|
1 theory CpsG |
|
2 imports PIPDefs |
|
3 begin |
|
4 |
|
5 lemma Max_fg_mono: |
|
6 assumes "finite A" |
|
7 and "\<forall> a \<in> A. f a \<le> g a" |
|
8 shows "Max (f ` A) \<le> Max (g ` A)" |
|
9 proof(cases "A = {}") |
|
10 case True |
|
11 thus ?thesis by auto |
|
12 next |
|
13 case False |
|
14 show ?thesis |
|
15 proof(rule Max.boundedI) |
|
16 from assms show "finite (f ` A)" by auto |
|
17 next |
|
18 from False show "f ` A \<noteq> {}" by auto |
|
19 next |
|
20 fix fa |
|
21 assume "fa \<in> f ` A" |
|
22 then obtain a where h_fa: "a \<in> A" "fa = f a" by auto |
|
23 show "fa \<le> Max (g ` A)" |
|
24 proof(rule Max_ge_iff[THEN iffD2]) |
|
25 from assms show "finite (g ` A)" by auto |
|
26 next |
|
27 from False show "g ` A \<noteq> {}" by auto |
|
28 next |
|
29 from h_fa have "g a \<in> g ` A" by auto |
|
30 moreover have "fa \<le> g a" using h_fa assms(2) by auto |
|
31 ultimately show "\<exists>a\<in>g ` A. fa \<le> a" by auto |
|
32 qed |
|
33 qed |
|
34 qed |
|
35 |
|
36 lemma Max_f_mono: |
|
37 assumes seq: "A \<subseteq> B" |
|
38 and np: "A \<noteq> {}" |
|
39 and fnt: "finite B" |
|
40 shows "Max (f ` A) \<le> Max (f ` B)" |
|
41 proof(rule Max_mono) |
|
42 from seq show "f ` A \<subseteq> f ` B" by auto |
|
43 next |
|
44 from np show "f ` A \<noteq> {}" by auto |
|
45 next |
|
46 from fnt and seq show "finite (f ` B)" by auto |
|
47 qed |
|
48 |
|
49 lemma eq_RAG: |
|
50 "RAG (wq s) = RAG s" |
|
51 by (unfold cs_RAG_def s_RAG_def, auto) |
|
52 |
|
53 lemma waiting_holding: |
|
54 assumes "waiting (s::state) th cs" |
|
55 obtains th' where "holding s th' cs" |
|
56 proof - |
|
57 from assms[unfolded s_waiting_def, folded wq_def] |
|
58 obtain th' where "th' \<in> set (wq s cs)" "th' = hd (wq s cs)" |
|
59 by (metis empty_iff hd_in_set list.set(1)) |
|
60 hence "holding s th' cs" |
|
61 by (unfold s_holding_def, fold wq_def, auto) |
|
62 from that[OF this] show ?thesis . |
|
63 qed |
|
64 |
|
65 lemma cp_eq_cpreced: "cp s th = cpreced (wq s) s th" |
|
66 unfolding cp_def wq_def |
|
67 apply(induct s rule: schs.induct) |
|
68 apply(simp add: Let_def cpreced_initial) |
|
69 apply(simp add: Let_def) |
|
70 apply(simp add: Let_def) |
|
71 apply(simp add: Let_def) |
|
72 apply(subst (2) schs.simps) |
|
73 apply(simp add: Let_def) |
|
74 apply(subst (2) schs.simps) |
|
75 apply(simp add: Let_def) |
|
76 done |
|
77 |
|
78 lemma cp_alt_def: |
|
79 "cp s th = |
|
80 Max ((the_preced s) ` {th'. Th th' \<in> (subtree (RAG s) (Th th))})" |
|
81 proof - |
|
82 have "Max (the_preced s ` ({th} \<union> dependants (wq s) th)) = |
|
83 Max (the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th)})" |
|
84 (is "Max (_ ` ?L) = Max (_ ` ?R)") |
|
85 proof - |
|
86 have "?L = ?R" |
|
87 by (auto dest:rtranclD simp:cs_dependants_def cs_RAG_def s_RAG_def subtree_def) |
|
88 thus ?thesis by simp |
|
89 qed |
|
90 thus ?thesis by (unfold cp_eq_cpreced cpreced_def, fold the_preced_def, simp) |
|
91 qed |
|
92 |
|
93 (* ccc *) |
|
94 |
|
95 |
|
96 locale valid_trace = |
|
97 fixes s |
|
98 assumes vt : "vt s" |
|
