by (metis empty_iff hd_in_set list.set(1))
- hence "holding s th' cs"
- by (unfold s_holding_def, fold wq_def, auto)
- from that[OF this] show ?thesis .
-qed
-
-lemma cp_eq_cpreced: "cp s th = cpreced (wq s) s th"
-unfolding cp_def wq_def
-apply(induct s rule: schs.induct)
-apply(simp add: Let_def cpreced_initial)
-apply(simp add: Let_def)
-apply(simp add: Let_def)
-apply(simp add: Let_def)
-apply(subst (2) schs.simps)
-apply(simp add: Let_def)
-apply(subst (2) schs.simps)
-apply(simp add: Let_def)
-done
-
-lemma cp_alt_def:
- "cp s th =
- Max ((the_preced s) ` {th'. Th th' \<in> (subtree (RAG s) (Th th))})"
-proof -
- have "Max (the_preced s ` ({th} \<union> dependants (wq s) th)) =
- Max (the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th)})"
- (is "Max (_ ` ?L) = Max (_ ` ?R)")
- proof -
- have "?L = ?R"
- by (auto dest:rtranclD simp:cs_dependants_def cs_RAG_def s_RAG_def subtree_def)
- thus ?thesis by simp
- qed
- thus ?thesis by (unfold cp_eq_cpreced cpreced_def, fold the_preced_def, simp)
-qed
-
-(* ccc *)
-
-
-locale valid_trace =
- fixes s
- assumes vt : "vt s"
-
-locale valid_trace_e = valid_trace +
- fixes e
- assumes vt_e: "vt (e#s)"
-begin
-
-lemma pip_e: "PIP s e"
- using vt_e by (cases, simp)
-
-end
-
-locale valid_trace_create = valid_trace_e +
- fixes th prio
- assumes is_create: "e = Create th prio"
-
-locale valid_trace_exit = valid_trace_e +
- fixes th
- assumes is_exit: "e = Exit th"
-
-locale valid_trace_p = valid_trace_e +
- fixes th cs
- assumes is_p: "e = P th cs"
-
-locale valid_trace_v = valid_trace_e +
- fixes th cs
- assumes is_v: "e = V th cs"
-begin
- definition "rest = tl (wq s cs)"
- definition "wq' = (SOME q. distinct q \<and> set q = set rest)"
-end
-
-locale valid_trace_v_n = valid_trace_v +
- assumes rest_nnl: "rest \<noteq> []"
-
-locale valid_trace_v_e = valid_trace_v +
- assumes rest_nil: "rest = []"
-
-locale valid_trace_set= valid_trace_e +
- fixes th prio
- assumes is_set: "e = Set th prio"
-
-context valid_trace
-begin
-
-lemma ind [consumes 0, case_names Nil Cons, induct type]:
- assumes "PP []"
- and "(\<And>s e. valid_trace_e s e \<Longrightarrow>
- PP s \<Longrightarrow> PIP s e \<Longrightarrow> PP (e # s))"
- shows "PP s"
-proof(induct rule:vt.induct[OF vt, case_names Init Step])
- case Init
- from assms(1) show ?case .
-next
- case (Step s e)
- show ?case
- proof(rule assms(2))
- show "valid_trace_e s e" using Step by (unfold_locales, auto)
- next
- show "PP s" using Step by simp
- next
- show "PIP s e" using Step by simp
- qed
-qed
-
-lemma vt_moment: "\<And> t. vt (moment t s)"
-proof(induct rule:ind)
- case Nil
- thus ?case by (simp add:vt_nil)
-next
- case (Cons s e t)
- show ?case
- proof(cases "t \<ge> length (e#s)")
- case True
- from True have "moment t (e#s) = e#s" by simp
- thus ?thesis using Cons
- by (simp add:valid_trace_def valid_trace_e_def, auto)
- next
- case False
- from Cons have "vt (moment t s)" by simp
- moreover have "moment t (e#s) = moment t s"
- proof -
- from False have "t \<le> length s" by simp
- from moment_app [OF this, of "[e]"]
- show ?thesis by simp
- qed
- ultimately show ?thesis by simp
- qed
-qed
-
-lemma finite_threads:
- shows "finite (threads s)"
-using vt by (induct) (auto elim: step.cases)
-
-end
-
-lemma RAG_target_th: "(Th th, x) \<in> RAG (s::state) \<Longrightarrow> \<exists> cs. x = Cs cs"
- by (unfold s_RAG_def, auto)
-
-locale valid_moment = valid_trace +
- fixes i :: nat
-
-sublocale valid_moment < vat_moment: valid_trace "(moment i s)"
- by (unfold_locales, insert vt_moment, auto)
-
-lemma waiting_eq: "waiting s th cs = waiting (wq s) th cs"
- by (unfold s_waiting_def cs_waiting_def wq_def, auto)
-
-lemma holding_eq: "holding (s::state) th cs = holding (wq s) th cs"
- by (unfold s_holding_def wq_def cs_holding_def, simp)
-
-lemma runing_ready:
- shows "runing s \<subseteq> readys s"
- unfolding runing_def readys_def
- by auto
-
-lemma readys_threads:
- shows "readys s \<subseteq> threads s"
- unfolding readys_def
- by auto
-
-lemma wq_v_neq [simp]:
- "cs \<noteq> cs' \<Longrightarrow> wq (V thread cs#s) cs' = wq s cs'"
- by (auto simp:wq_def Let_def cp_def split:list.splits)
-
-lemma runing_head:
- assumes "th \<in> runing s"
- and "th \<in> set (wq_fun (schs s) cs)"
- shows "th = hd (wq_fun (schs s) cs)"
- using assms
- by (simp add:runing_def readys_def s_waiting_def wq_def)
-
-context valid_trace
-begin
-
-lemma runing_wqE:
- assumes "th \<in> runing s"
- and "th \<in> set (wq s cs)"
- obtains rest where "wq s cs = th#rest"
-proof -
- from assms(2) obtain th' rest where eq_wq: "wq s cs = th'#rest"
- by (meson list.set_cases)
- have "th' = th"
- proof(rule ccontr)
- assume "th' \<noteq> th"
- hence "th \<noteq> hd (wq s cs)" using eq_wq by auto
- with assms(2)
- have "waiting s th cs"
- by (unfold s_waiting_def, fold wq_def, auto)
- with assms show False
- by (unfold runing_def readys_def, auto)
- qed
- with eq_wq that show ?thesis by metis
-qed
-
-end
-
-context valid_trace_create
-begin
-
-lemma wq_neq_simp [simp]:
- shows "wq (e#s) cs' = wq s cs'"
- using assms unfolding is_create wq_def
- by (auto simp:Let_def)
-
-lemma wq_distinct_kept:
- assumes "distinct (wq s cs')"
- shows "distinct (wq (e#s) cs')"
- using assms by simp
-end
-
-context valid_trace_exit
-begin
-
-lemma wq_neq_simp [simp]:
- shows "wq (e#s) cs' = wq s cs'"
- using assms unfolding is_exit wq_def
- by (auto simp:Let_def)
-
-lemma wq_distinct_kept:
- assumes "distinct (wq s cs')"
- shows "distinct (wq (e#s) cs')"
- using assms by simp
-end
-
-context valid_trace_p
-begin
-
-lemma wq_neq_simp [simp]:
- assumes "cs' \<noteq> cs"
- shows "wq (e#s) cs' = wq s cs'"
- using assms unfolding is_p wq_def
- by (auto simp:Let_def)
-
-lemma runing_th_s:
- shows "th \<in> runing s"
-proof -
- from pip_e[unfolded is_p]
- show ?thesis by (cases, simp)
-qed
-
-lemma ready_th_s: "th \<in> readys s"
- using runing_th_s
- by (unfold runing_def, auto)
-
-lemma live_th_s: "th \<in> threads s"
- using readys_threads ready_th_s by auto
-
-lemma live_th_es: "th \<in> threads (e#s)"
- using live_th_s
- by (unfold is_p, simp)
-
-lemma th_not_waiting:
- "\<not> waiting s th c"
-proof -
- have "th \<in> readys s"
- using runing_ready runing_th_s by blast
- thus ?thesis
- by (unfold readys_def, auto)
-qed
-
-lemma waiting_neq_th:
- assumes "waiting s t c"
- shows "t \<noteq> th"
- using assms using th_not_waiting by blast
-
-lemma th_not_in_wq:
- shows "th \<notin> set (wq s cs)"
-proof
- assume otherwise: "th \<in> set (wq s cs)"
- from runing_wqE[OF runing_th_s this]
- obtain rest where eq_wq: "wq s cs = th#rest" by blast
- with otherwise
- have "holding s th cs"
- by (unfold s_holding_def, fold wq_def, simp)
- hence cs_th_RAG: "(Cs cs, Th th) \<in> RAG s"
- by (unfold s_RAG_def, fold holding_eq, auto)
- from pip_e[unfolded is_p]
- show False
- proof(cases)
- case (thread_P)
- with cs_th_RAG show ?thesis by auto
- qed
-qed
-
-lemma wq_es_cs:
- "wq (e#s) cs = wq s cs @ [th]"
- by (unfold is_p wq_def, auto simp:Let_def)
-
-lemma wq_distinct_kept:
- assumes "distinct (wq s cs')"
- shows "distinct (wq (e#s) cs')"
-proof(cases "cs' = cs")
- case True
- show ?thesis using True assms th_not_in_wq
- by (unfold True wq_es_cs, auto)
-qed (insert assms, simp)
-
-end
-
-context valid_trace_v
-begin
-
-lemma wq_neq_simp [simp]:
- assumes "cs' \<noteq> cs"
- shows "wq (e#s) cs' = wq s cs'"
- using assms unfolding is_v wq_def
- by (auto simp:Let_def)
-
-lemma runing_th_s:
- shows "th \<in> runing s"
-proof -
- from pip_e[unfolded is_v]
- show ?thesis by (cases, simp)
-qed
-
-lemma th_not_waiting:
- "\<not> waiting s th c"
-proof -
- have "th \<in> readys s"
- using runing_ready runing_th_s by blast
- thus ?thesis
- by (unfold readys_def, auto)
-qed
-
-lemma waiting_neq_th:
- assumes "waiting s t c"
- shows "t \<noteq> th"
- using assms using th_not_waiting by blast
-
-lemma wq_s_cs:
- "wq s cs = th#rest"
-proof -
- from pip_e[unfolded is_v]
- show ?thesis
- proof(cases)
- case (thread_V)
- from this(2) show ?thesis
- by (unfold rest_def s_holding_def, fold wq_def,
- metis empty_iff list.collapse list.set(1))
- qed
-qed
-
-lemma wq_es_cs:
- "wq (e#s) cs = wq'"
- using wq_s_cs[unfolded wq_def]
- by (auto simp:Let_def wq_def rest_def wq'_def is_v, simp)
-
-lemma wq_distinct_kept:
- assumes "distinct (wq s cs')"
- shows "distinct (wq (e#s) cs')"
-proof(cases "cs' = cs")
- case True
- show ?thesis
- proof(unfold True wq_es_cs wq'_def, rule someI2)
- show "distinct rest \<and> set rest = set rest"
- using assms[unfolded True wq_s_cs] by auto
- qed simp
-qed (insert assms, simp)
-
-end
-
-context valid_trace_set
-begin
-
-lemma wq_neq_simp [simp]:
- shows "wq (e#s) cs' = wq s cs'"
- using assms unfolding is_set wq_def
- by (auto simp:Let_def)
-
-lemma wq_distinct_kept:
- assumes "distinct (wq s cs')"
- shows "distinct (wq (e#s) cs')"
- using assms by simp
-end
-
-context valid_trace
-begin
-
-lemma actor_inv:
- assumes "PIP s e"
- and "\<not> isCreate e"
- shows "actor e \<in> runing s"
- using assms
- by (induct, auto)
-
-lemma isP_E:
- assumes "isP e"
- obtains cs where "e = P (actor e) cs"
- using assms by (cases e, auto)
-
-lemma isV_E:
- assumes "isV e"
- obtains cs where "e = V (actor e) cs"
- using assms by (cases e, auto)
-
-lemma wq_distinct: "distinct (wq s cs)"
-proof(induct rule:ind)
- case (Cons s e)
- interpret vt_e: valid_trace_e s e using Cons by simp
- show ?case
- proof(cases e)
- case (Create th prio)
- interpret vt_create: valid_trace_create s e th prio
- using Create by (unfold_locales, simp)
- show ?thesis using Cons by (simp add: vt_create.wq_distinct_kept)
- next
- case (Exit th)
- interpret vt_exit: valid_trace_exit s e th
- using Exit by (unfold_locales, simp)
- show ?thesis using Cons by (simp add: vt_exit.wq_distinct_kept)
- next
- case (P th cs)
- interpret vt_p: valid_trace_p s e th cs using P by (unfold_locales, simp)
- show ?thesis using Cons by (simp add: vt_p.wq_distinct_kept)
- next
- case (V th cs)
- interpret vt_v: valid_trace_v s e th cs using V by (unfold_locales, simp)
- show ?thesis using Cons by (simp add: vt_v.wq_distinct_kept)
- next
- case (Set th prio)
- interpret vt_set: valid_trace_set s e th prio
- using Set by (unfold_locales, simp)
- show ?thesis using Cons by (simp add: vt_set.wq_distinct_kept)
- qed
-qed (unfold wq_def Let_def, simp)
-
-end
-
-context valid_trace_e
-begin
-
-text {*
- The following lemma shows that only the @{text "P"}
- operation can add new thread into waiting queues.
- Such kind of lemmas are very obvious, but need to be checked formally.
- This is a kind of confirmation that our modelling is correct.
-*}
-
-lemma wq_in_inv:
- assumes s_ni: "thread \<notin> set (wq s cs)"
- and s_i: "thread \<in> set (wq (e#s) cs)"
- shows "e = P thread cs"
-proof(cases e)
- -- {* This is the only non-trivial case: *}
- case (V th cs1)
- have False
- proof(cases "cs1 = cs")
- case True
- show ?thesis
- proof(cases "(wq s cs1)")
- case (Cons w_hd w_tl)
- have "set (wq (e#s) cs) \<subseteq> set (wq s cs)"
- proof -
- have "(wq (e#s) cs) = (SOME q. distinct q \<and> set q = set w_tl)"
- using Cons V by (auto simp:wq_def Let_def True split:if_splits)
- moreover have "set ... \<subseteq> set (wq s cs)"
- proof(rule someI2)
- show "distinct w_tl \<and> set w_tl = set w_tl"
- by (metis distinct.simps(2) local.Cons wq_distinct)
- qed (insert Cons True, auto)
- ultimately show ?thesis by simp
- qed
- with assms show ?thesis by auto
- qed (insert assms V True, auto simp:wq_def Let_def split:if_splits)
- qed (insert assms V, auto simp:wq_def Let_def split:if_splits)
- thus ?thesis by auto
-qed (insert assms, auto simp:wq_def Let_def split:if_splits)
-
-lemma wq_out_inv:
- assumes s_in: "thread \<in> set (wq s cs)"
- and s_hd: "thread = hd (wq s cs)"
- and s_i: "thread \<noteq> hd (wq (e#s) cs)"
- shows "e = V thread cs"
-proof(cases e)
--- {* There are only two non-trivial cases: *}
- case (V th cs1)
- show ?thesis
- proof(cases "cs1 = cs")
- case True
- have "PIP s (V th cs)" using pip_e[unfolded V[unfolded True]] .
- thus ?thesis
- proof(cases)
- case (thread_V)
- moreover have "th = thread" using thread_V(2) s_hd
- by (unfold s_holding_def wq_def, simp)
- ultimately show ?thesis using V True by simp
- qed
- qed (insert assms V, auto simp:wq_def Let_def split:if_splits)
-next
- case (P th cs1)
- show ?thesis
- proof(cases "cs1 = cs")
- case True
- with P have "wq (e#s) cs = wq_fun (schs s) cs @ [th]"
- by (auto simp:wq_def Let_def split:if_splits)
- with s_i s_hd s_in have False
- by (metis empty_iff hd_append2 list.set(1) wq_def)
- thus ?thesis by simp
- qed (insert assms P, auto simp:wq_def Let_def split:if_splits)
-qed (insert assms, auto simp:wq_def Let_def split:if_splits)
-
-end
-
-
-context valid_trace
-begin
-
-
-text {* (* ddd *)
- The nature of the work is like this: since it starts from a very simple and basic
- model, even intuitively very `basic` and `obvious` properties need to derived from scratch.
- For instance, the fact
- that one thread can not be blocked by two critical resources at the same time
- is obvious, because only running threads can make new requests, if one is waiting for
- a critical resource and get blocked, it can not make another resource request and get
- blocked the second time (because it is not running).
-
- To derive this fact, one needs to prove by contraction and
- reason about time (or @{text "moement"}). The reasoning is based on a generic theorem
- named @{text "p_split"}, which is about status changing along the time axis. It says if
- a condition @{text "Q"} is @{text "True"} at a state @{text "s"},
- but it was @{text "False"} at the very beginning, then there must exits a moment @{text "t"}
- in the history of @{text "s"} (notice that @{text "s"} itself is essentially the history
- of events leading to it), such that @{text "Q"} switched
- from being @{text "False"} to @{text "True"} and kept being @{text "True"}
- till the last moment of @{text "s"}.
-
- Suppose a thread @{text "th"} is blocked
- on @{text "cs1"} and @{text "cs2"} in some state @{text "s"},
- since no thread is blocked at the very beginning, by applying
- @{text "p_split"} to these two blocking facts, there exist
- two moments @{text "t1"} and @{text "t2"} in @{text "s"}, such that
- @{text "th"} got blocked on @{text "cs1"} and @{text "cs2"}
- and kept on blocked on them respectively ever since.
-
- Without lost of generality, we assume @{text "t1"} is earlier than @{text "t2"}.
- However, since @{text "th"} was blocked ever since memonent @{text "t1"}, so it was still
- in blocked state at moment @{text "t2"} and could not
- make any request and get blocked the second time: Contradiction.
-*}
-
-lemma waiting_unique_pre: (* ddd *)
- assumes h11: "thread \<in> set (wq s cs1)"
- and h12: "thread \<noteq> hd (wq s cs1)"
- assumes h21: "thread \<in> set (wq s cs2)"
- and h22: "thread \<noteq> hd (wq s cs2)"
- and neq12: "cs1 \<noteq> cs2"
- shows "False"
-proof -
- let "?Q" = "\<lambda> cs s. thread \<in> set (wq s cs) \<and> thread \<noteq> hd (wq s cs)"
- from h11 and h12 have q1: "?Q cs1 s" by simp
- from h21 and h22 have q2: "?Q cs2 s" by simp
- have nq1: "\<not> ?Q cs1 []" by (simp add:wq_def)
- have nq2: "\<not> ?Q cs2 []" by (simp add:wq_def)
- from p_split [of "?Q cs1", OF q1 nq1]
- obtain t1 where lt1: "t1 < length s"
- and np1: "\<not> ?Q cs1 (moment t1 s)"
- and nn1: "(\<forall>i'>t1. ?Q cs1 (moment i' s))" by auto
- from p_split [of "?Q cs2", OF q2 nq2]
- obtain t2 where lt2: "t2 < length s"
- and np2: "\<not> ?Q cs2 (moment t2 s)"
- and nn2: "(\<forall>i'>t2. ?Q cs2 (moment i' s))" by auto
- { fix s cs
- assume q: "?Q cs s"
- have "thread \<notin> runing s"
- proof
- assume "thread \<in> runing s"
- hence " \<forall>cs. \<not> (thread \<in> set (wq_fun (schs s) cs) \<and>
- thread \<noteq> hd (wq_fun (schs s) cs))"
- by (unfold runing_def s_waiting_def readys_def, auto)
- from this[rule_format, of cs] q
- show False by (simp add: wq_def)
- qed
- } note q_not_runing = this
- { fix t1 t2 cs1 cs2
- assume lt1: "t1 < length s"
- and np1: "\<not> ?Q cs1 (moment t1 s)"
- and nn1: "(\<forall>i'>t1. ?Q cs1 (moment i' s))"
- and lt2: "t2 < length s"
- and np2: "\<not> ?Q cs2 (moment t2 s)"
- and nn2: "(\<forall>i'>t2. ?Q cs2 (moment i' s))"
- and lt12: "t1 < t2"
- let ?t3 = "Suc t2"
- from lt2 have le_t3: "?t3 \<le> length s" by auto
- from moment_plus [OF this]
- obtain e where eq_m: "moment ?t3 s = e#moment t2 s" by auto
- have "t2 < ?t3" by simp
- from nn2 [rule_format, OF this] and eq_m
- have h1: "thread \<in> set (wq (e#moment t2 s) cs2)" and
- h2: "thread \<noteq> hd (wq (e#moment t2 s) cs2)" by auto
- have "vt (e#moment t2 s)"
- proof -
- from vt_moment
- have "vt (moment ?t3 s)" .