99 |
|
100 locale valid_trace_e = valid_trace + |
|
101 fixes e |
|
102 assumes vt_e: "vt (e#s)" |
|
103 begin |
|
104 |
|
105 lemma pip_e: "PIP s e" |
|
106 using vt_e by (cases, simp) |
|
107 |
|
108 end |
|
109 |
|
110 locale valid_trace_create = valid_trace_e + |
|
111 fixes th prio |
|
112 assumes is_create: "e = Create th prio" |
|
113 |
|
114 locale valid_trace_exit = valid_trace_e + |
|
115 fixes th |
|
116 assumes is_exit: "e = Exit th" |
|
117 |
|
118 locale valid_trace_p = valid_trace_e + |
|
119 fixes th cs |
|
120 assumes is_p: "e = P th cs" |
|
121 |
|
122 locale valid_trace_v = valid_trace_e + |
|
123 fixes th cs |
|
124 assumes is_v: "e = V th cs" |
|
125 begin |
|
126 definition "rest = tl (wq s cs)" |
|
127 definition "wq' = (SOME q. distinct q \<and> set q = set rest)" |
|
128 end |
|
129 |
|
130 locale valid_trace_v_n = valid_trace_v + |
|
131 assumes rest_nnl: "rest \<noteq> []" |
|
132 |
|
133 locale valid_trace_v_e = valid_trace_v + |
|
134 assumes rest_nil: "rest = []" |
|
135 |
|
136 locale valid_trace_set= valid_trace_e + |
|
137 fixes th prio |
|
138 assumes is_set: "e = Set th prio" |
|
139 |
|
140 context valid_trace |
|
141 begin |
|
142 |
|
143 lemma ind [consumes 0, case_names Nil Cons, induct type]: |
|
144 assumes "PP []" |
|
145 and "(\<And>s e. valid_trace_e s e \<Longrightarrow> |
|
146 PP s \<Longrightarrow> PIP s e \<Longrightarrow> PP (e # s))" |
|
147 shows "PP s" |
|
148 proof(induct rule:vt.induct[OF vt, case_names Init Step]) |
|
149 case Init |
|
150 from assms(1) show ?case . |
|
151 next |
|
152 case (Step s e) |
|
153 show ?case |
|
154 proof(rule assms(2)) |
|
155 show "valid_trace_e s e" using Step by (unfold_locales, auto) |
|
156 next |
|
157 show "PP s" using Step by simp |
|
158 next |
|
159 show "PIP s e" using Step by simp |
|
160 qed |
|
161 qed |
|
162 |
|
163 lemma vt_moment: "\<And> t. vt (moment t s)" |
|
164 proof(induct rule:ind) |
|
165 case Nil |
|
166 thus ?case by (simp add:vt_nil) |
|
167 next |
|
168 case (Cons s e t) |
|
169 show ?case |
|
170 proof(cases "t \<ge> length (e#s)") |
|
171 case True |
|
172 from True have "moment t (e#s) = e#s" by simp |
|
173 thus ?thesis using Cons |
|
174 by (simp add:valid_trace_def valid_trace_e_def, auto) |
|
175 next |
|
176 case False |
|
177 from Cons have "vt (moment t s)" by simp |
|
178 moreover have "moment t (e#s) = moment t s" |
|
179 proof - |
|
180 from False have "t \<le> length s" by simp |
|
181 from moment_app [OF this, of "[e]"] |
|
182 show ?thesis by simp |
|
183 qed |
|
184 ultimately show ?thesis by simp |
|
185 qed |
|
186 qed |
|
187 |
|
188 lemma finite_threads: |
|
189 shows "finite (threads s)" |
|
190 using vt by (induct) (auto elim: step.cases) |
|
191 |
|
192 end |
|
193 |
|
194 lemma RAG_target_th: "(Th th, x) \<in> RAG (s::state) \<Longrightarrow> \<exists> cs. x = Cs cs" |
|
195 by (unfold s_RAG_def, auto) |
|
196 |
|
197 locale valid_moment = valid_trace + |
|
198 fixes i :: nat |
|
199 |
|
200 sublocale valid_moment < vat_moment: valid_trace "(moment i s)" |
|