- with eq_m show ?thesis by simp
- qed
- then interpret vt_e: valid_trace_e "moment t2 s" "e"
- by (unfold_locales, auto, cases, simp)
- have ?thesis
- proof -
- have "thread \<in> runing (moment t2 s)"
- proof(cases "thread \<in> set (wq (moment t2 s) cs2)")
- case True
- have "e = V thread cs2"
- proof -
- have eq_th: "thread = hd (wq (moment t2 s) cs2)"
- using True and np2 by auto
- from vt_e.wq_out_inv[OF True this h2]
- show ?thesis .
- qed
- thus ?thesis using vt_e.actor_inv[OF vt_e.pip_e] by auto
- next
- case False
- have "e = P thread cs2" using vt_e.wq_in_inv[OF False h1] .
- with vt_e.actor_inv[OF vt_e.pip_e]
- show ?thesis by auto
- qed
- moreover have "thread \<notin> runing (moment t2 s)"
- by (rule q_not_runing[OF nn1[rule_format, OF lt12]])
- ultimately show ?thesis by simp
- qed
- } note lt_case = this
- show ?thesis
- proof -
- { assume "t1 < t2"
- from lt_case[OF lt1 np1 nn1 lt2 np2 nn2 this]
- have ?thesis .
- } moreover {
- assume "t2 < t1"
- from lt_case[OF lt2 np2 nn2 lt1 np1 nn1 this]
- have ?thesis .
- } moreover {
- assume eq_12: "t1 = t2"
- let ?t3 = "Suc t2"
- from lt2 have le_t3: "?t3 \<le> length s" by auto
- from moment_plus [OF this]
- obtain e where eq_m: "moment ?t3 s = e#moment t2 s" by auto
- have lt_2: "t2 < ?t3" by simp
- from nn2 [rule_format, OF this] and eq_m
- have h1: "thread \<in> set (wq (e#moment t2 s) cs2)" and
- h2: "thread \<noteq> hd (wq (e#moment t2 s) cs2)" by auto
- from nn1[rule_format, OF lt_2[folded eq_12]] eq_m[folded eq_12]
- have g1: "thread \<in> set (wq (e#moment t1 s) cs1)" and
- g2: "thread \<noteq> hd (wq (e#moment t1 s) cs1)" by auto
- have "vt (e#moment t2 s)"
- proof -
- from vt_moment
- have "vt (moment ?t3 s)" .
- with eq_m show ?thesis by simp
- qed
- then interpret vt_e: valid_trace_e "moment t2 s" "e"
- by (unfold_locales, auto, cases, simp)
- have "e = V thread cs2 \<or> e = P thread cs2"
- proof(cases "thread \<in> set (wq (moment t2 s) cs2)")
- case True
- have "e = V thread cs2"
- proof -
- have eq_th: "thread = hd (wq (moment t2 s) cs2)"
- using True and np2 by auto
- from vt_e.wq_out_inv[OF True this h2]
- show ?thesis .
- qed
- thus ?thesis by auto
- next
- case False
- have "e = P thread cs2" using vt_e.wq_in_inv[OF False h1] .
- thus ?thesis by auto
- qed
- moreover have "e = V thread cs1 \<or> e = P thread cs1"
- proof(cases "thread \<in> set (wq (moment t1 s) cs1)")
- case True
- have eq_th: "thread = hd (wq (moment t1 s) cs1)"
- using True and np1 by auto
- from vt_e.wq_out_inv[folded eq_12, OF True this g2]
- have "e = V thread cs1" .
- thus ?thesis by auto
- next
- case False
- have "e = P thread cs1" using vt_e.wq_in_inv[folded eq_12, OF False g1] .
- thus ?thesis by auto
- qed
- ultimately have ?thesis using neq12 by auto
- } ultimately show ?thesis using nat_neq_iff by blast
- qed
-qed
-
-text {*
- This lemma is a simple corrolary of @{text "waiting_unique_pre"}.
-*}
-
-lemma waiting_unique:
- assumes "waiting s th cs1"
- and "waiting s th cs2"
- shows "cs1 = cs2"
- using waiting_unique_pre assms
- unfolding wq_def s_waiting_def
- by auto
-
-end
-
-(* not used *)
-text {*
- Every thread can only be blocked on one critical resource,
- symmetrically, every critical resource can only be held by one thread.
- This fact is much more easier according to our definition.
-*}
-lemma held_unique:
- assumes "holding (s::event list) th1 cs"
- and "holding s th2 cs"
- shows "th1 = th2"
- by (insert assms, unfold s_holding_def, auto)
-
-lemma last_set_lt: "th \<in> threads s \<Longrightarrow> last_set th s < length s"
- apply (induct s, auto)
- by (case_tac a, auto split:if_splits)
-
-lemma last_set_unique:
- "\<lbrakk>last_set th1 s = last_set th2 s; th1 \<in> threads s; th2 \<in> threads s\<rbrakk>
- \<Longrightarrow> th1 = th2"
- apply (induct s, auto)
- by (case_tac a, auto split:if_splits dest:last_set_lt)
-
-lemma preced_unique :
- assumes pcd_eq: "preced th1 s = preced th2 s"
- and th_in1: "th1 \<in> threads s"
- and th_in2: " th2 \<in> threads s"
- shows "th1 = th2"
-proof -
- from pcd_eq have "last_set th1 s = last_set th2 s" by (simp add:preced_def)
- from last_set_unique [OF this th_in1 th_in2]
- show ?thesis .
-qed
-
-lemma preced_linorder:
- assumes neq_12: "th1 \<noteq> th2"
- and th_in1: "th1 \<in> threads s"
- and th_in2: " th2 \<in> threads s"
- shows "preced th1 s < preced th2 s \<or> preced th1 s > preced th2 s"
-proof -
- from preced_unique [OF _ th_in1 th_in2] and neq_12
- have "preced th1 s \<noteq> preced th2 s" by auto
- thus ?thesis by auto
-qed
-
-text {*
- The following three lemmas show that @{text "RAG"} does not change
- by the happening of @{text "Set"}, @{text "Create"} and @{text "Exit"}
- events, respectively.
-*}
-
-lemma RAG_set_unchanged: "(RAG (Set th prio # s)) = RAG s"
-apply (unfold s_RAG_def s_waiting_def wq_def)
-by (simp add:Let_def)
-
-lemma (in valid_trace_set)
- RAG_unchanged: "(RAG (e # s)) = RAG s"
- by (unfold is_set RAG_set_unchanged, simp)
-
-lemma RAG_create_unchanged: "(RAG (Create th prio # s)) = RAG s"
-apply (unfold s_RAG_def s_waiting_def wq_def)
-by (simp add:Let_def)
-
-lemma (in valid_trace_create)
- RAG_unchanged: "(RAG (e # s)) = RAG s"
- by (unfold is_create RAG_create_unchanged, simp)
-
-lemma RAG_exit_unchanged: "(RAG (Exit th # s)) = RAG s"
-apply (unfold s_RAG_def s_waiting_def wq_def)
-by (simp add:Let_def)
-
-lemma (in valid_trace_exit)
- RAG_unchanged: "(RAG (e # s)) = RAG s"
- by (unfold is_exit RAG_exit_unchanged, simp)
-
-context valid_trace_v
-begin
-
-lemma distinct_rest: "distinct rest"
- by (simp add: distinct_tl rest_def wq_distinct)
-
-lemma holding_cs_eq_th:
- assumes "holding s t cs"
- shows "t = th"
-proof -
- from pip_e[unfolded is_v]
- show ?thesis
- proof(cases)
- case (thread_V)
- from held_unique[OF this(2) assms]
- show ?thesis by simp
- qed
-qed
-
-lemma distinct_wq': "distinct wq'"
- by (metis (mono_tags, lifting) distinct_rest some_eq_ex wq'_def)
-
-lemma set_wq': "set wq' = set rest"
- by (metis (mono_tags, lifting) distinct_rest rest_def
- some_eq_ex wq'_def)
-
-lemma th'_in_inv:
- assumes "th' \<in> set wq'"
- shows "th' \<in> set rest"
- using assms set_wq' by simp
-
-lemma neq_t_th:
- assumes "waiting (e#s) t c"
- shows "t \<noteq> th"
-proof
- assume otherwise: "t = th"
- show False
- proof(cases "c = cs")
- case True
- have "t \<in> set wq'"
- using assms[unfolded True s_waiting_def, folded wq_def, unfolded wq_es_cs]
- by simp
- from th'_in_inv[OF this] have "t \<in> set rest" .
- with wq_s_cs[folded otherwise] wq_distinct[of cs]
- show ?thesis by simp
- next
- case False
- have "wq (e#s) c = wq s c" using False
- by (unfold is_v, simp)
- hence "waiting s t c" using assms
- by (simp add: cs_waiting_def waiting_eq)
- hence "t \<notin> readys s" by (unfold readys_def, auto)
- hence "t \<notin> runing s" using runing_ready by auto
- with runing_th_s[folded otherwise] show ?thesis by auto
- qed
-qed
-
-lemma waiting_esI1:
- assumes "waiting s t c"
- and "c \<noteq> cs"
- shows "waiting (e#s) t c"
-proof -
- have "wq (e#s) c = wq s c"
- using assms(2) is_v by auto
- with assms(1) show ?thesis
- using cs_waiting_def waiting_eq by auto
-qed
-
-lemma holding_esI2:
- assumes "c \<noteq> cs"
- and "holding s t c"
- shows "holding (e#s) t c"
-proof -
- from assms(1) have "wq (e#s) c = wq s c" using is_v by auto
- from assms(2)[unfolded s_holding_def, folded wq_def,
- folded this, unfolded wq_def, folded s_holding_def]
- show ?thesis .
-qed
-
-lemma holding_esI1:
- assumes "holding s t c"
- and "t \<noteq> th"
- shows "holding (e#s) t c"
-proof -
- have "c \<noteq> cs" using assms using holding_cs_eq_th by blast
- from holding_esI2[OF this assms(1)]
- show ?thesis .
-qed
-
-end
-
-context valid_trace_v_n
-begin
-
-lemma neq_wq': "wq' \<noteq> []"
-proof (unfold wq'_def, rule someI2)
- show "distinct rest \<and> set rest = set rest"
- by (simp add: distinct_rest)
-next
- fix x
- assume " distinct x \<and> set x = set rest"
- thus "x \<noteq> []" using rest_nnl by auto
-qed
-
-definition "taker = hd wq'"
-
-definition "rest' = tl wq'"
-
-lemma eq_wq': "wq' = taker # rest'"
- by (simp add: neq_wq' rest'_def taker_def)
-
-lemma next_th_taker:
- shows "next_th s th cs taker"
- using rest_nnl taker_def wq'_def wq_s_cs
- by (auto simp:next_th_def)
-
-lemma taker_unique:
- assumes "next_th s th cs taker'"
- shows "taker' = taker"
-proof -
- from assms
- obtain rest' where
- h: "wq s cs = th # rest'"
- "taker' = hd (SOME q. distinct q \<and> set q = set rest')"
- by (unfold next_th_def, auto)
- with wq_s_cs have "rest' = rest" by auto
- thus ?thesis using h(2) taker_def wq'_def by auto
-qed
-
-lemma waiting_set_eq:
- "{(Th th', Cs cs) |th'. next_th s th cs th'} = {(Th taker, Cs cs)}"
- by (smt all_not_in_conv bot.extremum insertI1 insert_subset
- mem_Collect_eq next_th_taker subsetI subset_antisym taker_def taker_unique)
-
-lemma holding_set_eq:
- "{(Cs cs, Th th') |th'. next_th s th cs th'} = {(Cs cs, Th taker)}"
- using next_th_taker taker_def waiting_set_eq
- by fastforce
-
-lemma holding_taker:
- shows "holding (e#s) taker cs"
- by (unfold s_holding_def, fold wq_def, unfold wq_es_cs,
- auto simp:neq_wq' taker_def)
-
-lemma waiting_esI2:
- assumes "waiting s t cs"
- and "t \<noteq> taker"
- shows "waiting (e#s) t cs"
-proof -
- have "t \<in> set wq'"
- proof(unfold wq'_def, rule someI2)
- show "distinct rest \<and> set rest = set rest"
- by (simp add: distinct_rest)
- next
- fix x
- assume "distinct x \<and> set x = set rest"
- moreover have "t \<in> set rest"
- using assms(1) cs_waiting_def waiting_eq wq_s_cs by auto
- ultimately show "t \<in> set x" by simp
- qed
- moreover have "t \<noteq> hd wq'"
- using assms(2) taker_def by auto
- ultimately show ?thesis
- by (unfold s_waiting_def, fold wq_def, unfold wq_es_cs, simp)
-qed
-
-lemma waiting_esE:
- assumes "waiting (e#s) t c"
- obtains "c \<noteq> cs" "waiting s t c"
- | "c = cs" "t \<noteq> taker" "waiting s t cs" "t \<in> set rest'"
-proof(cases "c = cs")
- case False
- hence "wq (e#s) c = wq s c" using is_v by auto
- with assms have "waiting s t c" using cs_waiting_def waiting_eq by auto
- from that(1)[OF False this] show ?thesis .
-next
- case True
- from assms[unfolded s_waiting_def True, folded wq_def, unfolded wq_es_cs]
- have "t \<noteq> hd wq'" "t \<in> set wq'" by auto
- hence "t \<noteq> taker" by (simp add: taker_def)
- moreover hence "t \<noteq> th" using assms neq_t_th by blast
- moreover have "t \<in> set rest" by (simp add: `t \<in> set wq'` th'_in_inv)
- ultimately have "waiting s t cs"
- by (metis cs_waiting_def list.distinct(2) list.sel(1)
- list.set_sel(2) rest_def waiting_eq wq_s_cs)
- show ?thesis using that(2)
- using True `t \<in> set wq'` `t \<noteq> taker` `waiting s t cs` eq_wq' by auto
-qed
-
-lemma holding_esI1:
- assumes "c = cs"
- and "t = taker"
- shows "holding (e#s) t c"
- by (unfold assms, simp add: holding_taker)
-
-lemma holding_esE:
- assumes "holding (e#s) t c"
- obtains "c = cs" "t = taker"
- | "c \<noteq> cs" "holding s t c"
-proof(cases "c = cs")
- case True
- from assms[unfolded True, unfolded s_holding_def,
- folded wq_def, unfolded wq_es_cs]
- have "t = taker" by (simp add: taker_def)
- from that(1)[OF True this] show ?thesis .
-next
- case False
- hence "wq (e#s) c = wq s c" using is_v by auto
- from assms[unfolded s_holding_def, folded wq_def,
- unfolded this, unfolded wq_def, folded s_holding_def]
- have "holding s t c" .
- from that(2)[OF False this] show ?thesis .
-qed
-
-end
-
-
-context valid_trace_v_e
-begin
-
-lemma nil_wq': "wq' = []"
-proof (unfold wq'_def, rule someI2)
- show "distinct rest \<and> set rest = set rest"
- by (simp add: distinct_rest)
-next
- fix x
- assume " distinct x \<and> set x = set rest"
- thus "x = []" using rest_nil by auto
-qed
-
-lemma no_taker:
- assumes "next_th s th cs taker"
- shows "False"
-proof -
- from assms[unfolded next_th_def]
- obtain rest' where "wq s cs = th # rest'" "rest' \<noteq> []"
- by auto
- thus ?thesis using rest_def rest_nil by auto
-qed
-
-lemma waiting_set_eq:
- "{(Th th', Cs cs) |th'. next_th s th cs th'} = {}"
- using no_taker by auto
-
-lemma holding_set_eq:
- "{(Cs cs, Th th') |th'. next_th s th cs th'} = {}"
- using no_taker by auto
-
-lemma no_holding:
- assumes "holding (e#s) taker cs"
- shows False
-proof -
- from wq_es_cs[unfolded nil_wq']
- have " wq (e # s) cs = []" .
- from assms[unfolded s_holding_def, folded wq_def, unfolded this]
- show ?thesis by auto
-qed
-
-lemma no_waiting:
- assumes "waiting (e#s) t cs"
- shows False
-proof -
- from wq_es_cs[unfolded nil_wq']
- have " wq (e # s) cs = []" .
- from assms[unfolded s_waiting_def, folded wq_def, unfolded this]
- show ?thesis by auto
-qed
-
-lemma waiting_esI2:
- assumes "waiting s t c"
- shows "waiting (e#s) t c"
-proof -
- have "c \<noteq> cs" using assms
- using cs_waiting_def rest_nil waiting_eq wq_s_cs by auto
- from waiting_esI1[OF assms this]
- show ?thesis .
-qed
-
-lemma waiting_esE:
- assumes "waiting (e#s) t c"
- obtains "c \<noteq> cs" "waiting s t c"
-proof(cases "c = cs")
- case False
- hence "wq (e#s) c = wq s c" using is_v by auto
- with assms have "waiting s t c" using cs_waiting_def waiting_eq by auto
- from that(1)[OF False this] show ?thesis .
-next
- case True
- from no_waiting[OF assms[unfolded True]]
- show ?thesis by auto
-qed
-
-lemma holding_esE:
- assumes "holding (e#s) t c"
- obtains "c \<noteq> cs" "holding s t c"
-proof(cases "c = cs")
- case True
- from no_holding[OF assms[unfolded True]]
- show ?thesis by auto
-next
- case False
- hence "wq (e#s) c = wq s c" using is_v by auto
- from assms[unfolded s_holding_def, folded wq_def,
- unfolded this, unfolded wq_def, folded s_holding_def]
- have "holding s t c" .
- from that[OF False this] show ?thesis .
-qed
-
-end
-
-lemma rel_eqI:
- assumes "\<And> x y. (x,y) \<in> A \<Longrightarrow> (x,y) \<in> B"
- and "\<And> x y. (x,y) \<in> B \<Longrightarrow> (x, y) \<in> A"
- shows "A = B"
- using assms by auto
-
-lemma in_RAG_E:
- assumes "(n1, n2) \<in> RAG (s::state)"
- obtains (waiting) th cs where "n1 = Th th" "n2 = Cs cs" "waiting s th cs"
- | (holding) th cs where "n1 = Cs cs" "n2 = Th th" "holding s th cs"
- using assms[unfolded s_RAG_def, folded waiting_eq holding_eq]
- by auto
-
-context valid_trace_v
-begin
-
-lemma RAG_es:
- "RAG (e # s) =
- RAG s - {(Cs cs, Th th)} -
- {(Th th', Cs cs) |th'. next_th s th cs th'} \<union>
- {(Cs cs, Th th') |th'. next_th s th cs th'}" (is "?L = ?R")
-proof(rule rel_eqI)
- fix n1 n2
- assume "(n1, n2) \<in> ?L"
- thus "(n1, n2) \<in> ?R"
- proof(cases rule:in_RAG_E)
- case (waiting th' cs')
- show ?thesis
- proof(cases "rest = []")
- case False
- interpret h_n: valid_trace_v_n s e th cs
- by (unfold_locales, insert False, simp)
- from waiting(3)
- show ?thesis
- proof(cases rule:h_n.waiting_esE)
- case 1
- with waiting(1,2)
- show ?thesis
- by (unfold h_n.waiting_set_eq h_n.holding_set_eq s_RAG_def,
- fold waiting_eq, auto)
- next
- case 2
- with waiting(1,2)
- show ?thesis
- by (unfold h_n.waiting_set_eq h_n.holding_set_eq s_RAG_def,
- fold waiting_eq, auto)
- qed
- next
- case True
- interpret h_e: valid_trace_v_e s e th cs
- by (unfold_locales, insert True, simp)
- from waiting(3)
- show ?thesis
- proof(cases rule:h_e.waiting_esE)
- case 1
- with waiting(1,2)
- show ?thesis
- by (unfold h_e.waiting_set_eq h_e.holding_set_eq s_RAG_def,
- fold waiting_eq, auto)
- qed
- qed
- next
- case (holding th' cs')
- show ?thesis
- proof(cases "rest = []")
- case False
- interpret h_n: valid_trace_v_n s e th cs
- by (unfold_locales, insert False, simp)
- from holding(3)
- show ?thesis
- proof(cases rule:h_n.holding_esE)
- case 1
- with holding(1,2)
- show ?thesis
- by (unfold h_n.waiting_set_eq h_n.holding_set_eq s_RAG_def,
- fold waiting_eq, auto)
- next
- case 2
- with holding(1,2)
- show ?thesis
- by (unfold h_n.waiting_set_eq h_n.holding_set_eq s_RAG_def,
- fold holding_eq, auto)
- qed
- next
- case True
- interpret h_e: valid_trace_v_e s e th cs
- by (unfold_locales, insert True, simp)
- from holding(3)
- show ?thesis
- proof(cases rule:h_e.holding_esE)
- case 1
- with holding(1,2)
- show ?thesis
- by (unfold h_e.waiting_set_eq h_e.holding_set_eq s_RAG_def,
- fold holding_eq, auto)
- qed
- qed
- qed
-next
- fix n1 n2
- assume h: "(n1, n2) \<in> ?R"
- show "(n1, n2) \<in> ?L"
- proof(cases "rest = []")
- case False
- interpret h_n: valid_trace_v_n s e th cs
- by (unfold_locales, insert False, simp)
- from h[unfolded h_n.waiting_set_eq h_n.holding_set_eq]
- have "((n1, n2) \<in> RAG s \<and> (n1 \<noteq> Cs cs \<or> n2 \<noteq> Th th)
- \<and> (n1 \<noteq> Th h_n.taker \<or> n2 \<noteq> Cs cs)) \<or>
- (n2 = Th h_n.taker \<and> n1 = Cs cs)"
- by auto
- thus ?thesis
- proof
- assume "n2 = Th h_n.taker \<and> n1 = Cs cs"
- with h_n.holding_taker
- show ?thesis
- by (unfold s_RAG_def, fold holding_eq, auto)
- next
- assume h: "(n1, n2) \<in> RAG s \<and>
- (n1 \<noteq> Cs cs \<or> n2 \<noteq> Th th) \<and> (n1 \<noteq> Th h_n.taker \<or> n2 \<noteq> Cs cs)"
- hence "(n1, n2) \<in> RAG s" by simp
- thus ?thesis
- proof(cases rule:in_RAG_E)
- case (waiting th' cs')
- from h and this(1,2)
- have "th' \<noteq> h_n.taker \<or> cs' \<noteq> cs" by auto
- hence "waiting (e#s) th' cs'"
- proof
- assume "cs' \<noteq> cs"
- from waiting_esI1[OF waiting(3) this]
- show ?thesis .
- next
- assume neq_th': "th' \<noteq> h_n.taker"
- show ?thesis
- proof(cases "cs' = cs")
- case False
- from waiting_esI1[OF waiting(3) this]
- show ?thesis .
- next
- case True
- from h_n.waiting_esI2[OF waiting(3)[unfolded True] neq_th', folded True]
- show ?thesis .
- qed
- qed
- thus ?thesis using waiting(1,2)
- by (unfold s_RAG_def, fold waiting_eq, auto)
- next
- case (holding th' cs')
- from h this(1,2)
- have "cs' \<noteq> cs \<or> th' \<noteq> th" by auto
- hence "holding (e#s) th' cs'"
- proof
- assume "cs' \<noteq> cs"
- from holding_esI2[OF this holding(3)]
- show ?thesis .
- next
- assume "th' \<noteq> th"
- from holding_esI1[OF holding(3) this]
- show ?thesis .
- qed
- thus ?thesis using holding(1,2)
- by (unfold s_RAG_def, fold holding_eq, auto)
- qed
- qed
- next
- case True
- interpret h_e: valid_trace_v_e s e th cs
- by (unfold_locales, insert True, simp)
- from h[unfolded h_e.waiting_set_eq h_e.holding_set_eq]
- have h_s: "(n1, n2) \<in> RAG s" "(n1, n2) \<noteq> (Cs cs, Th th)"
- by auto
- from h_s(1)
- show ?thesis
- proof(cases rule:in_RAG_E)
- case (waiting th' cs')
- from h_e.waiting_esI2[OF this(3)]
- show ?thesis using waiting(1,2)
- by (unfold s_RAG_def, fold waiting_eq, auto)
- next
- case (holding th' cs')
- with h_s(2)
- have "cs' \<noteq> cs \<or> th' \<noteq> th" by auto
- thus ?thesis
- proof
- assume neq_cs: "cs' \<noteq> cs"
- from holding_esI2[OF this holding(3)]
- show ?thesis using holding(1,2)
- by (unfold s_RAG_def, fold holding_eq, auto)
- next
- assume "th' \<noteq> th"
- from holding_esI1[OF holding(3) this]
- show ?thesis using holding(1,2)
- by (unfold s_RAG_def, fold holding_eq, auto)
- qed
- qed
- qed
-qed
-
-end
-
-lemma step_RAG_v:
-assumes vt:
- "vt (V th cs#s)"
-shows "
- RAG (V th cs # s) =
- RAG s - {(Cs cs, Th th)} -
- {(Th th', Cs cs) |th'. next_th s th cs th'} \<union>
- {(Cs cs, Th th') |th'. next_th s th cs th'}" (is "?L = ?R")
-proof -
- interpret vt_v: valid_trace_v s "V th cs"
- using assms step_back_vt by (unfold_locales, auto)
- show ?thesis using vt_v.RAG_es .
-qed
-
-lemma (in valid_trace_create)
- th_not_in_threads: "th \<notin> threads s"
-proof -
- from pip_e[unfolded is_create]
- show ?thesis by (cases, simp)
-qed
-
-lemma (in valid_trace_create)
- threads_es [simp]: "threads (e#s) = threads s \<union> {th}"
- by (unfold is_create, simp)
-
-lemma (in valid_trace_exit)
- threads_es [simp]: "threads (e#s) = threads s - {th}"
- by (unfold is_exit, simp)
-
-lemma (in valid_trace_p)
- threads_es [simp]: "threads (e#s) = threads s"
- by (unfold is_p, simp)
-
-lemma (in valid_trace_v)
- threads_es [simp]: "threads (e#s) = threads s"
- by (unfold is_v, simp)
-
-lemma (in valid_trace_v)
- th_not_in_rest[simp]: "th \<notin> set rest"
-proof
- assume otherwise: "th \<in> set rest"
- have "distinct (wq s cs)" by (simp add: wq_distinct)
- from this[unfolded wq_s_cs] and otherwise
- show False by auto
-qed
-
-lemma (in valid_trace_v)
- set_wq_es_cs [simp]: "set (wq (e#s) cs) = set (wq s cs) - {th}"
-proof(unfold wq_es_cs wq'_def, rule someI2)
- show "distinct rest \<and> set rest = set rest"
- by (simp add: distinct_rest)
-next
- fix x
- assume "distinct x \<and> set x = set rest"
- thus "set x = set (wq s cs) - {th}"
- by (unfold wq_s_cs, simp)
-qed
-
-lemma (in valid_trace_exit)
- th_not_in_wq: "th \<notin> set (wq s cs)"
-proof -
- from pip_e[unfolded is_exit]
- show ?thesis
- by (cases, unfold holdents_def s_holding_def, fold wq_def,
- auto elim!:runing_wqE)
-qed
-
-lemma (in valid_trace) wq_threads:
- assumes "th \<in> set (wq s cs)"
- shows "th \<in> threads s"
- using assms
-proof(induct rule:ind)
- case (Nil)
- thus ?case by (auto simp:wq_def)
-next
- case (Cons s e)
- interpret vt_e: valid_trace_e s e using Cons by simp
- show ?case
- proof(cases e)
- case (Create th' prio')
- interpret vt: valid_trace_create s e th' prio'
- using Create by (unfold_locales, simp)
- show ?thesis
- using Cons.hyps(2) Cons.prems by auto
- next
- case (Exit th')
- interpret vt: valid_trace_exit s e th'
- using Exit by (unfold_locales, simp)
- show ?thesis
- using Cons.hyps(2) Cons.prems vt.th_not_in_wq by auto
- next
- case (P th' cs')
- interpret vt: valid_trace_p s e th' cs'
- using P by (unfold_locales, simp)
- show ?thesis
- using Cons.hyps(2) Cons.prems readys_threads
- runing_ready vt.is_p vt.runing_th_s vt_e.wq_in_inv
- by fastforce
- next
- case (V th' cs')
- interpret vt: valid_trace_v s e th' cs'
- using V by (unfold_locales, simp)
- show ?thesis using Cons
- using vt.is_v vt.threads_es vt_e.wq_in_inv by blast
- next
- case (Set th' prio)
- interpret vt: valid_trace_set s e th' prio
- using Set by (unfold_locales, simp)
- show ?thesis using Cons.hyps(2) Cons.prems vt.is_set
- by (auto simp:wq_def Let_def)
- qed
-qed
-
-context valid_trace
-begin
-
-lemma dm_RAG_threads:
- assumes in_dom: "(Th th) \<in> Domain (RAG s)"
- shows "th \<in> threads s"
-proof -
- from in_dom obtain n where "(Th th, n) \<in> RAG s" by auto
- moreover from RAG_target_th[OF this] obtain cs where "n = Cs cs" by auto
- ultimately have "(Th th, Cs cs) \<in> RAG s" by simp
- hence "th \<in> set (wq s cs)"
- by (unfold s_RAG_def, auto simp:cs_waiting_def)
- from wq_threads [OF this] show ?thesis .
-qed
-
-lemma rg_RAG_threads:
- assumes "(Th th) \<in> Range (RAG s)"
- shows "th \<in> threads s"
- using assms
- by (unfold s_RAG_def cs_waiting_def cs_holding_def,
- auto intro:wq_threads)
-
-end
-
-
-
-
-lemma preced_v [simp]: "preced th' (V th cs#s) = preced th' s"
- by (unfold preced_def, simp)
-
-lemma (in valid_trace_v)
- preced_es: "preced th (e#s) = preced th s"
- by (unfold is_v preced_def, simp)
-
-lemma the_preced_v[simp]: "the_preced (V th cs#s) = the_preced s"
-proof
- fix th'
- show "the_preced (V th cs # s) th' = the_preced s th'"
- by (unfold the_preced_def preced_def, simp)
-qed
-
-lemma (in valid_trace_v)
- the_preced_es: "the_preced (e#s) = the_preced s"
- by (unfold is_v preced_def, simp)
-
-context valid_trace_p
-begin
-
-lemma not_holding_s_th_cs: "\<not> holding s th cs"
-proof
- assume otherwise: "holding s th cs"
- from pip_e[unfolded is_p]
- show False
- proof(cases)
- case (thread_P)
- moreover have "(Cs cs, Th th) \<in> RAG s"
- using otherwise cs_holding_def
- holding_eq th_not_in_wq by auto
- ultimately show ?thesis by auto
- qed
-qed
-
-lemma waiting_kept:
- assumes "waiting s th' cs'"
- shows "waiting (e#s) th' cs'"
- using assms
- by (metis cs_waiting_def hd_append2 list.sel(1) list.set_intros(2)
- rotate1.simps(2) self_append_conv2 set_rotate1
- th_not_in_wq waiting_eq wq_es_cs wq_neq_simp)
-
-lemma holding_kept:
- assumes "holding s th' cs'"
- shows "holding (e#s) th' cs'"
-proof(cases "cs' = cs")
- case False
- hence "wq (e#s) cs' = wq s cs'" by simp
- with assms show ?thesis using cs_holding_def holding_eq by auto
-next
- case True
- from assms[unfolded s_holding_def, folded wq_def]
- obtain rest where eq_wq: "wq s cs' = th'#rest"
- by (metis empty_iff list.collapse list.set(1))
- hence "wq (e#s) cs' = th'#(rest@[th])"
- by (simp add: True wq_es_cs)
- thus ?thesis
- by (simp add: cs_holding_def holding_eq)
-qed
-
-end
-
-locale valid_trace_p_h = valid_trace_p +
- assumes we: "wq s cs = []"
-
-locale valid_trace_p_w = valid_trace_p +
- assumes wne: "wq s cs \<noteq> []"
-begin
-
-definition "holder = hd (wq s cs)"
-definition "waiters = tl (wq s cs)"
-definition "waiters' = waiters @ [th]"
-
-lemma wq_s_cs: "wq s cs = holder#waiters"
- by (simp add: holder_def waiters_def wne)
-
-lemma wq_es_cs': "wq (e#s) cs = holder#waiters@[th]"
- by (simp add: wq_es_cs wq_s_cs)
-
-lemma waiting_es_th_cs: "waiting (e#s) th cs"
- using cs_waiting_def th_not_in_wq waiting_eq wq_es_cs' wq_s_cs by auto
-
-lemma RAG_edge: "(Th th, Cs cs) \<in> RAG (e#s)"
- by (unfold s_RAG_def, fold waiting_eq, insert waiting_es_th_cs, auto)
-
-lemma holding_esE:
- assumes "holding (e#s) th' cs'"
- obtains "holding s th' cs'"
- using assms
-proof(cases "cs' = cs")
- case False
- hence "wq (e#s) cs' = wq s cs'" by simp
- with assms show ?thesis
- using cs_holding_def holding_eq that by auto
-next
- case True
- with assms show ?thesis
- by (metis cs_holding_def holding_eq list.sel(1) list.set_intros(1) that
- wq_es_cs' wq_s_cs)
-qed
-
-lemma waiting_esE:
- assumes "waiting (e#s) th' cs'"
- obtains "th' \<noteq> th" "waiting s th' cs'"
- | "th' = th" "cs' = cs"
-proof(cases "waiting s th' cs'")
- case True
- have "th' \<noteq> th"
- proof
- assume otherwise: "th' = th"
- from True[unfolded this]
- show False by (simp add: th_not_waiting)
- qed
- from that(1)[OF this True] show ?thesis .
-next
- case False
- hence "th' = th \<and> cs' = cs"
- by (metis assms cs_waiting_def holder_def list.sel(1) rotate1.simps(2)
- set_ConsD set_rotate1 waiting_eq wq_es_cs wq_es_cs' wq_neq_simp)
- with that(2) show ?thesis by metis
-qed
-
-lemma RAG_es: "RAG (e # s) = RAG s \<union> {(Th th, Cs cs)}" (is "?L = ?R")
-proof(rule rel_eqI)
- fix n1 n2
- assume "(n1, n2) \<in> ?L"
- thus "(n1, n2) \<in> ?R"
- proof(cases rule:in_RAG_E)
- case (waiting th' cs')
- from this(3)
- show ?thesis
- proof(cases rule:waiting_esE)
- case 1
- thus ?thesis using waiting(1,2)
- by (unfold s_RAG_def, fold waiting_eq, auto)
- next
- case 2
- thus ?thesis using waiting(1,2) by auto
- qed
- next
- case (holding th' cs')
- from this(3)
- show ?thesis
- proof(cases rule:holding_esE)
- case 1
- with holding(1,2)
- show ?thesis by (unfold s_RAG_def, fold holding_eq, auto)
- qed
- qed
-next
- fix n1 n2
- assume "(n1, n2) \<in> ?R"
- hence "(n1, n2) \<in> RAG s \<or> (n1 = Th th \<and> n2 = Cs cs)" by auto
- thus "(n1, n2) \<in> ?L"
- proof
- assume "(n1, n2) \<in> RAG s"
- thus ?thesis
- proof(cases rule:in_RAG_E)
- case (waiting th' cs')
- from waiting_kept[OF this(3)]
- show ?thesis using waiting(1,2)
- by (unfold s_RAG_def, fold waiting_eq, auto)
- next
- case (holding th' cs')
- from holding_kept[OF this(3)]
- show ?thesis using holding(1,2)
- by (unfold s_RAG_def, fold holding_eq, auto)
- qed
- next
- assume "n1 = Th th \<and> n2 = Cs cs"
- thus ?thesis using RAG_edge by auto
- qed
-qed
-
-end
-
-context valid_trace_p_h
-begin
-
-lemma wq_es_cs': "wq (e#s) cs = [th]"
- using wq_es_cs[unfolded we] by simp
-
-lemma holding_es_th_cs:
- shows "holding (e#s) th cs"
-proof -
- from wq_es_cs'
- have "th \<in> set (wq (e#s) cs)" "th = hd (wq (e#s) cs)" by auto
- thus ?thesis using cs_holding_def holding_eq by blast
-qed
-
-lemma RAG_edge: "(Cs cs, Th th) \<in> RAG (e#s)"
- by (unfold s_RAG_def, fold holding_eq, insert holding_es_th_cs, auto)
-
-lemma waiting_esE:
- assumes "waiting (e#s) th' cs'"
- obtains "waiting s th' cs'"
- using assms
- by (metis cs_waiting_def event.distinct(15) is_p list.sel(1)
- set_ConsD waiting_eq we wq_es_cs' wq_neq_simp wq_out_inv)
-
-lemma holding_esE:
- assumes "holding (e#s) th' cs'"
- obtains "cs' \<noteq> cs" "holding s th' cs'"
- | "cs' = cs" "th' = th"
-proof(cases "cs' = cs")
- case True
- from held_unique[OF holding_es_th_cs assms[unfolded True]]
- have "th' = th" by simp
- from that(2)[OF True this] show ?thesis .
-next
- case False
- have "holding s th' cs'" using assms
- using False cs_holding_def holding_eq by auto
- from that(1)[OF False this] show ?thesis .
-qed
-
-lemma RAG_es: "RAG (e # s) = RAG s \<union> {(Cs cs, Th th)}" (is "?L = ?R")
-proof(rule rel_eqI)
- fix n1 n2
- assume "(n1, n2) \<in> ?L"
- thus "(n1, n2) \<in> ?R"
- proof(cases rule:in_RAG_E)
- case (waiting th' cs')
- from this(3)
- show ?thesis
- proof(cases rule:waiting_esE)
- case 1
- thus ?thesis using waiting(1,2)
- by (unfold s_RAG_def, fold waiting_eq, auto)
- qed
- next
- case (holding th' cs')
- from this(3)
- show ?thesis
- proof(cases rule:holding_esE)
- case 1
- with holding(1,2)
- show ?thesis by (unfold s_RAG_def, fold holding_eq, auto)
- next
- case 2
- with holding(1,2) show ?thesis by auto
- qed
- qed
-next
- fix n1 n2
- assume "(n1, n2) \<in> ?R"
- hence "(n1, n2) \<in> RAG s \<or> (n1 = Cs cs \<and> n2 = Th th)" by auto
- thus "(n1, n2) \<in> ?L"
- proof
- assume "(n1, n2) \<in> RAG s"
- thus ?thesis
- proof(cases rule:in_RAG_E)
- case (waiting th' cs')
- from waiting_kept[OF this(3)]
- show ?thesis using waiting(1,2)
- by (unfold s_RAG_def, fold waiting_eq, auto)
- next
- case (holding th' cs')
- from holding_kept[OF this(3)]
- show ?thesis using holding(1,2)
- by (unfold s_RAG_def, fold holding_eq, auto)
- qed
- next
- assume "n1 = Cs cs \<and> n2 = Th th"
- with holding_es_th_cs
- show ?thesis
- by (unfold s_RAG_def, fold holding_eq, auto)
- qed
-qed
-
-end
-
-context valid_trace_p
-begin
-
-lemma RAG_es': "RAG (e # s) = (if (wq s cs = []) then RAG s \<union> {(Cs cs, Th th)}
- else RAG s \<union> {(Th th, Cs cs)})"
-proof(cases "wq s cs = []")
- case True
- interpret vt_p: valid_trace_p_h using True
- by (unfold_locales, simp)
- show ?thesis by (simp add: vt_p.RAG_es vt_p.we)
-next
- case False
- interpret vt_p: valid_trace_p_w using False
- by (unfold_locales, simp)
- show ?thesis by (simp add: vt_p.RAG_es vt_p.wne)
-qed
-
-end
-
-lemma (in valid_trace_v_n) finite_waiting_set:
- "finite {(Th th', Cs cs) |th'. next_th s th cs th'}"
- by (simp add: waiting_set_eq)
-
-lemma (in valid_trace_v_n) finite_holding_set:
- "finite {(Cs cs, Th th') |th'. next_th s th cs th'}"
- by (simp add: holding_set_eq)
-
-lemma (in valid_trace_v_e) finite_waiting_set:
- "finite {(Th th', Cs cs) |th'. next_th s th cs th'}"
- by (simp add: waiting_set_eq)
-
-lemma (in valid_trace_v_e) finite_holding_set:
- "finite {(Cs cs, Th th') |th'. next_th s th cs th'}"
- by (simp add: holding_set_eq)
-
-context valid_trace_v
-begin
-
-lemma
- finite_RAG_kept:
- assumes "finite (RAG s)"
- shows "finite (RAG (e#s))"
-proof(cases "rest = []")
- case True
- interpret vt: valid_trace_v_e using True
- by (unfold_locales, simp)
- show ?thesis using assms
- by (unfold RAG_es vt.waiting_set_eq vt.holding_set_eq, simp)
-next
- case False
- interpret vt: valid_trace_v_n using False
- by (unfold_locales, simp)
- show ?thesis using assms
- by (unfold RAG_es vt.waiting_set_eq vt.holding_set_eq, simp)
-qed
-
-end
-
-context valid_trace_v_e
-begin
-
-lemma
- acylic_RAG_kept:
- assumes "acyclic (RAG s)"
- shows "acyclic (RAG (e#s))"
-proof(rule acyclic_subset[OF assms])
- show "RAG (e # s) \<subseteq> RAG s"
- by (unfold RAG_es waiting_set_eq holding_set_eq, auto)
-qed
-
-end
-
-context valid_trace_v_n
-begin
-
-lemma waiting_taker: "waiting s taker cs"
- apply (unfold s_waiting_def, fold wq_def, unfold wq_s_cs taker_def)
- using eq_wq' th'_in_inv wq'_def by fastforce
-
-lemma
- acylic_RAG_kept:
- assumes "acyclic (RAG s)"
- shows "acyclic (RAG (e#s))"
-proof -
- have "acyclic ((RAG s - {(Cs cs, Th th)} - {(Th taker, Cs cs)}) \<union>
- {(Cs cs, Th taker)})" (is "acyclic (?A \<union> _)")
- proof -
- from assms
- have "acyclic ?A"
- by (rule acyclic_subset, auto)
- moreover have "(Th taker, Cs cs) \<notin> ?A^*"
- proof
- assume otherwise: "(Th taker, Cs cs) \<in> ?A^*"
- hence "(Th taker, Cs cs) \<in> ?A^+"
- by (unfold rtrancl_eq_or_trancl, auto)
- from tranclD[OF this]
- obtain cs' where h: "(Th taker, Cs cs') \<in> ?A"
- "(Th taker, Cs cs') \<in> RAG s"
- by (unfold s_RAG_def, auto)
- from this(2) have "waiting s taker cs'"
- by (unfold s_RAG_def, fold waiting_eq, auto)
- from waiting_unique[OF this waiting_taker]
- have "cs' = cs" .