201 by (unfold_locales, insert vt_moment, auto) |
|
202 |
|
203 lemma waiting_eq: "waiting s th cs = waiting (wq s) th cs" |
|
204 by (unfold s_waiting_def cs_waiting_def wq_def, auto) |
|
205 |
|
206 lemma holding_eq: "holding (s::state) th cs = holding (wq s) th cs" |
|
207 by (unfold s_holding_def wq_def cs_holding_def, simp) |
|
208 |
|
209 lemma runing_ready: |
|
210 shows "runing s \<subseteq> readys s" |
|
211 unfolding runing_def readys_def |
|
212 by auto |
|
213 |
|
214 lemma readys_threads: |
|
215 shows "readys s \<subseteq> threads s" |
|
216 unfolding readys_def |
|
217 by auto |
|
218 |
|
219 lemma wq_v_neq [simp]: |
|
220 "cs \<noteq> cs' \<Longrightarrow> wq (V thread cs#s) cs' = wq s cs'" |
|
221 by (auto simp:wq_def Let_def cp_def split:list.splits) |
|
222 |
|
223 lemma runing_head: |
|
224 assumes "th \<in> runing s" |
|
225 and "th \<in> set (wq_fun (schs s) cs)" |
|
226 shows "th = hd (wq_fun (schs s) cs)" |
|
227 using assms |
|
228 by (simp add:runing_def readys_def s_waiting_def wq_def) |
|
229 |
|
230 context valid_trace |
|
231 begin |
|
232 |
|
233 lemma runing_wqE: |
|
234 assumes "th \<in> runing s" |
|
235 and "th \<in> set (wq s cs)" |
|
236 obtains rest where "wq s cs = th#rest" |
|
237 proof - |
|
238 from assms(2) obtain th' rest where eq_wq: "wq s cs = th'#rest" |
|
239 by (meson list.set_cases) |
|
240 have "th' = th" |
|
241 proof(rule ccontr) |
|
242 assume "th' \<noteq> th" |
|
243 hence "th \<noteq> hd (wq s cs)" using eq_wq by auto |
|
244 with assms(2) |
|
245 have "waiting s th cs" |
|
246 by (unfold s_waiting_def, fold wq_def, auto) |
|
247 with assms show False |
|
248 by (unfold runing_def readys_def, auto) |
|
249 qed |
|
250 with eq_wq that show ?thesis by metis |
|
251 qed |
|
252 |
|
253 end |
|
254 |
|
255 context valid_trace_create |
|
256 begin |
|
257 |
|
258 lemma wq_neq_simp [simp]: |
|
259 shows "wq (e#s) cs' = wq s cs'" |
|
260 using assms unfolding is_create wq_def |
|
261 by (auto simp:Let_def) |
|
262 |
|
263 lemma wq_distinct_kept: |
|
264 assumes "distinct (wq s cs')" |
|
265 shows "distinct (wq (e#s) cs')" |
|
266 using assms by simp |
|
267 end |
|
268 |
|
269 context valid_trace_exit |
|
270 begin |
|
271 |
|
272 lemma wq_neq_simp [simp]: |
|
273 shows "wq (e#s) cs' = wq s cs'" |
|
274 using assms unfolding is_exit wq_def |
|
275 by (auto simp:Let_def) |
|
276 |
|
277 lemma wq_distinct_kept: |
|
278 assumes "distinct (wq s cs')" |
|
279 shows "distinct (wq (e#s) cs')" |
|
280 using assms by simp |
|
281 end |
|
282 |
|
283 context valid_trace_p |
|
284 begin |
|
285 |
|
286 lemma wq_neq_simp [simp]: |
|
287 assumes "cs' \<noteq> cs" |
|
288 shows "wq (e#s) cs' = wq s cs'" |
|
289 using assms unfolding is_p wq_def |
|
290 by (auto simp:Let_def) |
|
291 |
|
292 lemma runing_th_s: |
|
293 shows "th \<in> runing s" |
|
294 proof - |
|
295 from pip_e[unfolded is_p] |
|
296 show ?thesis by (cases, simp) |
|
297 qed |
|
298 |
|
299 lemma ready_th_s: "th \<in> readys s" |
|
300 using runing_th_s |
|
301 by (unfold runing_def, auto) |
|
302 |
|
303 lemma live_th_s: "th \<in> threads s" |