- from h(1)[unfolded this] show False by auto
- qed
- ultimately show ?thesis by auto
- qed
- thus ?thesis
- by (unfold RAG_es waiting_set_eq holding_set_eq, simp)
-qed
-
-end
-
-context valid_trace_p_h
-begin
-
-lemma
- acylic_RAG_kept:
- assumes "acyclic (RAG s)"
- shows "acyclic (RAG (e#s))"
-proof -
- have "acyclic (RAG s \<union> {(Cs cs, Th th)})" (is "acyclic (?A \<union> _)")
- proof -
- from assms
- have "acyclic ?A"
- by (rule acyclic_subset, auto)
- moreover have "(Th th, Cs cs) \<notin> ?A^*"
- proof
- assume otherwise: "(Th th, Cs cs) \<in> ?A^*"
- hence "(Th th, Cs cs) \<in> ?A^+"
- by (unfold rtrancl_eq_or_trancl, auto)
- from tranclD[OF this]
- obtain cs' where h: "(Th th, Cs cs') \<in> RAG s"
- by (unfold s_RAG_def, auto)
- hence "waiting s th cs'"
- by (unfold s_RAG_def, fold waiting_eq, auto)
- with th_not_waiting show False by auto
- qed
- ultimately show ?thesis by auto
- qed
- thus ?thesis by (unfold RAG_es, simp)
-qed
-
-end
-
-context valid_trace_p_w
-begin
-
-lemma
- acylic_RAG_kept:
- assumes "acyclic (RAG s)"
- shows "acyclic (RAG (e#s))"
-proof -
- have "acyclic (RAG s \<union> {(Th th, Cs cs)})" (is "acyclic (?A \<union> _)")
- proof -
- from assms
- have "acyclic ?A"
- by (rule acyclic_subset, auto)
- moreover have "(Cs cs, Th th) \<notin> ?A^*"
- proof
- assume otherwise: "(Cs cs, Th th) \<in> ?A^*"
- from pip_e[unfolded is_p]
- show False
- proof(cases)
- case (thread_P)
- moreover from otherwise have "(Cs cs, Th th) \<in> ?A^+"
- by (unfold rtrancl_eq_or_trancl, auto)
- ultimately show ?thesis by auto
- qed
- qed
- ultimately show ?thesis by auto
- qed
- thus ?thesis by (unfold RAG_es, simp)
-qed
-
-end
-
-context valid_trace
-begin
-
-lemma finite_RAG:
- shows "finite (RAG s)"
-proof(induct rule:ind)
- case Nil
- show ?case
- by (auto simp: s_RAG_def cs_waiting_def
- cs_holding_def wq_def acyclic_def)
-next
- case (Cons s e)
- interpret vt_e: valid_trace_e s e using Cons by simp
- show ?case
- proof(cases e)
- case (Create th prio)
- interpret vt: valid_trace_create s e th prio using Create
- by (unfold_locales, simp)
- show ?thesis using Cons by (simp add: vt.RAG_unchanged)
- next
- case (Exit th)
- interpret vt: valid_trace_exit s e th using Exit
- by (unfold_locales, simp)
- show ?thesis using Cons by (simp add: vt.RAG_unchanged)
- next
- case (P th cs)
- interpret vt: valid_trace_p s e th cs using P
- by (unfold_locales, simp)
- show ?thesis using Cons using vt.RAG_es' by auto
- next
- case (V th cs)
- interpret vt: valid_trace_v s e th cs using V
- by (unfold_locales, simp)
- show ?thesis using Cons by (simp add: vt.finite_RAG_kept)
- next
- case (Set th prio)
- interpret vt: valid_trace_set s e th prio using Set
- by (unfold_locales, simp)
- show ?thesis using Cons by (simp add: vt.RAG_unchanged)
- qed
-qed
-
-lemma acyclic_RAG:
- shows "acyclic (RAG s)"
-proof(induct rule:ind)
- case Nil
- show ?case
- by (auto simp: s_RAG_def cs_waiting_def
- cs_holding_def wq_def acyclic_def)
-next
- case (Cons s e)
- interpret vt_e: valid_trace_e s e using Cons by simp
- show ?case
- proof(cases e)
- case (Create th prio)
- interpret vt: valid_trace_create s e th prio using Create
- by (unfold_locales, simp)
- show ?thesis using Cons by (simp add: vt.RAG_unchanged)
- next
- case (Exit th)
- interpret vt: valid_trace_exit s e th using Exit
- by (unfold_locales, simp)
- show ?thesis using Cons by (simp add: vt.RAG_unchanged)
- next
- case (P th cs)
- interpret vt: valid_trace_p s e th cs using P
- by (unfold_locales, simp)
- show ?thesis
- proof(cases "wq s cs = []")
- case True
- then interpret vt_h: valid_trace_p_h s e th cs
- by (unfold_locales, simp)
- show ?thesis using Cons by (simp add: vt_h.acylic_RAG_kept)
- next
- case False
- then interpret vt_w: valid_trace_p_w s e th cs
- by (unfold_locales, simp)
- show ?thesis using Cons by (simp add: vt_w.acylic_RAG_kept)
- qed
- next
- case (V th cs)
- interpret vt: valid_trace_v s e th cs using V
- by (unfold_locales, simp)
- show ?thesis
- proof(cases "vt.rest = []")
- case True
- then interpret vt_e: valid_trace_v_e s e th cs
- by (unfold_locales, simp)
- show ?thesis by (simp add: Cons.hyps(2) vt_e.acylic_RAG_kept)
- next
- case False
- then interpret vt_n: valid_trace_v_n s e th cs
- by (unfold_locales, simp)
- show ?thesis by (simp add: Cons.hyps(2) vt_n.acylic_RAG_kept)
- qed
- next
- case (Set th prio)
- interpret vt: valid_trace_set s e th prio using Set
- by (unfold_locales, simp)
- show ?thesis using Cons by (simp add: vt.RAG_unchanged)
- qed
-qed
-
-lemma wf_RAG: "wf (RAG s)"
-proof(rule finite_acyclic_wf)
- from finite_RAG show "finite (RAG s)" .
-next
- from acyclic_RAG show "acyclic (RAG s)" .
-qed
-
-lemma sgv_wRAG: "single_valued (wRAG s)"
- using waiting_unique
- by (unfold single_valued_def wRAG_def, auto)
-
-lemma sgv_hRAG: "single_valued (hRAG s)"
- using held_unique
- by (unfold single_valued_def hRAG_def, auto)
-
-lemma sgv_tRAG: "single_valued (tRAG s)"
- by (unfold tRAG_def, rule single_valued_relcomp,
- insert sgv_wRAG sgv_hRAG, auto)
-
-lemma acyclic_tRAG: "acyclic (tRAG s)"
-proof(unfold tRAG_def, rule acyclic_compose)
- show "acyclic (RAG s)" using acyclic_RAG .
-next
- show "wRAG s \<subseteq> RAG s" unfolding RAG_split by auto
-next
- show "hRAG s \<subseteq> RAG s" unfolding RAG_split by auto
-qed
-
-lemma unique_RAG: "\<lbrakk>(n, n1) \<in> RAG s; (n, n2) \<in> RAG s\<rbrakk> \<Longrightarrow> n1 = n2"
- apply(unfold s_RAG_def, auto, fold waiting_eq holding_eq)
- by(auto elim:waiting_unique held_unique)
-
-lemma sgv_RAG: "single_valued (RAG s)"
- using unique_RAG by (auto simp:single_valued_def)
-
-lemma rtree_RAG: "rtree (RAG s)"
- using sgv_RAG acyclic_RAG
- by (unfold rtree_def rtree_axioms_def sgv_def, auto)
-
-end
-
-sublocale valid_trace < fsbtRAGs : fsubtree "RAG s"
-proof -
- show "fsubtree (RAG s)"
- proof(intro_locales)
- show "fbranch (RAG s)" using finite_fbranchI[OF finite_RAG] .
- next
- show "fsubtree_axioms (RAG s)"
- proof(unfold fsubtree_axioms_def)
- from wf_RAG show "wf (RAG s)" .
- qed
- qed
-qed
-
-context valid_trace
-begin
-
-lemma finite_subtree_threads:
- "finite {th'. Th th' \<in> subtree (RAG s) (Th th)}" (is "finite ?A")
-proof -
- have "?A = the_thread ` {Th th' | th' . Th th' \<in> subtree (RAG s) (Th th)}"
- by (auto, insert image_iff, fastforce)
- moreover have "finite {Th th' | th' . Th th' \<in> subtree (RAG s) (Th th)}"
- (is "finite ?B")
- proof -
- have "?B = (subtree (RAG s) (Th th)) \<inter> {Th th' | th'. True}"
- by auto
- moreover have "... \<subseteq> (subtree (RAG s) (Th th))" by auto
- moreover have "finite ..." by (simp add: finite_subtree)
- ultimately show ?thesis by auto
- qed
- ultimately show ?thesis by auto
-qed
-
-lemma le_cp:
- shows "preced th s \<le> cp s th"
- proof(unfold cp_alt_def, rule Max_ge)
- show "finite (the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th)})"
- by (simp add: finite_subtree_threads)
- next
- show "preced th s \<in> the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th)}"
- by (simp add: subtree_def the_preced_def)
- qed
-
-lemma cp_le:
- assumes th_in: "th \<in> threads s"
- shows "cp s th \<le> Max (the_preced s ` threads s)"
-proof(unfold cp_alt_def, rule Max_f_mono)
- show "finite (threads s)" by (simp add: finite_threads)
-next
- show " {th'. Th th' \<in> subtree (RAG s) (Th th)} \<noteq> {}"
- using subtree_def by fastforce
-next
- show "{th'. Th th' \<in> subtree (RAG s) (Th th)} \<subseteq> threads s"
- using assms
- by (smt Domain.DomainI dm_RAG_threads mem_Collect_eq
- node.inject(1) rtranclD subsetI subtree_def trancl_domain)
-qed
-
-lemma max_cp_eq:
- shows "Max ((cp s) ` threads s) = Max (the_preced s ` threads s)"
- (is "?L = ?R")
-proof -
- have "?L \<le> ?R"
- proof(cases "threads s = {}")
- case False
- show ?thesis
- by (rule Max.boundedI,
- insert cp_le,
- auto simp:finite_threads False)
- qed auto
- moreover have "?R \<le> ?L"
- by (rule Max_fg_mono,
- simp add: finite_threads,
- simp add: le_cp the_preced_def)
- ultimately show ?thesis by auto
-qed
-
-lemma max_cp_eq_the_preced:
- shows "Max ((cp s) ` threads s) = Max (the_preced s ` threads s)"
- using max_cp_eq using the_preced_def by presburger
-
-lemma wf_RAG_converse:
- shows "wf ((RAG s)^-1)"
-proof(rule finite_acyclic_wf_converse)
- from finite_RAG
- show "finite (RAG s)" .
-next
- from acyclic_RAG
- show "acyclic (RAG s)" .
-qed
-
-lemma chain_building:
- assumes "node \<in> Domain (RAG s)"
- obtains th' where "th' \<in> readys s" "(node, Th th') \<in> (RAG s)^+"
-proof -
- from assms have "node \<in> Range ((RAG s)^-1)" by auto
- from wf_base[OF wf_RAG_converse this]
- obtain b where h_b: "(b, node) \<in> ((RAG s)\<inverse>)\<^sup>+" "\<forall>c. (c, b) \<notin> (RAG s)\<inverse>" by auto
- obtain th' where eq_b: "b = Th th'"
- proof(cases b)
- case (Cs cs)
- from h_b(1)[unfolded trancl_converse]
- have "(node, b) \<in> ((RAG s)\<^sup>+)" by auto
- from tranclE[OF this]
- obtain n where "(n, b) \<in> RAG s" by auto
- from this[unfolded Cs]
- obtain th1 where "waiting s th1 cs"
- by (unfold s_RAG_def, fold waiting_eq, auto)
- from waiting_holding[OF this]
- obtain th2 where "holding s th2 cs" .
- hence "(Cs cs, Th th2) \<in> RAG s"
- by (unfold s_RAG_def, fold holding_eq, auto)
- with h_b(2)[unfolded Cs, rule_format]
- have False by auto
- thus ?thesis by auto
- qed auto
- have "th' \<in> readys s"
- proof -
- from h_b(2)[unfolded eq_b]
- have "\<forall>cs. \<not> waiting s th' cs"
- by (unfold s_RAG_def, fold waiting_eq, auto)
- moreover have "th' \<in> threads s"
- proof(rule rg_RAG_threads)
- from tranclD[OF h_b(1), unfolded eq_b]
- obtain z where "(z, Th th') \<in> (RAG s)" by auto
- thus "Th th' \<in> Range (RAG s)" by auto
- qed
- ultimately show ?thesis by (auto simp:readys_def)
- qed
- moreover have "(node, Th th') \<in> (RAG s)^+"
- using h_b(1)[unfolded trancl_converse] eq_b by auto
- ultimately show ?thesis using that by metis
-qed
-
-text {* \noindent
- The following is just an instance of @{text "chain_building"}.
-*}
-lemma th_chain_to_ready:
- assumes th_in: "th \<in> threads s"
- shows "th \<in> readys s \<or> (\<exists> th'. th' \<in> readys s \<and> (Th th, Th th') \<in> (RAG s)^+)"
-proof(cases "th \<in> readys s")
- case True
- thus ?thesis by auto
-next
- case False
- from False and th_in have "Th th \<in> Domain (RAG s)"
- by (auto simp:readys_def s_waiting_def s_RAG_def wq_def cs_waiting_def Domain_def)
- from chain_building [rule_format, OF this]
- show ?thesis by auto
-qed
-
-end
-
-lemma count_rec1 [simp]:
- assumes "Q e"
- shows "count Q (e#es) = Suc (count Q es)"
- using assms
- by (unfold count_def, auto)
-
-lemma count_rec2 [simp]:
- assumes "\<not>Q e"
- shows "count Q (e#es) = (count Q es)"
- using assms
- by (unfold count_def, auto)
-
-lemma count_rec3 [simp]:
- shows "count Q [] = 0"
- by (unfold count_def, auto)
-
-lemma cntP_simp1[simp]:
- "cntP (P th cs'#s) th = cntP s th + 1"
- by (unfold cntP_def, simp)
-
-lemma cntP_simp2[simp]:
- assumes "th' \<noteq> th"
- shows "cntP (P th cs'#s) th' = cntP s th'"
- using assms
- by (unfold cntP_def, simp)
-
-lemma cntP_simp3[simp]:
- assumes "\<not> isP e"
- shows "cntP (e#s) th' = cntP s th'"
- using assms
- by (unfold cntP_def, cases e, simp+)
-
-lemma cntV_simp1[simp]:
- "cntV (V th cs'#s) th = cntV s th + 1"
- by (unfold cntV_def, simp)
-
-lemma cntV_simp2[simp]:
- assumes "th' \<noteq> th"
- shows "cntV (V th cs'#s) th' = cntV s th'"
- using assms
- by (unfold cntV_def, simp)
-
-lemma cntV_simp3[simp]:
- assumes "\<not> isV e"
- shows "cntV (e#s) th' = cntV s th'"
- using assms
- by (unfold cntV_def, cases e, simp+)
-
-lemma cntP_diff_inv:
- assumes "cntP (e#s) th \<noteq> cntP s th"
- shows "isP e \<and> actor e = th"
-proof(cases e)
- case (P th' pty)
- show ?thesis
- by (cases "(\<lambda>e. \<exists>cs. e = P th cs) (P th' pty)",
- insert assms P, auto simp:cntP_def)
-qed (insert assms, auto simp:cntP_def)
-
-lemma cntV_diff_inv:
- assumes "cntV (e#s) th \<noteq> cntV s th"
- shows "isV e \<and> actor e = th"
-proof(cases e)
- case (V th' pty)
- show ?thesis
- by (cases "(\<lambda>e. \<exists>cs. e = V th cs) (V th' pty)",
- insert assms V, auto simp:cntV_def)
-qed (insert assms, auto simp:cntV_def)
-
-lemma children_RAG_alt_def:
- "children (RAG (s::state)) (Th th) = Cs ` {cs. holding s th cs}"
- by (unfold s_RAG_def, auto simp:children_def holding_eq)
-
-fun the_cs :: "node \<Rightarrow> cs" where
- "the_cs (Cs cs) = cs"
-
-lemma holdents_alt_def:
- "holdents s th = the_cs ` (children (RAG (s::state)) (Th th))"
- by (unfold children_RAG_alt_def holdents_def, simp add: image_image)
-
-lemma cntCS_alt_def:
- "cntCS s th = card (children (RAG s) (Th th))"
- apply (unfold children_RAG_alt_def cntCS_def holdents_def)
- by (rule card_image[symmetric], auto simp:inj_on_def)
-
-context valid_trace
-begin
-
-lemma finite_holdents: "finite (holdents s th)"
- by (unfold holdents_alt_def, insert finite_children, auto)
-
-end
-
-context valid_trace_p_w
-begin
-
-lemma holding_s_holder: "holding s holder cs"
- by (unfold s_holding_def, fold wq_def, unfold wq_s_cs, auto)
-
-lemma holding_es_holder: "holding (e#s) holder cs"
- by (unfold s_holding_def, fold wq_def, unfold wq_es_cs wq_s_cs, auto)
-
-lemma holdents_es:
- shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R")
-proof -
- { fix cs'
- assume "cs' \<in> ?L"
- hence h: "holding (e#s) th' cs'" by (auto simp:holdents_def)
- have "holding s th' cs'"
- proof(cases "cs' = cs")
- case True
- from held_unique[OF h[unfolded True] holding_es_holder]
- have "th' = holder" .
- thus ?thesis
- by (unfold True holdents_def, insert holding_s_holder, simp)
- next
- case False
- hence "wq (e#s) cs' = wq s cs'" by simp
- from h[unfolded s_holding_def, folded wq_def, unfolded this]
- show ?thesis
- by (unfold s_holding_def, fold wq_def, auto)
- qed
- hence "cs' \<in> ?R" by (auto simp:holdents_def)
- } moreover {
- fix cs'
- assume "cs' \<in> ?R"
- hence h: "holding s th' cs'" by (auto simp:holdents_def)
- have "holding (e#s) th' cs'"
- proof(cases "cs' = cs")
- case True
- from held_unique[OF h[unfolded True] holding_s_holder]
- have "th' = holder" .
- thus ?thesis
- by (unfold True holdents_def, insert holding_es_holder, simp)
- next
- case False
- hence "wq s cs' = wq (e#s) cs'" by simp
- from h[unfolded s_holding_def, folded wq_def, unfolded this]
- show ?thesis
- by (unfold s_holding_def, fold wq_def, auto)
- qed
- hence "cs' \<in> ?L" by (auto simp:holdents_def)
- } ultimately show ?thesis by auto
-qed
-
-lemma cntCS_es_th[simp]: "cntCS (e#s) th' = cntCS s th'"
- by (unfold cntCS_def holdents_es, simp)
-
-lemma th_not_ready_es:
- shows "th \<notin> readys (e#s)"
- using waiting_es_th_cs
- by (unfold readys_def, auto)
-
-end
-
-context valid_trace_p_h
-begin
-
-lemma th_not_waiting':
- "\<not> waiting (e#s) th cs'"
-proof(cases "cs' = cs")
- case True
- show ?thesis
- by (unfold True s_waiting_def, fold wq_def, unfold wq_es_cs', auto)
-next
- case False
- from th_not_waiting[of cs', unfolded s_waiting_def, folded wq_def]
- show ?thesis
- by (unfold s_waiting_def, fold wq_def, insert False, simp)
-qed
-
-lemma ready_th_es:
- shows "th \<in> readys (e#s)"
- using th_not_waiting'
- by (unfold readys_def, insert live_th_es, auto)
-
-lemma holdents_es_th:
- "holdents (e#s) th = (holdents s th) \<union> {cs}" (is "?L = ?R")
-proof -
- { fix cs'
- assume "cs' \<in> ?L"
- hence "holding (e#s) th cs'"
- by (unfold holdents_def, auto)
- hence "cs' \<in> ?R"
- by (cases rule:holding_esE, auto simp:holdents_def)
- } moreover {
- fix cs'
- assume "cs' \<in> ?R"
- hence "holding s th cs' \<or> cs' = cs"
- by (auto simp:holdents_def)
- hence "cs' \<in> ?L"
- proof
- assume "holding s th cs'"
- from holding_kept[OF this]
- show ?thesis by (auto simp:holdents_def)
- next
- assume "cs' = cs"
- thus ?thesis using holding_es_th_cs
- by (unfold holdents_def, auto)
- qed
- } ultimately show ?thesis by auto
-qed
-
-lemma cntCS_es_th: "cntCS (e#s) th = cntCS s th + 1"
-proof -
- have "card (holdents s th \<union> {cs}) = card (holdents s th) + 1"
- proof(subst card_Un_disjoint)
- show "holdents s th \<inter> {cs} = {}"
- using not_holding_s_th_cs by (auto simp:holdents_def)
- qed (auto simp:finite_holdents)
- thus ?thesis
- by (unfold cntCS_def holdents_es_th, simp)
-qed
-
-lemma no_holder:
- "\<not> holding s th' cs"
-proof
- assume otherwise: "holding s th' cs"
- from this[unfolded s_holding_def, folded wq_def, unfolded we]
- show False by auto
-qed
-
-lemma holdents_es_th':
- assumes "th' \<noteq> th"
- shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R")
-proof -
- { fix cs'
- assume "cs' \<in> ?L"
- hence h_e: "holding (e#s) th' cs'" by (auto simp:holdents_def)
- have "cs' \<noteq> cs"
- proof
- assume "cs' = cs"
- from held_unique[OF h_e[unfolded this] holding_es_th_cs]
- have "th' = th" .
- with assms show False by simp
- qed
- from h_e[unfolded s_holding_def, folded wq_def, unfolded wq_neq_simp[OF this]]
- have "th' \<in> set (wq s cs') \<and> th' = hd (wq s cs')" .
- hence "cs' \<in> ?R"
- by (unfold holdents_def s_holding_def, fold wq_def, auto)
- } moreover {
- fix cs'
- assume "cs' \<in> ?R"
- hence "holding s th' cs'" by (auto simp:holdents_def)
- from holding_kept[OF this]
- have "holding (e # s) th' cs'" .
- hence "cs' \<in> ?L"
- by (unfold holdents_def, auto)
- } ultimately show ?thesis by auto
-qed
-
-lemma cntCS_es_th'[simp]:
- assumes "th' \<noteq> th"
- shows "cntCS (e#s) th' = cntCS s th'"
- by (unfold cntCS_def holdents_es_th'[OF assms], simp)
-
-end
-
-context valid_trace_p
-begin
-
-lemma readys_kept1:
- assumes "th' \<noteq> th"
- and "th' \<in> readys (e#s)"
- shows "th' \<in> readys s"
-proof -
- { fix cs'
- assume wait: "waiting s th' cs'"
- have n_wait: "\<not> waiting (e#s) th' cs'"
- using assms(2)[unfolded readys_def] by auto
- have False
- proof(cases "cs' = cs")
- case False
- with n_wait wait
- show ?thesis
- by (unfold s_waiting_def, fold wq_def, auto)
- next
- case True
- show ?thesis
- proof(cases "wq s cs = []")
- case True
- then interpret vt: valid_trace_p_h
- by (unfold_locales, simp)
- show ?thesis using n_wait wait waiting_kept by auto
- next
- case False
- then interpret vt: valid_trace_p_w by (unfold_locales, simp)
- show ?thesis using n_wait wait waiting_kept by blast
- qed
- qed
- } with assms(2) show ?thesis
- by (unfold readys_def, auto)
-qed
-
-lemma readys_kept2:
- assumes "th' \<noteq> th"
- and "th' \<in> readys s"
- shows "th' \<in> readys (e#s)"
-proof -
- { fix cs'
- assume wait: "waiting (e#s) th' cs'"
- have n_wait: "\<not> waiting s th' cs'"
- using assms(2)[unfolded readys_def] by auto
- have False
- proof(cases "cs' = cs")
- case False
- with n_wait wait
- show ?thesis
- by (unfold s_waiting_def, fold wq_def, auto)
- next
- case True
- show ?thesis
- proof(cases "wq s cs = []")
- case True
- then interpret vt: valid_trace_p_h
- by (unfold_locales, simp)
- show ?thesis using n_wait vt.waiting_esE wait by blast
- next
- case False
- then interpret vt: valid_trace_p_w by (unfold_locales, simp)
- show ?thesis using assms(1) n_wait vt.waiting_esE wait by auto
- qed
- qed
- } with assms(2) show ?thesis
- by (unfold readys_def, auto)
-qed
-
-lemma readys_simp [simp]:
- assumes "th' \<noteq> th"
- shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)"
- using readys_kept1[OF assms] readys_kept2[OF assms]
- by metis
-
-lemma cnp_cnv_cncs_kept:
- assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'"
- shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'"
-proof(cases "th' = th")
- case True
- note eq_th' = this
- show ?thesis
- proof(cases "wq s cs = []")
- case True
- then interpret vt: valid_trace_p_h by (unfold_locales, simp)
- show ?thesis
- using assms eq_th' is_p ready_th_s vt.cntCS_es_th vt.ready_th_es pvD_def by auto
- next
- case False
- then interpret vt: valid_trace_p_w by (unfold_locales, simp)
- show ?thesis
- using add.commute add.left_commute assms eq_th' is_p live_th_s
- ready_th_s vt.th_not_ready_es pvD_def
- apply (auto)
- by (fold is_p, simp)
- qed
-next
- case False
- note h_False = False
- thus ?thesis
- proof(cases "wq s cs = []")
- case True
- then interpret vt: valid_trace_p_h by (unfold_locales, simp)
- show ?thesis using assms
- by (insert True h_False pvD_def, auto split:if_splits,unfold is_p, auto)
- next
- case False
- then interpret vt: valid_trace_p_w by (unfold_locales, simp)
- show ?thesis using assms
- by (insert False h_False pvD_def, auto split:if_splits,unfold is_p, auto)
- qed
-qed
-
-end
-
-
-context valid_trace_v (* ccc *)
-begin
-
-lemma holding_th_cs_s:
- "holding s th cs"
- by (unfold s_holding_def, fold wq_def, unfold wq_s_cs, auto)
-
-lemma th_ready_s [simp]: "th \<in> readys s"
- using runing_th_s
- by (unfold runing_def readys_def, auto)
-
-lemma th_live_s [simp]: "th \<in> threads s"
- using th_ready_s by (unfold readys_def, auto)
-
-lemma th_ready_es [simp]: "th \<in> readys (e#s)"
- using runing_th_s neq_t_th
- by (unfold is_v runing_def readys_def, auto)
-
-lemma th_live_es [simp]: "th \<in> threads (e#s)"
- using th_ready_es by (unfold readys_def, auto)
-
-lemma pvD_th_s[simp]: "pvD s th = 0"
- by (unfold pvD_def, simp)
-
-lemma pvD_th_es[simp]: "pvD (e#s) th = 0"
- by (unfold pvD_def, simp)
-
-lemma cntCS_s_th [simp]: "cntCS s th > 0"
-proof -
- have "cs \<in> holdents s th" using holding_th_cs_s
- by (unfold holdents_def, simp)
- moreover have "finite (holdents s th)" using finite_holdents
- by simp
- ultimately show ?thesis
- by (unfold cntCS_def,
- auto intro!:card_gt_0_iff[symmetric, THEN iffD1])
-qed
-
-end
-
-context valid_trace_v_n
-begin
-
-lemma not_ready_taker_s[simp]:
- "taker \<notin> readys s"
- using waiting_taker
- by (unfold readys_def, auto)
-
-lemma taker_live_s [simp]: "taker \<in> threads s"
-proof -
- have "taker \<in> set wq'" by (simp add: eq_wq')
- from th'_in_inv[OF this]
- have "taker \<in> set rest" .
- hence "taker \<in> set (wq s cs)" by (simp add: wq_s_cs)
- thus ?thesis using wq_threads by auto
-qed
-
-lemma taker_live_es [simp]: "taker \<in> threads (e#s)"
- using taker_live_s threads_es by blast
-
-lemma taker_ready_es [simp]:
- shows "taker \<in> readys (e#s)"
-proof -
- { fix cs'
- assume "waiting (e#s) taker cs'"
- hence False
- proof(cases rule:waiting_esE)
- case 1
- thus ?thesis using waiting_taker waiting_unique by auto
- qed simp
- } thus ?thesis by (unfold readys_def, auto)
-qed
-
-lemma neq_taker_th: "taker \<noteq> th"
- using th_not_waiting waiting_taker by blast
-
-lemma not_holding_taker_s_cs:
- shows "\<not> holding s taker cs"
- using holding_cs_eq_th neq_taker_th by auto
-
-lemma holdents_es_taker:
- "holdents (e#s) taker = holdents s taker \<union> {cs}" (is "?L = ?R")
-proof -
- { fix cs'
- assume "cs' \<in> ?L"
- hence "holding (e#s) taker cs'" by (auto simp:holdents_def)
- hence "cs' \<in> ?R"
- proof(cases rule:holding_esE)
- case 2
- thus ?thesis by (auto simp:holdents_def)
- qed auto
- } moreover {
- fix cs'
- assume "cs' \<in> ?R"
- hence "holding s taker cs' \<or> cs' = cs" by (auto simp:holdents_def)
- hence "cs' \<in> ?L"
- proof
- assume "holding s taker cs'"
- hence "holding (e#s) taker cs'"
- using holding_esI2 holding_taker by fastforce
- thus ?thesis by (auto simp:holdents_def)
- next
- assume "cs' = cs"
- with holding_taker
- show ?thesis by (auto simp:holdents_def)
- qed
- } ultimately show ?thesis by auto
-qed
-
-lemma cntCS_es_taker [simp]: "cntCS (e#s) taker = cntCS s taker + 1"
-proof -
- have "card (holdents s taker \<union> {cs}) = card (holdents s taker) + 1"
- proof(subst card_Un_disjoint)
- show "holdents s taker \<inter> {cs} = {}"
- using not_holding_taker_s_cs by (auto simp:holdents_def)
- qed (auto simp:finite_holdents)
- thus ?thesis
- by (unfold cntCS_def, insert holdents_es_taker, simp)
-qed
-
-lemma pvD_taker_s[simp]: "pvD s taker = 1"
- by (unfold pvD_def, simp)
-
-lemma pvD_taker_es[simp]: "pvD (e#s) taker = 0"
- by (unfold pvD_def, simp)
-
-lemma pvD_th_s[simp]: "pvD s th = 0"
- by (unfold pvD_def, simp)
-
-lemma pvD_th_es[simp]: "pvD (e#s) th = 0"
- by (unfold pvD_def, simp)
-
-lemma holdents_es_th:
- "holdents (e#s) th = holdents s th - {cs}" (is "?L = ?R")
-proof -
- { fix cs'
- assume "cs' \<in> ?L"
- hence "holding (e#s) th cs'" by (auto simp:holdents_def)
- hence "cs' \<in> ?R"
- proof(cases rule:holding_esE)
- case 2
- thus ?thesis by (auto simp:holdents_def)
- qed (insert neq_taker_th, auto)
- } moreover {
- fix cs'
- assume "cs' \<in> ?R"
- hence "cs' \<noteq> cs" "holding s th cs'" by (auto simp:holdents_def)
- from holding_esI2[OF this]
- have "cs' \<in> ?L" by (auto simp:holdents_def)
- } ultimately show ?thesis by auto
-qed
-
-lemma cntCS_es_th [simp]: "cntCS (e#s) th = cntCS s th - 1"
-proof -
- have "card (holdents s th - {cs}) = card (holdents s th) - 1"
- proof -
- have "cs \<in> holdents s th" using holding_th_cs_s
- by (auto simp:holdents_def)
- moreover have "finite (holdents s th)"
- by (simp add: finite_holdents)
- ultimately show ?thesis by auto
- qed
- thus ?thesis by (unfold cntCS_def holdents_es_th)
-qed
-
-lemma holdents_kept:
- assumes "th' \<noteq> taker"
- and "th' \<noteq> th"
- shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R")
-proof -
- { fix cs'
- assume h: "cs' \<in> ?L"
- have "cs' \<in> ?R"
- proof(cases "cs' = cs")
- case False
- hence eq_wq: "wq (e#s) cs' = wq s cs'" by simp
- from h have "holding (e#s) th' cs'" by (auto simp:holdents_def)
- from this[unfolded s_holding_def, folded wq_def, unfolded eq_wq]
- show ?thesis
- by (unfold holdents_def s_holding_def, fold wq_def, auto)
- next
- case True
- from h[unfolded this]
- have "holding (e#s) th' cs" by (auto simp:holdents_def)
- from held_unique[OF this holding_taker]
- have "th' = taker" .
- with assms show ?thesis by auto
- qed
- } moreover {
- fix cs'
- assume h: "cs' \<in> ?R"
- have "cs' \<in> ?L"
- proof(cases "cs' = cs")
- case False
- hence eq_wq: "wq (e#s) cs' = wq s cs'" by simp
- from h have "holding s th' cs'" by (auto simp:holdents_def)
- from this[unfolded s_holding_def, folded wq_def, unfolded eq_wq]
- show ?thesis
- by (unfold holdents_def s_holding_def, fold wq_def, insert eq_wq, simp)
- next
- case True
- from h[unfolded this]
- have "holding s th' cs" by (auto simp:holdents_def)
- from held_unique[OF this holding_th_cs_s]
- have "th' = th" .
- with assms show ?thesis by auto
- qed
- } ultimately show ?thesis by auto
-qed
-
-lemma cntCS_kept [simp]:
- assumes "th' \<noteq> taker"
- and "th' \<noteq> th"
- shows "cntCS (e#s) th' = cntCS s th'"
- by (unfold cntCS_def holdents_kept[OF assms], simp)
-
-lemma readys_kept1:
- assumes "th' \<noteq> taker"
- and "th' \<in> readys (e#s)"
- shows "th' \<in> readys s"
-proof -
- { fix cs'
- assume wait: "waiting s th' cs'"
- have n_wait: "\<not> waiting (e#s) th' cs'"
- using assms(2)[unfolded readys_def] by auto
- have False
- proof(cases "cs' = cs")
- case False
- with n_wait wait
- show ?thesis
- by (unfold s_waiting_def, fold wq_def, auto)
- next
- case True
- have "th' \<in> set (th # rest) \<and> th' \<noteq> hd (th # rest)"
- using wait[unfolded True s_waiting_def, folded wq_def, unfolded wq_s_cs] .
- moreover have "\<not> (th' \<in> set rest \<and> th' \<noteq> hd (taker # rest'))"
- using n_wait[unfolded True s_waiting_def, folded wq_def,
- unfolded wq_es_cs set_wq', unfolded eq_wq'] .
- ultimately have "th' = taker" by auto
- with assms(1)
- show ?thesis by simp
- qed
- } with assms(2) show ?thesis
- by (unfold readys_def, auto)
-qed
-
-lemma readys_kept2:
- assumes "th' \<noteq> taker"
- and "th' \<in> readys s"
- shows "th' \<in> readys (e#s)"
-proof -
- { fix cs'
- assume wait: "waiting (e#s) th' cs'"
- have n_wait: "\<not> waiting s th' cs'"
- using assms(2)[unfolded readys_def] by auto
- have False
- proof(cases "cs' = cs")
- case False
- with n_wait wait
- show ?thesis
- by (unfold s_waiting_def, fold wq_def, auto)
- next
- case True
- have "th' \<in> set rest \<and> th' \<noteq> hd (taker # rest')"
- using wait [unfolded True s_waiting_def, folded wq_def,
- unfolded wq_es_cs set_wq', unfolded eq_wq'] .
- moreover have "\<not> (th' \<in> set (th # rest) \<and> th' \<noteq> hd (th # rest))"
- using n_wait[unfolded True s_waiting_def, folded wq_def, unfolded wq_s_cs] .
- ultimately have "th' = taker" by auto
- with assms(1)
- show ?thesis by simp
- qed
- } with assms(2) show ?thesis
- by (unfold readys_def, auto)
-qed
-
-lemma readys_simp [simp]:
- assumes "th' \<noteq> taker"
- shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)"
- using readys_kept1[OF assms] readys_kept2[OF assms]
- by metis
-
-lemma cnp_cnv_cncs_kept:
- assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'"
- shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'"
-proof -
- { assume eq_th': "th' = taker"
- have ?thesis
- apply (unfold eq_th' pvD_taker_es cntCS_es_taker)
- by (insert neq_taker_th assms[unfolded eq_th'], unfold is_v, simp)
- } moreover {
- assume eq_th': "th' = th"
- have ?thesis
- apply (unfold eq_th' pvD_th_es cntCS_es_th)
- by (insert assms[unfolded eq_th'], unfold is_v, simp)
- } moreover {
- assume h: "th' \<noteq> taker" "th' \<noteq> th"
- have ?thesis using assms
- apply (unfold cntCS_kept[OF h], insert h, unfold is_v, simp)
- by (fold is_v, unfold pvD_def, simp)
- } ultimately show ?thesis by metis
-qed
-
-end
-
-context valid_trace_v_e
-begin
-
-lemma holdents_es_th:
- "holdents (e#s) th = holdents s th - {cs}" (is "?L = ?R")
-proof -
- { fix cs'
- assume "cs' \<in> ?L"
- hence "holding (e#s) th cs'" by (auto simp:holdents_def)
- hence "cs' \<in> ?R"
- proof(cases rule:holding_esE)
- case 1
- thus ?thesis by (auto simp:holdents_def)
- qed
- } moreover {
- fix cs'
- assume "cs' \<in> ?R"
- hence "cs' \<noteq> cs" "holding s th cs'" by (auto simp:holdents_def)
- from holding_esI2[OF this]
- have "cs' \<in> ?L" by (auto simp:holdents_def)
- } ultimately show ?thesis by auto
-qed
-
-lemma cntCS_es_th [simp]: "cntCS (e#s) th = cntCS s th - 1"
-proof -
- have "card (holdents s th - {cs}) = card (holdents s th) - 1"
- proof -
- have "cs \<in> holdents s th" using holding_th_cs_s
- by (auto simp:holdents_def)
- moreover have "finite (holdents s th)"
- by (simp add: finite_holdents)
- ultimately show ?thesis by auto
- qed
- thus ?thesis by (unfold cntCS_def holdents_es_th)
-qed
-
-lemma holdents_kept:
- assumes "th' \<noteq> th"
- shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R")
-proof -
- { fix cs'
- assume h: "cs' \<in> ?L"
- have "cs' \<in> ?R"
- proof(cases "cs' = cs")
- case False
- hence eq_wq: "wq (e#s) cs' = wq s cs'" by simp
- from h have "holding (e#s) th' cs'" by (auto simp:holdents_def)
- from this[unfolded s_holding_def, folded wq_def, unfolded eq_wq]
- show ?thesis
- by (unfold holdents_def s_holding_def, fold wq_def, auto)
- next
- case True
- from h[unfolded this]
- have "holding (e#s) th' cs" by (auto simp:holdents_def)
- from this[unfolded s_holding_def, folded wq_def,
- unfolded wq_es_cs nil_wq']
- show ?thesis by auto
- qed
- } moreover {
- fix cs'
- assume h: "cs' \<in> ?R"
- have "cs' \<in> ?L"
- proof(cases "cs' = cs")
- case False
- hence eq_wq: "wq (e#s) cs' = wq s cs'" by simp
- from h have "holding s th' cs'" by (auto simp:holdents_def)
- from this[unfolded s_holding_def, folded wq_def, unfolded eq_wq]
- show ?thesis
- by (unfold holdents_def s_holding_def, fold wq_def, insert eq_wq, simp)
- next
- case True
- from h[unfolded this]
- have "holding s th' cs" by (auto simp:holdents_def)
- from held_unique[OF this holding_th_cs_s]
- have "th' = th" .
- with assms show ?thesis by auto
- qed
- } ultimately show ?thesis by auto
-qed
-
-lemma cntCS_kept [simp]:
- assumes "th' \<noteq> th"
- shows "cntCS (e#s) th' = cntCS s th'"
- by (unfold cntCS_def holdents_kept[OF assms], simp)
-
-lemma readys_kept1:
- assumes "th' \<in> readys (e#s)"
- shows "th' \<in> readys s"
-proof -
- { fix cs'
- assume wait: "waiting s th' cs'"
- have n_wait: "\<not> waiting (e#s) th' cs'"
- using assms(1)[unfolded readys_def] by auto
- have False
- proof(cases "cs' = cs")
- case False
- with n_wait wait
- show ?thesis
- by (unfold s_waiting_def, fold wq_def, auto)
- next
- case True
- have "th' \<in> set (th # rest) \<and> th' \<noteq> hd (th # rest)"
- using wait[unfolded True s_waiting_def, folded wq_def, unfolded wq_s_cs] .
- hence "th' \<in> set rest" by auto
- with set_wq' have "th' \<in> set wq'" by metis
- with nil_wq' show ?thesis by simp
- qed
- } thus ?thesis using assms
- by (unfold readys_def, auto)
-qed
-
-lemma readys_kept2:
- assumes "th' \<in> readys s"
- shows "th' \<in> readys (e#s)"
-proof -
- { fix cs'
- assume wait: "waiting (e#s) th' cs'"
- have n_wait: "\<not> waiting s th' cs'"
- using assms[unfolded readys_def] by auto
- have False
- proof(cases "cs' = cs")
- case False
- with n_wait wait
- show ?thesis
- by (unfold s_waiting_def, fold wq_def, auto)
- next
- case True
- have "th' \<in> set [] \<and> th' \<noteq> hd []"
- using wait[unfolded True s_waiting_def, folded wq_def,
- unfolded wq_es_cs nil_wq'] .
- thus ?thesis by simp
- qed
- } with assms show ?thesis
- by (unfold readys_def, auto)
-qed
-
-lemma readys_simp [simp]:
- shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)"
- using readys_kept1[OF assms] readys_kept2[OF assms]
- by metis
-
-lemma cnp_cnv_cncs_kept:
- assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'"
- shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'"
-proof -
- {
- assume eq_th': "th' = th"
- have ?thesis
- apply (unfold eq_th' pvD_th_es cntCS_es_th)
- by (insert assms[unfolded eq_th'], unfold is_v, simp)
- } moreover {
- assume h: "th' \<noteq> th"
- have ?thesis using assms
- apply (unfold cntCS_kept[OF h], insert h, unfold is_v, simp)
- by (fold is_v, unfold pvD_def, simp)
- } ultimately show ?thesis by metis
-qed
-
-end
-
-context valid_trace_v
-begin
-
-lemma cnp_cnv_cncs_kept:
- assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'"
- shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'"
-proof(cases "rest = []")
- case True
- then interpret vt: valid_trace_v_e by (unfold_locales, simp)
- show ?thesis using assms using vt.cnp_cnv_cncs_kept by blast
-next
- case False
- then interpret vt: valid_trace_v_n by (unfold_locales, simp)
- show ?thesis using assms using vt.cnp_cnv_cncs_kept by blast
-qed
-
-end
-
-context valid_trace_create
-begin
-
-lemma th_not_live_s [simp]: "th \<notin> threads s"
-proof -
- from pip_e[unfolded is_create]
- show ?thesis by (cases, simp)
-qed
-
-lemma th_not_ready_s [simp]: "th \<notin> readys s"
- using th_not_live_s by (unfold readys_def, simp)
-
-lemma th_live_es [simp]: "th \<in> threads (e#s)"
- by (unfold is_create, simp)
-
-lemma not_waiting_th_s [simp]: "\<not> waiting s th cs'"
-proof
- assume "waiting s th cs'"
- from this[unfolded s_waiting_def, folded wq_def, unfolded wq_neq_simp]
- have "th \<in> set (wq s cs')" by auto
- from wq_threads[OF this] have "th \<in> threads s" .
- with th_not_live_s show False by simp
-qed
-
-lemma not_holding_th_s [simp]: "\<not> holding s th cs'"
-proof
- assume "holding s th cs'"
- from this[unfolded s_holding_def, folded wq_def, unfolded wq_neq_simp]
- have "th \<in> set (wq s cs')" by auto
- from wq_threads[OF this] have "th \<in> threads s" .
- with th_not_live_s show False by simp
-qed
-
-lemma not_waiting_th_es [simp]: "\<not> waiting (e#s) th cs'"
-proof
- assume "waiting (e # s) th cs'"
- from this[unfolded s_waiting_def, folded wq_def, unfolded wq_neq_simp]
- have "th \<in> set (wq s cs')" by auto
- from wq_threads[OF this] have "th \<in> threads s" .
- with th_not_live_s show False by simp
-qed
-
-lemma not_holding_th_es [simp]: "\<not> holding (e#s) th cs'"
-proof
- assume "holding (e # s) th cs'"
- from this[unfolded s_holding_def, folded wq_def, unfolded wq_neq_simp]
- have "th \<in> set (wq s cs')" by auto
- from wq_threads[OF this] have "th \<in> threads s" .
- with th_not_live_s show False by simp
-qed
-
-lemma ready_th_es [simp]: "th \<in> readys (e#s)"
- by (simp add:readys_def)
-
-lemma holdents_th_s: "holdents s th = {}"
- by (unfold holdents_def, auto)
-
-lemma holdents_th_es: "holdents (e#s) th = {}"
- by (unfold holdents_def, auto)
-
-lemma cntCS_th_s [simp]: "cntCS s th = 0"
- by (unfold cntCS_def, simp add:holdents_th_s)
-
-lemma cntCS_th_es [simp]: "cntCS (e#s) th = 0"
- by (unfold cntCS_def, simp add:holdents_th_es)
-
-lemma pvD_th_s [simp]: "pvD s th = 0"
- by (unfold pvD_def, simp)
-
-lemma pvD_th_es [simp]: "pvD (e#s) th = 0"
- by (unfold pvD_def, simp)
-
-lemma holdents_kept:
- assumes "th' \<noteq> th"
- shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R")
-proof -
- { fix cs'
- assume h: "cs' \<in> ?L"
- hence "cs' \<in> ?R"
- by (unfold holdents_def s_holding_def, fold wq_def,
- unfold wq_neq_simp, auto)
- } moreover {
- fix cs'
- assume h: "cs' \<in> ?R"
- hence "cs' \<in> ?L"
- by (unfold holdents_def s_holding_def, fold wq_def,
- unfold wq_neq_simp, auto)
- } ultimately show ?thesis by auto
-qed
-
-lemma cntCS_kept [simp]:
- assumes "th' \<noteq> th"
- shows "cntCS (e#s) th' = cntCS s th'" (is "?L = ?R")
- using holdents_kept[OF assms]
- by (unfold cntCS_def, simp)
-
-lemma readys_kept1:
- assumes "th' \<noteq> th"
- and "th' \<in> readys (e#s)"
- shows "th' \<in> readys s"
-proof -
- { fix cs'
- assume wait: "waiting s th' cs'"
- have n_wait: "\<not> waiting (e#s) th' cs'"
- using assms by (auto simp:readys_def)
- from wait[unfolded s_waiting_def, folded wq_def]
- n_wait[unfolded s_waiting_def, folded wq_def, unfolded wq_neq_simp]
- have False by auto
- } thus ?thesis using assms
- by (unfold readys_def, auto)
-qed
-
-lemma readys_kept2:
- assumes "th' \<noteq> th"
- and "th' \<in> readys s"
- shows "th' \<in> readys (e#s)"
-proof -
- { fix cs'
- assume wait: "waiting (e#s) th' cs'"
- have n_wait: "\<not> waiting s th' cs'"
- using assms(2) by (auto simp:readys_def)
- from wait[unfolded s_waiting_def, folded wq_def, unfolded wq_neq_simp]
- n_wait[unfolded s_waiting_def, folded wq_def]
- have False by auto
- } with assms show ?thesis
- by (unfold readys_def, auto)
-qed
-
-lemma readys_simp [simp]:
- assumes "th' \<noteq> th"
- shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)"
- using readys_kept1[OF assms] readys_kept2[OF assms]
- by metis
-
-lemma pvD_kept [simp]:
- assumes "th' \<noteq> th"
- shows "pvD (e#s) th' = pvD s th'"
- using assms
- by (unfold pvD_def, simp)
-
-lemma cnp_cnv_cncs_kept:
- assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'"
- shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'"
-proof -
- {
- assume eq_th': "th' = th"
- have ?thesis using assms
- by (unfold eq_th', simp, unfold is_create, simp)
- } moreover {
- assume h: "th' \<noteq> th"
- hence ?thesis using assms
- by (simp, simp add:is_create)
- } ultimately show ?thesis by metis
-qed
-
-end
-
-context valid_trace_exit
-begin
-
-lemma th_live_s [simp]: "th \<in> threads s"
-proof -
- from pip_e[unfolded is_exit]
- show ?thesis
- by (cases, unfold runing_def readys_def, simp)
-qed
-
-lemma th_ready_s [simp]: "th \<in> readys s"
-proof -
- from pip_e[unfolded is_exit]
- show ?thesis
- by (cases, unfold runing_def, simp)
-qed
-
-lemma th_not_live_es [simp]: "th \<notin> threads (e#s)"
- by (unfold is_exit, simp)
-
-lemma not_holding_th_s [simp]: "\<not> holding s th cs'"
-proof -
- from pip_e[unfolded is_exit]
- show ?thesis
- by (cases, unfold holdents_def, auto)
-qed
-
-lemma cntCS_th_s [simp]: "cntCS s th = 0"
-proof -
- from pip_e[unfolded is_exit]
- show ?thesis
- by (cases, unfold cntCS_def, simp)
-qed
-
-lemma not_holding_th_es [simp]: "\<not> holding (e#s) th cs'"
-proof
- assume "holding (e # s) th cs'"
- from this[unfolded s_holding_def, folded wq_def, unfolded wq_neq_simp]
- have "holding s th cs'"
- by (unfold s_holding_def, fold wq_def, auto)
- with not_holding_th_s
- show False by simp
-qed
-
-lemma ready_th_es [simp]: "th \<notin> readys (e#s)"
- by (simp add:readys_def)
-
-lemma holdents_th_s: "holdents s th = {}"
- by (unfold holdents_def, auto)
-
-lemma holdents_th_es: "holdents (e#s) th = {}"
- by (unfold holdents_def, auto)
-
-lemma cntCS_th_es [simp]: "cntCS (e#s) th = 0"
- by (unfold cntCS_def, simp add:holdents_th_es)
-
-lemma pvD_th_s [simp]: "pvD s th = 0"
- by (unfold pvD_def, simp)
-
-lemma pvD_th_es [simp]: "pvD (e#s) th = 0"
- by (unfold pvD_def, simp)
-
-lemma holdents_kept:
- assumes "th' \<noteq> th"
- shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R")
-proof -
- { fix cs'
- assume h: "cs' \<in> ?L"
- hence "cs' \<in> ?R"
- by (unfold holdents_def s_holding_def, fold wq_def,
- unfold wq_neq_simp, auto)
- } moreover {
- fix cs'
- assume h: "cs' \<in> ?R"
- hence "cs' \<in> ?L"
- by (unfold holdents_def s_holding_def, fold wq_def,
- unfold wq_neq_simp, auto)
- } ultimately show ?thesis by auto
-qed
-
-lemma cntCS_kept [simp]:
- assumes "th' \<noteq> th"
- shows "cntCS (e#s) th' = cntCS s th'" (is "?L = ?R")
- using holdents_kept[OF assms]
- by (unfold cntCS_def, simp)
-
-lemma readys_kept1:
- assumes "th' \<noteq> th"
- and "th' \<in> readys (e#s)"
- shows "th' \<in> readys s"
-proof -
- { fix cs'
- assume wait: "waiting s th' cs'"
- have n_wait: "\<not> waiting (e#s) th' cs'"
- using assms by (auto simp:readys_def)
- from wait[unfolded s_waiting_def, folded wq_def]
- n_wait[unfolded s_waiting_def, folded wq_def, unfolded wq_neq_simp]
- have False by auto
- } thus ?thesis using assms
- by (unfold readys_def, auto)
-qed
-
-lemma readys_kept2:
- assumes "th' \<noteq> th"
- and "th' \<in> readys s"
- shows "th' \<in> readys (e#s)"
-proof -
- { fix cs'
- assume wait: "waiting (e#s) th' cs'"
- have n_wait: "\<not> waiting s th' cs'"
- using assms(2) by (auto simp:readys_def)
- from wait[unfolded s_waiting_def, folded wq_def, unfolded wq_neq_simp]
- n_wait[unfolded s_waiting_def, folded wq_def]
- have False by auto
- } with assms show ?thesis
- by (unfold readys_def, auto)
-qed
-
-lemma readys_simp [simp]:
- assumes "th' \<noteq> th"
- shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)"
- using readys_kept1[OF assms] readys_kept2[OF assms]
- by metis
-
-lemma pvD_kept [simp]:
- assumes "th' \<noteq> th"
- shows "pvD (e#s) th' = pvD s th'"
- using assms
- by (unfold pvD_def, simp)
-
-lemma cnp_cnv_cncs_kept:
- assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'"
- shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'"
-proof -
- {
- assume eq_th': "th' = th"
- have ?thesis using assms
- by (unfold eq_th', simp, unfold is_exit, simp)
- } moreover {
- assume h: "th' \<noteq> th"
- hence ?thesis using assms
- by (simp, simp add:is_exit)
- } ultimately show ?thesis by metis
-qed
-
-end
-
-context valid_trace_set
-begin
-
-lemma th_live_s [simp]: "th \<in> threads s"
-proof -
- from pip_e[unfolded is_set]
- show ?thesis
- by (cases, unfold runing_def readys_def, simp)
-qed
-
-lemma th_ready_s [simp]: "th \<in> readys s"
-proof -
- from pip_e[unfolded is_set]
- show ?thesis
- by (cases, unfold runing_def, simp)
-qed
-
-lemma th_not_live_es [simp]: "th \<in> threads (e#s)"
- by (unfold is_set, simp)
-
-
-lemma holdents_kept:
- shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R")
-proof -
- { fix cs'
- assume h: "cs' \<in> ?L"
- hence "cs' \<in> ?R"
- by (unfold holdents_def s_holding_def, fold wq_def,
- unfold wq_neq_simp, auto)
- } moreover {
- fix cs'
- assume h: "cs' \<in> ?R"
- hence "cs' \<in> ?L"
- by (unfold holdents_def s_holding_def, fold wq_def,
- unfold wq_neq_simp, auto)
- } ultimately show ?thesis by auto
-qed
-
-lemma cntCS_kept [simp]:
- shows "cntCS (e#s) th' = cntCS s th'" (is "?L = ?R")
- using holdents_kept
- by (unfold cntCS_def, simp)
-
-lemma threads_kept[simp]:
- "threads (e#s) = threads s"
- by (unfold is_set, simp)
-
-lemma readys_kept1:
- assumes "th' \<in> readys (e#s)"
- shows "th' \<in> readys s"
-proof -
- { fix cs'
- assume wait: "waiting s th' cs'"
- have n_wait: "\<not> waiting (e#s) th' cs'"
- using assms by (auto simp:readys_def)
- from wait[unfolded s_waiting_def, folded wq_def]
- n_wait[unfolded s_waiting_def, folded wq_def, unfolded wq_neq_simp]
- have False by auto
- } moreover have "th' \<in> threads s"
- using assms[unfolded readys_def] by auto
- ultimately show ?thesis
- by (unfold readys_def, auto)
-qed
-
-lemma readys_kept2:
- assumes "th' \<in> readys s"
- shows "th' \<in> readys (e#s)"
-proof -
- { fix cs'
- assume wait: "waiting (e#s) th' cs'"
- have n_wait: "\<not> waiting s th' cs'"
- using assms by (auto simp:readys_def)
- from wait[unfolded s_waiting_def, folded wq_def, unfolded wq_neq_simp]
- n_wait[unfolded s_waiting_def, folded wq_def]
- have False by auto
- } with assms show ?thesis
- by (unfold readys_def, auto)
-qed
-
-lemma readys_simp [simp]:
- shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)"
- using readys_kept1 readys_kept2
- by metis
-
-lemma pvD_kept [simp]:
- shows "pvD (e#s) th' = pvD s th'"
- by (unfold pvD_def, simp)
-
-lemma cnp_cnv_cncs_kept:
- assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'"
- shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'"
- using assms
- by (unfold is_set, simp, fold is_set, simp)
-
-end
-
-context valid_trace
-begin
-
-lemma cnp_cnv_cncs: "cntP s th' = cntV s th' + cntCS s th' + pvD s th'"
-proof(induct rule:ind)
- case Nil
- thus ?case
- by (unfold cntP_def cntV_def pvD_def cntCS_def holdents_def
- s_holding_def, simp)
-next
- case (Cons s e)
- interpret vt_e: valid_trace_e s e using Cons by simp
- show ?case
- proof(cases e)
- case (Create th prio)
- interpret vt_create: valid_trace_create s e th prio
- using Create by (unfold_locales, simp)
- show ?thesis using Cons by (simp add: vt_create.cnp_cnv_cncs_kept)
- next
- case (Exit th)
- interpret vt_exit: valid_trace_exit s e th
- using Exit by (unfold_locales, simp)
- show ?thesis using Cons by (simp add: vt_exit.cnp_cnv_cncs_kept)
- next
- case (P th cs)
- interpret vt_p: valid_trace_p s e th cs using P by (unfold_locales, simp)
- show ?thesis using Cons by (simp add: vt_p.cnp_cnv_cncs_kept)
- next
- case (V th cs)
- interpret vt_v: valid_trace_v s e th cs using V by (unfold_locales, simp)
- show ?thesis using Cons by (simp add: vt_v.cnp_cnv_cncs_kept)
- next
- case (Set th prio)
- interpret vt_set: valid_trace_set s e th prio
- using Set by (unfold_locales, simp)
- show ?thesis using Cons by (simp add: vt_set.cnp_cnv_cncs_kept)
- qed
-qed
-
-lemma not_thread_holdents:
- assumes not_in: "th \<notin> threads s"
- shows "holdents s th = {}"
-proof -
- { fix cs
- assume "cs \<in> holdents s th"
- hence "holding s th cs" by (auto simp:holdents_def)
- from this[unfolded s_holding_def, folded wq_def]
- have "th \<in> set (wq s cs)" by auto
- with wq_threads have "th \<in> threads s" by auto
- with assms
- have False by simp
- } thus ?thesis by auto
-qed
-
-lemma not_thread_cncs:
- assumes not_in: "th \<notin> threads s"
- shows "cntCS s th = 0"
- using not_thread_holdents[OF assms]
- by (simp add:cntCS_def)
-
-lemma cnp_cnv_eq:
- assumes "th \<notin> threads s"
- shows "cntP s th = cntV s th"
- using assms cnp_cnv_cncs not_thread_cncs pvD_def
- by (auto)
-
-end
-
-
-
-end
-
--- a/Moment.thy Tue Jun 14 13:56:51 2016 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,105 +0,0 @@
-theory Moment
-imports Main
-begin
-
-definition moment :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list"
-where "moment n s = rev (take n (rev s))"
-
-value "moment 3 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9::int]"
-value "moment 2 [5, 4, 3, 2, 1, 0::int]"
-
-lemma moment_app [simp]:
- assumes ile: "i \<le> length s"
- shows "moment i (s' @ s) = moment i s"
-using assms unfolding moment_def by simp
-
-lemma moment_eq [simp]: "moment (length s) (s' @ s) = s"
- unfolding moment_def by simp
-
-lemma moment_ge [simp]: "length s \<le> n \<Longrightarrow> moment n s = s"
- by (unfold moment_def, simp)
-
-lemma moment_zero [simp]: "moment 0 s = []"
- by (simp add:moment_def)
-
-lemma least_idx:
- assumes "Q (i::nat)"
- obtains j where "j \<le> i" "Q j" "\<forall> k < j. \<not> Q k"
- using assms
- by (metis ex_least_nat_le le0 not_less0)
-
-lemma duration_idx:
- assumes "\<not> Q (i::nat)"
- and "Q j"
- and "i \<le> j"
- obtains k where "i \<le> k" "k < j" "\<not> Q k" "\<forall> i'. k < i' \<and> i' \<le> j \<longrightarrow> Q i'"
-proof -
- let ?Q = "\<lambda> t. t \<le> j \<and> \<not> Q (j - t)"
- have "?Q (j - i)" using assms by (simp add: assms(1))
- from least_idx [of ?Q, OF this]
- obtain l
- where h: "l \<le> j - i" "\<not> Q (j - l)" "\<forall>k<l. \<not> (k \<le> j \<and> \<not> Q (j - k))"
- by metis
- let ?k = "j - l"
- have "i \<le> ?k" using assms(3) h(1) by linarith
- moreover have "?k < j" by (metis assms(2) diff_le_self h(2) le_neq_implies_less)
- moreover have "\<not> Q ?k" by (simp add: h(2))
- moreover have "\<forall> i'. ?k < i' \<and> i' \<le> j \<longrightarrow> Q i'"
- by (metis diff_diff_cancel diff_le_self diff_less_mono2 h(3)
- less_imp_diff_less not_less)
- ultimately show ?thesis using that by metis
-qed
-
-lemma p_split_gen:
- assumes "Q s"
- and "\<not> Q (moment k s)"
- shows "(\<exists> i. i < length s \<and> k \<le> i \<and> \<not> Q (moment i s) \<and> (\<forall> i' > i. Q (moment i' s)))"
-proof(cases "k \<le> length s")
- case True
- let ?Q = "\<lambda> t. Q (moment t s)"
- have "?Q (length s)" using assms(1) by simp
- from duration_idx[of ?Q, OF assms(2) this True]
- obtain i where h: "k \<le> i" "i < length s" "\<not> Q (moment i s)"
- "\<forall>i'. i < i' \<and> i' \<le> length s \<longrightarrow> Q (moment i' s)" by metis
- moreover have "(\<forall> i' > i. Q (moment i' s))" using h(4) assms(1) not_less
- by fastforce
- ultimately show ?thesis by metis
-qed (insert assms, auto)
-
-lemma p_split:
- assumes qs: "Q s"
- and nq: "\<not> Q []"
- shows "(\<exists> i. i < length s \<and> \<not> Q (moment i s) \<and> (\<forall> i' > i. Q (moment i' s)))"
-proof -
- from nq have "\<not> Q (moment 0 s)" by simp
- from p_split_gen [of Q s 0, OF qs this]
- show ?thesis by auto
-qed
-
-lemma moment_Suc_tl:
- assumes "Suc i \<le> length s"
- shows "tl (moment (Suc i) s) = moment i s"
- using assms
- by (simp add:moment_def rev_take,
- metis Suc_diff_le diff_Suc_Suc drop_Suc tl_drop)
-
-lemma moment_Suc_hd:
- assumes "Suc i \<le> length s"
- shows "hd (moment (Suc i) s) = s!(length s - Suc i)"
- by (simp add:moment_def rev_take,
- subst hd_drop_conv_nth, insert assms, auto)
-
-lemma moment_plus:
- assumes "Suc i \<le> length s"
- shows "(moment (Suc i) s) = (hd (moment (Suc i) s)) # (moment i s)"
-proof -
- have "(moment (Suc i) s) \<noteq> []" using assms
- by (simp add:moment_def rev_take)
- hence "(moment (Suc i) s) = (hd (moment (Suc i) s)) # tl (moment (Suc i) s)"
- by auto
- with moment_Suc_tl[OF assms]
- show ?thesis by metis
-qed
-
-end
-
--- a/Moment_1.thy Tue Jun 14 13:56:51 2016 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,896 +0,0 @@
-theory Moment
-imports Main
-begin
-
-fun firstn :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list"
-where
- "firstn 0 s = []" |
- "firstn (Suc n) [] = []" |
- "firstn (Suc n) (e#s) = e#(firstn n s)"
-
-lemma upto_map_plus: "map (op + k) [i..j] = [i+k..j+k]"
-proof(induct "[i..j]" arbitrary:i j rule:length_induct)
- case (1 i j)
- thus ?case
- proof(cases "i \<le> j")
- case True
- hence le_k: "i + k \<le> j + k" by simp
- show ?thesis (is "?L = ?R")
- proof -
- have "?L = (k + i) # map (op + k) [i + 1..j]"
- by (simp add: upto_rec1[OF True])
- moreover have "?R = (i + k) # [i + k + 1..j + k]"
- by (simp add: upto_rec1[OF le_k])
- moreover have "map (op + k) [i + 1..j] = [i + k + 1..j + k]"
- proof -
- have h: "i + k + 1 = (i + 1) + k" by simp
- show ?thesis
- proof(unfold h, rule 1[rule_format])
- show "length [i + 1..j] < length [i..j]"
- using upto_rec1[OF True] by simp
- qed simp
- qed
- ultimately show ?thesis by simp
- qed
- qed auto
-qed
-
-lemma firstn_alt_def:
- "firstn n s = map (\<lambda> i. s!(nat i)) [0..(int (min (length s) n)) - 1]"
-proof(induct n arbitrary:s)
- case (0 s)
- thus ?case by auto
-next
- case (Suc n s)
- thus ?case (is "?L = ?R")
- proof(cases s)
- case Nil
- thus ?thesis by simp
- next
- case (Cons e es)
- with Suc
- have "?L = e # map (\<lambda>i. es ! nat i) [0..int (min (length es) n) - 1]"
- by simp
- also have "... = map (\<lambda>i. (e # es) ! nat i) [0..int (min (length es) n)]"
- (is "?L1 = ?R1")
- proof -
- have "?R1 = e # map (\<lambda>i. (e # es) ! nat i)
- [1..int (min (length es) n)]"
- proof -
- have "[0..int (min (length es) n)] = 0#[1..int (min (length es) n)]"
- by (simp add: upto.simps)
- thus ?thesis by simp
- qed
- also have "... = ?L1" (is "_#?L2 = _#?R2")
- proof -
- have "?L2 = ?R2"
- proof -
- have "map (\<lambda>i. (e # es) ! nat i) [1..int (min (length es) n)] =
- map ((\<lambda>i. (e # es) ! nat i) \<circ> op + 1) [0..int (min (length es) n) - 1]"
- proof -
- have "[1..int (min (length es) n)] =
- map (op + 1) [0..int (min (length es) n) - 1]"
- by (unfold upto_map_plus, simp)
- thus ?thesis by simp
- qed
- also have "... = map (\<lambda>i. es ! nat i) [0..int (min (length es) n) - 1]"
- proof(rule map_cong)
- fix x
- assume "x \<in> set [0..int (min (length es) n) - 1]"
- thus "((\<lambda>i. (e # es) ! nat i) \<circ> op + 1) x = es ! nat x"
- by (metis atLeastLessThan_iff atLeastLessThan_upto
- comp_apply local.Cons nat_0_le nat_int nth_Cons_Suc of_nat_Suc)
- qed auto
- finally show ?thesis .
- qed
- thus ?thesis by simp
- qed
- finally show ?thesis by simp
- qed
- also have "... = ?R"
- by (unfold Cons, simp)
- finally show ?thesis .
- qed
-qed
-
-fun restn :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list"
-where "restn n s = rev (firstn (length s - n) (rev s))"
-
-definition moment :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list"
-where "moment n s = rev (firstn n (rev s))"
-
-definition restm :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list"
-where "restm n s = rev (restn n (rev s))"
-
-definition from_to :: "nat \<Rightarrow> nat \<Rightarrow> 'a list \<Rightarrow> 'a list"
- where "from_to i j s = firstn (j - i) (restn i s)"
-
-definition down_to :: "nat \<Rightarrow> nat \<Rightarrow> 'a list \<Rightarrow> 'a list"
-where "down_to j i s = rev (from_to i j (rev s))"
-
-value "down_to 6 2 [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]"
-value "from_to 2 6 [0, 1, 2, 3, 4, 5, 6, 7]"
-
-lemma length_eq_elim_l: "\<lbrakk>length xs = length ys; xs@us = ys@vs\<rbrakk> \<Longrightarrow> xs = ys \<and> us = vs"
- by auto
-
-lemma length_eq_elim_r: "\<lbrakk>length us = length vs; xs@us = ys@vs\<rbrakk> \<Longrightarrow> xs = ys \<and> us = vs"
- by simp
-
-lemma firstn_nil [simp]: "firstn n [] = []"
- by (cases n, simp+)
-
-
-value "from_to 0 2 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] @
- from_to 2 5 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]"
-
-lemma firstn_le: "\<And> n s'. n \<le> length s \<Longrightarrow> firstn n (s@s') = firstn n s"
-proof (induct s, simp)
- fix a s n s'
- assume ih: "\<And>n s'. n \<le> length s \<Longrightarrow> firstn n (s @ s') = firstn n s"
- and le_n: " n \<le> length (a # s)"
- show "firstn n ((a # s) @ s') = firstn n (a # s)"
- proof(cases n, simp)
- fix k
- assume eq_n: "n = Suc k"
- with le_n have "k \<le> length s" by auto
- from ih [OF this] and eq_n
- show "firstn n ((a # s) @ s') = firstn n (a # s)" by auto
- qed
-qed
-
-lemma firstn_ge [simp]: "\<And>n. length s \<le> n \<Longrightarrow> firstn n s = s"
-proof(induct s, simp)
- fix a s n
- assume ih: "\<And>n. length s \<le> n \<Longrightarrow> firstn n s = s"
- and le: "length (a # s) \<le> n"
- show "firstn n (a # s) = a # s"
- proof(cases n)
- assume eq_n: "n = 0" with le show ?thesis by simp
- next
- fix k
- assume eq_n: "n = Suc k"
- with le have le_k: "length s \<le> k" by simp
- from ih [OF this] have "firstn k s = s" .
- from eq_n and this
- show ?thesis by simp
- qed
-qed
-
-lemma firstn_eq [simp]: "firstn (length s) s = s"
- by simp
-
-lemma firstn_restn_s: "(firstn n (s::'a list)) @ (restn n s) = s"
-proof(induct n arbitrary:s, simp)
- fix n s
- assume ih: "\<And>t. firstn n (t::'a list) @ restn n t = t"
- show "firstn (Suc n) (s::'a list) @ restn (Suc n) s = s"
- proof(cases s, simp)
- fix x xs
- assume eq_s: "s = x#xs"
- show "firstn (Suc n) s @ restn (Suc n) s = s"
- proof -
- have "firstn (Suc n) s @ restn (Suc n) s = x # (firstn n xs @ restn n xs)"
- proof -
- from eq_s have "firstn (Suc n) s = x # firstn n xs" by simp
- moreover have "restn (Suc n) s = restn n xs"
- proof -
- from eq_s have "restn (Suc n) s = rev (firstn (length xs - n) (rev xs @ [x]))" by simp
- also have "\<dots> = restn n xs"
- proof -
- have "(firstn (length xs - n) (rev xs @ [x])) = (firstn (length xs - n) (rev xs))"
- by(rule firstn_le, simp)
- hence "rev (firstn (length xs - n) (rev xs @ [x])) =
- rev (firstn (length xs - n) (rev xs))" by simp
- also have "\<dots> = rev (firstn (length (rev xs) - n) (rev xs))" by simp
- finally show ?thesis by simp
- qed
- finally show ?thesis by simp
- qed
- ultimately show ?thesis by simp
- qed with ih eq_s show ?thesis by simp
- qed
- qed
-qed
-
-lemma moment_restm_s: "(restm n s)@(moment n s) = s"
-proof -
- have " rev ((firstn n (rev s)) @ (restn n (rev s))) = s" (is "rev ?x = s")
- proof -
- have "?x = rev s" by (simp only:firstn_restn_s)
- thus ?thesis by auto
- qed
- thus ?thesis
- by (auto simp:restm_def moment_def)
-qed
-
-declare restn.simps [simp del] firstn.simps[simp del]
-
-lemma length_firstn_ge: "length s \<le> n \<Longrightarrow> length (firstn n s) = length s"
-proof(induct n arbitrary:s, simp add:firstn.simps)
- case (Suc k)
- assume ih: "\<And> s. length (s::'a list) \<le> k \<Longrightarrow> length (firstn k s) = length s"
- and le: "length s \<le> Suc k"
- show ?case
- proof(cases s)
- case Nil
- from Nil show ?thesis by simp
- next
- case (Cons x xs)
- from le and Cons have "length xs \<le> k" by simp
- from ih [OF this] have "length (firstn k xs) = length xs" .
- moreover from Cons have "length (firstn (Suc k) s) = Suc (length (firstn k xs))"
- by (simp add:firstn.simps)
- moreover note Cons
- ultimately show ?thesis by simp
- qed
-qed
-
-lemma length_firstn_le: "n \<le> length s \<Longrightarrow> length (firstn n s) = n"
-proof(induct n arbitrary:s, simp add:firstn.simps)
- case (Suc k)
- assume ih: "\<And>s. k \<le> length (s::'a list) \<Longrightarrow> length (firstn k s) = k"
- and le: "Suc k \<le> length s"
- show ?case
- proof(cases s)
- case Nil
- from Nil and le show ?thesis by auto
- next
- case (Cons x xs)
- from le and Cons have "k \<le> length xs" by simp
- from ih [OF this] have "length (firstn k xs) = k" .
- moreover from Cons have "length (firstn (Suc k) s) = Suc (length (firstn k xs))"
- by (simp add:firstn.simps)
- ultimately show ?thesis by simp
- qed
-qed
-
-lemma app_firstn_restn:
- fixes s1 s2
- shows "s1 = firstn (length s1) (s1 @ s2) \<and> s2 = restn (length s1) (s1 @ s2)"
-proof(rule length_eq_elim_l)
- have "length s1 \<le> length (s1 @ s2)" by simp
- from length_firstn_le [OF this]
- show "length s1 = length (firstn (length s1) (s1 @ s2))" by simp
-next
- from firstn_restn_s
- show "s1 @ s2 = firstn (length s1) (s1 @ s2) @ restn (length s1) (s1 @ s2)"
- by metis
-qed
-
-
-lemma length_moment_le:
- fixes k s
- assumes le_k: "k \<le> length s"
- shows "length (moment k s) = k"
-proof -
- have "length (rev (firstn k (rev s))) = k"
- proof -
- have "length (rev (firstn k (rev s))) = length (firstn k (rev s))" by simp
- also have "\<dots> = k"
- proof(rule length_firstn_le)
- from le_k show "k \<le> length (rev s)" by simp
- qed
- finally show ?thesis .
- qed
- thus ?thesis by (simp add:moment_def)
-qed
-
-lemma app_moment_restm:
- fixes s1 s2
- shows "s1 = restm (length s2) (s1 @ s2) \<and> s2 = moment (length s2) (s1 @ s2)"
-proof(rule length_eq_elim_r)
- have "length s2 \<le> length (s1 @ s2)" by simp
- from length_moment_le [OF this]
- show "length s2 = length (moment (length s2) (s1 @ s2))" by simp
-next
- from moment_restm_s
- show "s1 @ s2 = restm (length s2) (s1 @ s2) @ moment (length s2) (s1 @ s2)"
- by metis
-qed
-
-lemma length_moment_ge:
- fixes k s
- assumes le_k: "length s \<le> k"
- shows "length (moment k s) = (length s)"
-proof -
- have "length (rev (firstn k (rev s))) = length s"
- proof -
- have "length (rev (firstn k (rev s))) = length (firstn k (rev s))" by simp
- also have "\<dots> = length s"
- proof -
- have "\<dots> = length (rev s)"
- proof(rule length_firstn_ge)
- from le_k show "length (rev s) \<le> k" by simp
- qed
- also have "\<dots> = length s" by simp
- finally show ?thesis .
- qed
- finally show ?thesis .
- qed
- thus ?thesis by (simp add:moment_def)
-qed
-
-lemma length_firstn: "(length (firstn n s) = length s) \<or> (length (firstn n s) = n)"
-proof(cases "n \<le> length s")
- case True
- from length_firstn_le [OF True] show ?thesis by auto
-next
- case False
- from False have "length s \<le> n" by simp
- from firstn_ge [OF this] show ?thesis by auto
-qed
-
-lemma firstn_conc:
- fixes m n
- assumes le_mn: "m \<le> n"
- shows "firstn m s = firstn m (firstn n s)"
-proof(cases "m \<le> length s")
- case True
- have "s = (firstn n s) @ (restn n s)" by (simp add:firstn_restn_s)
- hence "firstn m s = firstn m \<dots>" by simp
- also have "\<dots> = firstn m (firstn n s)"
- proof -
- from length_firstn [of n s]
- have "m \<le> length (firstn n s)"
- proof
- assume "length (firstn n s) = length s" with True show ?thesis by simp
- next
- assume "length (firstn n s) = n " with le_mn show ?thesis by simp
- qed
- from firstn_le [OF this, of "restn n s"]
- show ?thesis .
- qed
- finally show ?thesis by simp
-next
- case False
- from False and le_mn have "length s \<le> n" by simp
- from firstn_ge [OF this] show ?thesis by simp
-qed
-
-lemma restn_conc:
- fixes i j k s
- assumes eq_k: "j + i = k"
- shows "restn k s = restn j (restn i s)"
-proof -
- have "(firstn (length s - k) (rev s)) =
- (firstn (length (rev (firstn (length s - i) (rev s))) - j)
- (rev (rev (firstn (length s - i) (rev s)))))"
- proof -
- have "(firstn (length s - k) (rev s)) =
- (firstn (length (rev (firstn (length s - i) (rev s))) - j)
- (firstn (length s - i) (rev s)))"
- proof -
- have " (length (rev (firstn (length s - i) (rev s))) - j) = length s - k"
- proof -
- have "(length (rev (firstn (length s - i) (rev s))) - j) = (length s - i) - j"
- proof -
- have "(length (rev (firstn (length s - i) (rev s))) - j) =
- length ((firstn (length s - i) (rev s))) - j"
- by simp
- also have "\<dots> = length ((firstn (length (rev s) - i) (rev s))) - j" by simp
- also have "\<dots> = (length (rev s) - i) - j"
- proof -
- have "length ((firstn (length (rev s) - i) (rev s))) = (length (rev s) - i)"
- by (rule length_firstn_le, simp)
- thus ?thesis by simp
- qed
- also have "\<dots> = (length s - i) - j" by simp
- finally show ?thesis .
- qed
- with eq_k show ?thesis by auto
- qed
- moreover have "(firstn (length s - k) (rev s)) =
- (firstn (length s - k) (firstn (length s - i) (rev s)))"
- proof(rule firstn_conc)
- from eq_k show "length s - k \<le> length s - i" by simp
- qed
- ultimately show ?thesis by simp
- qed
- thus ?thesis by simp
- qed
- thus ?thesis by (simp only:restn.simps)
-qed
-
-(*
-value "down_to 2 0 [5, 4, 3, 2, 1, 0]"
-value "moment 2 [5, 4, 3, 2, 1, 0]"
-*)
-
-lemma from_to_firstn: "from_to 0 k s = firstn k s"
-by (simp add:from_to_def restn.simps)
-
-lemma moment_app [simp]:
- assumes
- ile: "i \<le> length s"
- shows "moment i (s'@s) = moment i s"
-proof -
- have "moment i (s'@s) = rev (firstn i (rev (s'@s)))" by (simp add:moment_def)
- moreover have "firstn i (rev (s'@s)) = firstn i (rev s @ rev s')" by simp
- moreover have "\<dots> = firstn i (rev s)"
- proof(rule firstn_le)
- have "length (rev s) = length s" by simp
- with ile show "i \<le> length (rev s)" by simp
- qed
- ultimately show ?thesis by (simp add:moment_def)
-qed
-
-lemma moment_eq [simp]: "moment (length s) (s'@s) = s"
-proof -
- have "length s \<le> length s" by simp
- from moment_app [OF this, of s']
- have " moment (length s) (s' @ s) = moment (length s) s" .
- moreover have "\<dots> = s" by (simp add:moment_def)
- ultimately show ?thesis by simp
-qed
-
-lemma moment_ge [simp]: "length s \<le> n \<Longrightarrow> moment n s = s"
- by (unfold moment_def, simp)
-
-lemma moment_zero [simp]: "moment 0 s = []"
- by (simp add:moment_def firstn.simps)
-
-lemma p_split_gen:
- "\<lbrakk>Q s; \<not> Q (moment k s)\<rbrakk> \<Longrightarrow>
- (\<exists> i. i < length s \<and> k \<le> i \<and> \<not> Q (moment i s) \<and> (\<forall> i' > i. Q (moment i' s)))"
-proof (induct s, simp)
- fix a s
- assume ih: "\<lbrakk>Q s; \<not> Q (moment k s)\<rbrakk>
- \<Longrightarrow> \<exists>i<length s. k \<le> i \<and> \<not> Q (moment i s) \<and> (\<forall>i'>i. Q (moment i' s))"
- and nq: "\<not> Q (moment k (a # s))" and qa: "Q (a # s)"
- have le_k: "k \<le> length s"
- proof -
- { assume "length s < k"
- hence "length (a#s) \<le> k" by simp
- from moment_ge [OF this] and nq and qa
- have "False" by auto
- } thus ?thesis by arith
- qed
- have nq_k: "\<not> Q (moment k s)"
- proof -
- have "moment k (a#s) = moment k s"
- proof -
- from moment_app [OF le_k, of "[a]"] show ?thesis by simp
- qed
- with nq show ?thesis by simp
- qed
- show "\<exists>i<length (a # s). k \<le> i \<and> \<not> Q (moment i (a # s)) \<and> (\<forall>i'>i. Q (moment i' (a # s)))"
- proof -
- { assume "Q s"
- from ih [OF this nq_k]
- obtain i where lti: "i < length s"
- and nq: "\<not> Q (moment i s)"
- and rst: "\<forall>i'>i. Q (moment i' s)"
- and lki: "k \<le> i" by auto
- have ?thesis
- proof -
- from lti have "i < length (a # s)" by auto
- moreover have " \<not> Q (moment i (a # s))"
- proof -
- from lti have "i \<le> (length s)" by simp
- from moment_app [OF this, of "[a]"]
- have "moment i (a # s) = moment i s" by simp
- with nq show ?thesis by auto
- qed
- moreover have " (\<forall>i'>i. Q (moment i' (a # s)))"
- proof -
- {
- fix i'
- assume lti': "i < i'"
- have "Q (moment i' (a # s))"
- proof(cases "length (a#s) \<le> i'")
- case True
- from True have "moment i' (a#s) = a#s" by simp
- with qa show ?thesis by simp
- next
- case False
- from False have "i' \<le> length s" by simp
- from moment_app [OF this, of "[a]"]
- have "moment i' (a#s) = moment i' s" by simp
- with rst lti' show ?thesis by auto
- qed
- } thus ?thesis by auto
- qed
- moreover note lki
- ultimately show ?thesis by auto
- qed
- } moreover {
- assume ns: "\<not> Q s"
- have ?thesis
- proof -
- let ?i = "length s"
- have "\<not> Q (moment ?i (a#s))"
- proof -
- have "?i \<le> length s" by simp
- from moment_app [OF this, of "[a]"]
- have "moment ?i (a#s) = moment ?i s" by simp
- moreover have "\<dots> = s" by simp
- ultimately show ?thesis using ns by auto
- qed
- moreover have "\<forall> i' > ?i. Q (moment i' (a#s))"
- proof -
- { fix i'
- assume "i' > ?i"
- hence "length (a#s) \<le> i'" by simp
- from moment_ge [OF this]
- have " moment i' (a # s) = a # s" .
- with qa have "Q (moment i' (a#s))" by simp
- } thus ?thesis by auto
- qed
- moreover have "?i < length (a#s)" by simp
- moreover note le_k
- ultimately show ?thesis by auto
- qed
- } ultimately show ?thesis by auto
- qed
-qed
-
-lemma p_split:
- "\<And> s Q. \<lbrakk>Q s; \<not> Q []\<rbrakk> \<Longrightarrow>
- (\<exists> i. i < length s \<and> \<not> Q (moment i s) \<and> (\<forall> i' > i. Q (moment i' s)))"
-proof -
- fix s Q
- assume qs: "Q s" and nq: "\<not> Q []"
- from nq have "\<not> Q (moment 0 s)" by simp
- from p_split_gen [of Q s 0, OF qs this]
- show "(\<exists> i. i < length s \<and> \<not> Q (moment i s) \<and> (\<forall> i' > i. Q (moment i' s)))"
- by auto
-qed
-
-lemma moment_plus:
- "Suc i \<le> length s \<Longrightarrow> moment (Suc i) s = (hd (moment (Suc i) s)) # (moment i s)"
-proof(induct s, simp+)
- fix a s
- assume ih: "Suc i \<le> length s \<Longrightarrow> moment (Suc i) s = hd (moment (Suc i) s) # moment i s"
- and le_i: "i \<le> length s"
- show "moment (Suc i) (a # s) = hd (moment (Suc i) (a # s)) # moment i (a # s)"
- proof(cases "i= length s")
- case True
- hence "Suc i = length (a#s)" by simp
- with moment_eq have "moment (Suc i) (a#s) = a#s" by auto
- moreover have "moment i (a#s) = s"
- proof -
- from moment_app [OF le_i, of "[a]"]
- and True show ?thesis by simp
- qed
- ultimately show ?thesis by auto
- next
- case False
- from False and le_i have lti: "i < length s" by arith
- hence les_i: "Suc i \<le> length s" by arith
- show ?thesis
- proof -
- from moment_app [OF les_i, of "[a]"]
- have "moment (Suc i) (a # s) = moment (Suc i) s" by simp
- moreover have "moment i (a#s) = moment i s"
- proof -
- from lti have "i \<le> length s" by simp
- from moment_app [OF this, of "[a]"] show ?thesis by simp
- qed
- moreover note ih [OF les_i]
- ultimately show ?thesis by auto
- qed
- qed
-qed
-
-lemma from_to_conc:
- fixes i j k s
- assumes le_ij: "i \<le> j"
- and le_jk: "j \<le> k"
- shows "from_to i j s @ from_to j k s = from_to i k s"
-proof -
- let ?ris = "restn i s"
- have "firstn (j - i) (restn i s) @ firstn (k - j) (restn j s) =
- firstn (k - i) (restn i s)" (is "?x @ ?y = ?z")
- proof -
- let "firstn (k-j) ?u" = "?y"
- let ?rst = " restn (k - j) (restn (j - i) ?ris)"
- let ?rst' = "restn (k - i) ?ris"
- have "?u = restn (j-i) ?ris"
- proof(rule restn_conc)
- from le_ij show "j - i + i = j" by simp
- qed
- hence "?x @ ?y = ?x @ firstn (k-j) (restn (j-i) ?ris)" by simp
- moreover have "firstn (k - j) (restn (j - i) (restn i s)) @ ?rst =
- restn (j-i) ?ris" by (simp add:firstn_restn_s)
- ultimately have "?x @ ?y @ ?rst = ?x @ (restn (j-i) ?ris)" by simp
- also have "\<dots> = ?ris" by (simp add:firstn_restn_s)
- finally have "?x @ ?y @ ?rst = ?ris" .
- moreover have "?z @ ?rst = ?ris"
- proof -
- have "?z @ ?rst' = ?ris" by (simp add:firstn_restn_s)
- moreover have "?rst' = ?rst"
- proof(rule restn_conc)
- from le_ij le_jk show "k - j + (j - i) = k - i" by auto
- qed
- ultimately show ?thesis by simp
- qed
- ultimately have "?x @ ?y @ ?rst = ?z @ ?rst" by simp
- thus ?thesis by auto
- qed
- thus ?thesis by (simp only:from_to_def)
-qed
-
-lemma down_to_conc:
- fixes i j k s
- assumes le_ij: "i \<le> j"
- and le_jk: "j \<le> k"
- shows "down_to k j s @ down_to j i s = down_to k i s"
-proof -
- have "rev (from_to j k (rev s)) @ rev (from_to i j (rev s)) = rev (from_to i k (rev s))"
- (is "?L = ?R")
- proof -
- have "?L = rev (from_to i j (rev s) @ from_to j k (rev s))" by simp
- also have "\<dots> = ?R" (is "rev ?x = rev ?y")
- proof -
- have "?x = ?y" by (rule from_to_conc[OF le_ij le_jk])
- thus ?thesis by simp
- qed
- finally show ?thesis .
- qed
- thus ?thesis by (simp add:down_to_def)
-qed
-
-lemma restn_ge:
- fixes s k
- assumes le_k: "length s \<le> k"
- shows "restn k s = []"
-proof -
- from firstn_restn_s [of k s, symmetric] have "s = (firstn k s) @ (restn k s)" .
- hence "length s = length \<dots>" by simp
- also have "\<dots> = length (firstn k s) + length (restn k s)" by simp
- finally have "length s = ..." by simp
- moreover from length_firstn_ge and le_k
- have "length (firstn k s) = length s" by simp
- ultimately have "length (restn k s) = 0" by auto
- thus ?thesis by auto
-qed
-
-lemma from_to_ge: "length s \<le> k \<Longrightarrow> from_to k j s = []"
-proof(simp only:from_to_def)
- assume "length s \<le> k"
- from restn_ge [OF this]
- show "firstn (j - k) (restn k s) = []" by simp
-qed
-
-(*
-value "from_to 2 5 [0, 1, 2, 3, 4]"
-value "restn 2 [0, 1, 2, 3, 4]"
-*)
-
-lemma from_to_restn:
- fixes k j s
- assumes le_j: "length s \<le> j"
- shows "from_to k j s = restn k s"
-proof -
- have "from_to 0 k s @ from_to k j s = from_to 0 j s"
- proof(cases "k \<le> j")
- case True
- from from_to_conc True show ?thesis by auto
- next
- case False
- from False le_j have lek: "length s \<le> k" by auto
- from from_to_ge [OF this] have "from_to k j s = []" .
- hence "from_to 0 k s @ from_to k j s = from_to 0 k s" by simp
- also have "\<dots> = s"
- proof -
- from from_to_firstn [of k s]
- have "\<dots> = firstn k s" .
- also have "\<dots> = s" by (rule firstn_ge [OF lek])
- finally show ?thesis .
- qed
- finally have "from_to 0 k s @ from_to k j s = s" .
- moreover have "from_to 0 j s = s"
- proof -
- have "from_to 0 j s = firstn j s" by (simp add:from_to_firstn)
- also have "\<dots> = s"
- proof(rule firstn_ge)
- from le_j show "length s \<le> j " by simp
- qed
- finally show ?thesis .
- qed
- ultimately show ?thesis by auto
- qed
- also have "\<dots> = s"
- proof -
- from from_to_firstn have "\<dots> = firstn j s" .
- also have "\<dots> = s"
- proof(rule firstn_ge)
- from le_j show "length s \<le> j" by simp
- qed
- finally show ?thesis .
- qed
- finally have "from_to 0 k s @ from_to k j s = s" .
- moreover have "from_to 0 k s @ restn k s = s"
- proof -
- from from_to_firstn [of k s]
- have "from_to 0 k s = firstn k s" .
- thus ?thesis by (simp add:firstn_restn_s)
- qed
- ultimately have "from_to 0 k s @ from_to k j s =
- from_to 0 k s @ restn k s" by simp
- thus ?thesis by auto
-qed
-
-lemma down_to_moment: "down_to k 0 s = moment k s"
-proof -
- have "rev (from_to 0 k (rev s)) = rev (firstn k (rev s))"
- using from_to_firstn by metis
- thus ?thesis by (simp add:down_to_def moment_def)
-qed
-
-lemma down_to_restm:
- assumes le_s: "length s \<le> j"
- shows "down_to j k s = restm k s"
-proof -
- have "rev (from_to k j (rev s)) = rev (restn k (rev s))" (is "?L = ?R")
- proof -
- from le_s have "length (rev s) \<le> j" by simp
- from from_to_restn [OF this, of k] show ?thesis by simp
- qed
- thus ?thesis by (simp add:down_to_def restm_def)
-qed
-
-lemma moment_split: "moment (m+i) s = down_to (m+i) i s @down_to i 0 s"
-proof -
- have "moment (m + i) s = down_to (m+i) 0 s" using down_to_moment by metis
- also have "\<dots> = (down_to (m+i) i s) @ (down_to i 0 s)"
- by(rule down_to_conc[symmetric], auto)
- finally show ?thesis .
-qed
-
-lemma length_restn: "length (restn i s) = length s - i"
-proof(cases "i \<le> length s")
- case True
- from length_firstn_le [OF this] have "length (firstn i s) = i" .
- moreover have "length s = length (firstn i s) + length (restn i s)"
- proof -
- have "s = firstn i s @ restn i s" using firstn_restn_s by metis
- hence "length s = length \<dots>" by simp
- thus ?thesis by simp
- qed
- ultimately show ?thesis by simp
-next
- case False
- hence "length s \<le> i" by simp
- from restn_ge [OF this] have "restn i s = []" .
- with False show ?thesis by simp
-qed
-
-lemma length_from_to_in:
- fixes i j s
- assumes le_ij: "i \<le> j"
- and le_j: "j \<le> length s"
- shows "length (from_to i j s) = j - i"
-proof -
- have "from_to 0 j s = from_to 0 i s @ from_to i j s"
- by (rule from_to_conc[symmetric, OF _ le_ij], simp)
- moreover have "length (from_to 0 j s) = j"
- proof -
- have "from_to 0 j s = firstn j s" using from_to_firstn by metis
- moreover have "length \<dots> = j" by (rule length_firstn_le [OF le_j])
- ultimately show ?thesis by simp
- qed
- moreover have "length (from_to 0 i s) = i"
- proof -
- have "from_to 0 i s = firstn i s" using from_to_firstn by metis
- moreover have "length \<dots> = i"
- proof (rule length_firstn_le)
- from le_ij le_j show "i \<le> length s" by simp
- qed
- ultimately show ?thesis by simp
- qed
- ultimately show ?thesis by auto
-qed
-
-lemma firstn_restn_from_to: "from_to i (m + i) s = firstn m (restn i s)"
-proof(cases "m+i \<le> length s")
- case True
- have "restn i s = from_to i (m+i) s @ from_to (m+i) (length s) s"
- proof -
- have "restn i s = from_to i (length s) s"
- by(rule from_to_restn[symmetric], simp)
- also have "\<dots> = from_to i (m+i) s @ from_to (m+i) (length s) s"
- by(rule from_to_conc[symmetric, OF _ True], simp)
- finally show ?thesis .
- qed
- hence "firstn m (restn i s) = firstn m \<dots>" by simp
- moreover have "\<dots> = firstn (length (from_to i (m+i) s))
- (from_to i (m+i) s @ from_to (m+i) (length s) s)"
- proof -
- have "length (from_to i (m+i) s) = m"
- proof -
- have "length (from_to i (m+i) s) = (m+i) - i"
- by(rule length_from_to_in [OF _ True], simp)
- thus ?thesis by simp
- qed
- thus ?thesis by simp
- qed
- ultimately show ?thesis using app_firstn_restn by metis
-next
- case False
- hence "length s \<le> m + i" by simp
- from from_to_restn [OF this]
- have "from_to i (m + i) s = restn i s" .
- moreover have "firstn m (restn i s) = restn i s"
- proof(rule firstn_ge)
- show "length (restn i s) \<le> m"
- proof -
- have "length (restn i s) = length s - i" using length_restn by metis
- with False show ?thesis by simp
- qed
- qed
- ultimately show ?thesis by simp
-qed
-
-lemma down_to_moment_restm:
- fixes m i s
- shows "down_to (m + i) i s = moment m (restm i s)"
- by (simp add:firstn_restn_from_to down_to_def moment_def restm_def)
-
-lemma moment_plus_split:
- fixes m i s
- shows "moment (m + i) s = moment m (restm i s) @ moment i s"
-proof -
- from moment_split [of m i s]
- have "moment (m + i) s = down_to (m + i) i s @ down_to i 0 s" .
- also have "\<dots> = down_to (m+i) i s @ moment i s" using down_to_moment by simp
- also from down_to_moment_restm have "\<dots> = moment m (restm i s) @ moment i s"
- by simp
- finally show ?thesis .
-qed
-
-lemma length_restm: "length (restm i s) = length s - i"
-proof -
- have "length (rev (restn i (rev s))) = length s - i" (is "?L = ?R")
- proof -
- have "?L = length (restn i (rev s))" by simp
- also have "\<dots> = length (rev s) - i" using length_restn by metis
- also have "\<dots> = ?R" by simp
- finally show ?thesis .
- qed
- thus ?thesis by (simp add:restm_def)
-qed
-
-lemma moment_prefix: "(moment i t @ s) = moment (i + length s) (t @ s)"
-proof -
- from moment_plus_split [of i "length s" "t@s"]
- have " moment (i + length s) (t @ s) = moment i (restm (length s) (t @ s)) @ moment (length s) (t @ s)"
- by auto
- with app_moment_restm[of t s]
- have "moment (i + length s) (t @ s) = moment i t @ moment (length s) (t @ s)" by simp
- with moment_app show ?thesis by auto
-qed
-
-lemma length_down_to_in:
- assumes le_ij: "i \<le> j"
- and le_js: "j \<le> length s"
- shows "length (down_to j i s) = j - i"
-proof -
- have "length (down_to j i s) = length (from_to i j (rev s))"
- by (unfold down_to_def, auto)
- also have "\<dots> = j - i"
- proof(rule length_from_to_in[OF le_ij])
- from le_js show "j \<le> length (rev s)" by simp
- qed
- finally show ?thesis .
-qed
-
-
-lemma moment_head:
- assumes le_it: "Suc i \<le> length t"
- obtains e where "moment (Suc i) t = e#moment i t"
-proof -
- have "i \<le> Suc i" by simp
- from length_down_to_in [OF this le_it]
- have "length (down_to (Suc i) i t) = 1" by auto
- then obtain e where "down_to (Suc i) i t = [e]"
- apply (cases "(down_to (Suc i) i t)") by auto
- moreover have "down_to (Suc i) 0 t = down_to (Suc i) i t @ down_to i 0 t"
- by (rule down_to_conc[symmetric], auto)
- ultimately have eq_me: "moment (Suc i) t = e#(moment i t)"
- by (auto simp:down_to_moment)
- from that [OF this] show ?thesis .
-qed
-
-end
--- a/PIPBasics.thy Tue Jun 14 13:56:51 2016 +0100
+++ b/PIPBasics.thy Tue Jun 14 15:06:16 2016 +0100
@@ -511,10 +511,12 @@
} ultimately show ?thesis by blast
qed
+(*
lemma image_eq:
assumes "A = B"
shows "f ` A = f ` B"
using assms by auto
+*)
lemma tRAG_trancl_eq_Th:
"{Th th' | th'. (Th th', Th th) \<in> (tRAG s)^+} =
@@ -907,40 +909,6 @@
qed
qed
-text {*
- The following lemma says that if @{text "s"} is a valid state, so
- is its any postfix. Where @{term "monent t s"} is the postfix of
- @{term "s"} with length @{term "t"}.
-*}
-lemma vt_moment: "\<And> t. vt (moment t s)"
-proof(induct rule:ind)
- case Nil
- thus ?case by (simp add:vt_nil)
-next
- case (Cons s e t)
- show ?case
- proof(cases "t \<ge> length (e#s)")
- case True
- from True have "moment t (e#s) = e#s" by simp
- thus ?thesis using Cons
- by (simp add:valid_trace_def valid_trace_e_def, auto)
- next
- case False
- from Cons have "vt (moment t s)" by simp
- moreover have "moment t (e#s) = moment t s"
- proof -
- from False have "t \<le> length s" by simp
- from moment_app [OF this, of "[e]"]
- show ?thesis by simp
- qed
- ultimately show ?thesis by simp
- qed
-qed
-
-text {*
- The following two lemmas are fundamental, because they assure
- that the numbers of both living and ready threads are finite.
-*}
lemma finite_threads:
shows "finite (threads s)"
@@ -951,34 +919,6 @@
end
-text {*
- The following locale @{text "valid_moment"} is to inherit the properties
- derived on any valid state to the prefix of it, with length @{text "i"}.
-*}
-locale valid_moment = valid_trace +
- fixes i :: nat
-
-sublocale valid_moment < vat_moment: valid_trace "(moment i s)"
- by (unfold_locales, insert vt_moment, auto)
-
-locale valid_moment_e = valid_moment +
- assumes less_i: "i < length s"
-begin
- definition "next_e = hd (moment (Suc i) s)"
-
- lemma trace_e:
- "moment (Suc i) s = next_e#moment i s"
- proof -
- from less_i have "Suc i \<le> length s" by auto
- from moment_plus[OF this, folded next_e_def]
- show ?thesis .
- qed
-
-end
-
-sublocale valid_moment_e < vat_moment_e: valid_trace_e "moment i s" "next_e"
- using vt_moment[of "Suc i", unfolded trace_e]
- by (unfold_locales, simp)
section {* Waiting queues are distinct *}
@@ -1385,13 +1325,16 @@
end
+context valid_trace
+begin
+
text {*
The is the main lemma of this section, which is derived
by induction, case analysis on event @{text e} and
assembling the @{text "wq_threads_kept"}-results of
all possible cases of @{text "e"}.
*}
-lemma (in valid_trace) wq_threads:
+lemma wq_threads:
assumes "th \<in> set (wq s cs)"
shows "th \<in> threads s"
using assms
@@ -1432,8 +1375,6 @@
subsection {* RAG and threads *}
-context valid_trace
-begin
text {*
As corollaries of @{thm wq_threads}, it is shown in this subsection
@@ -1869,7 +1810,7 @@
"RAG (e # s) =
RAG s - {(Cs cs, Th th)} -
{(Th th', Cs cs) |th'. next_th s th cs th'} \<union>
- {(Cs cs, Th th') |th'. next_th s th cs th'}" (is "?L = ?R")
+ {(Cs cs, Th th') |th'. next_th s th cs th'}" (is "?L = ?R")
proof(rule rel_eqI)
fix n1 n2
assume "(n1, n2) \<in> ?L"
@@ -3208,14 +3149,15 @@
qed
qed
-lemma card_running: "card (running s) \<le> 1"
+lemma card_running:
+ shows "card (running s) \<le> 1"
proof(cases "running s = {}")
case True
thus ?thesis by auto
next
case False
- then obtain th where [simp]: "th \<in> running s" by auto
- from running_unique[OF this]
+ then obtain th where "th \<in> running s" by auto
+ with running_unique
have "running s = {th}" by auto
thus ?thesis by auto
qed
--- a/PIPDefs.thy Tue Jun 14 13:56:51 2016 +0100
+++ b/PIPDefs.thy Tue Jun 14 15:06:16 2016 +0100
@@ -1,6 +1,6 @@
(*<*)
theory PIPDefs
-imports Precedence_ord Moment RTree Max
+imports Precedence_ord RTree Max
begin
(*>*)