|
304 using readys_threads ready_th_s by auto |
|
305 |
|
306 lemma live_th_es: "th \<in> threads (e#s)" |
|
307 using live_th_s |
|
308 by (unfold is_p, simp) |
|
309 |
|
310 lemma th_not_waiting: |
|
311 "\<not> waiting s th c" |
|
312 proof - |
|
313 have "th \<in> readys s" |
|
314 using runing_ready runing_th_s by blast |
|
315 thus ?thesis |
|
316 by (unfold readys_def, auto) |
|
317 qed |
|
318 |
|
319 lemma waiting_neq_th: |
|
320 assumes "waiting s t c" |
|
321 shows "t \<noteq> th" |
|
322 using assms using th_not_waiting by blast |
|
323 |
|
324 lemma th_not_in_wq: |
|
325 shows "th \<notin> set (wq s cs)" |
|
326 proof |
|
327 assume otherwise: "th \<in> set (wq s cs)" |
|
328 from runing_wqE[OF runing_th_s this] |
|
329 obtain rest where eq_wq: "wq s cs = th#rest" by blast |
|
330 with otherwise |
|
331 have "holding s th cs" |
|
332 by (unfold s_holding_def, fold wq_def, simp) |
|
333 hence cs_th_RAG: "(Cs cs, Th th) \<in> RAG s" |
|
334 by (unfold s_RAG_def, fold holding_eq, auto) |
|
335 from pip_e[unfolded is_p] |
|
336 show False |
|
337 proof(cases) |
|
338 case (thread_P) |
|
339 with cs_th_RAG show ?thesis by auto |
|
340 qed |
|
341 qed |
|
342 |
|
343 lemma wq_es_cs: |
|
344 "wq (e#s) cs = wq s cs @ [th]" |
|
345 by (unfold is_p wq_def, auto simp:Let_def) |
|
346 |
|
347 lemma wq_distinct_kept: |
|
348 assumes "distinct (wq s cs')" |
|
349 shows "distinct (wq (e#s) cs')" |
|
350 proof(cases "cs' = cs") |
|
351 case True |
|
352 show ?thesis using True assms th_not_in_wq |
|
353 by (unfold True wq_es_cs, auto) |
|
354 qed (insert assms, simp) |
|
355 |
|
356 end |
|
357 |
|
358 context valid_trace_v |
|
359 begin |
|
360 |
|
361 lemma wq_neq_simp [simp]: |
|
362 assumes "cs' \<noteq> cs" |
|
363 shows "wq (e#s) cs' = wq s cs'" |
|
364 using assms unfolding is_v wq_def |
|
365 by (auto simp:Let_def) |
|
366 |
|
367 lemma runing_th_s: |
|
368 shows "th \<in> runing s" |
|
369 proof - |
|
370 from pip_e[unfolded is_v] |
|
371 show ?thesis by (cases, simp) |
|
372 qed |
|
373 |
|
374 lemma th_not_waiting: |
|
375 "\<not> waiting s th c" |
|
376 proof - |
|
377 have "th \<in> readys s" |
|
378 using runing_ready runing_th_s by blast |
|
379 thus ?thesis |
|
380 by (unfold readys_def, auto) |
|
381 qed |
|
382 |
|
383 lemma waiting_neq_th: |
|
384 assumes "waiting s t c" |
|
385 shows "t \<noteq> th" |
|
386 using assms using th_not_waiting by blast |
|
387 |
|
388 lemma wq_s_cs: |
|
389 "wq s cs = th#rest" |
|
390 proof - |
|
391 from pip_e[unfolded is_v] |
|
392 show ?thesis |
|
393 proof(cases) |
|
394 case (thread_V) |
|
395 from this(2) show ?thesis |
|
396 by (unfold rest_def s_holding_def, fold wq_def, |
|
397 metis empty_iff list.collapse list.set(1)) |
|
398 qed |
|
399 qed |
|
400 |
|
401 lemma wq_es_cs: |
|
402 "wq (e#s) cs = wq'" |
|
403 using wq_s_cs[unfolded wq_def] |
|
404 by (auto simp:Let_def wq_def rest_def wq'_def is_v, simp) |
|
405 |
|
406 lemma wq_distinct_kept: |
|
407 assumes "distinct (wq s cs')" |
|
408 shows "distinct (wq (e#s) cs')" |
|
409 proof(cases "cs' = cs") |
|
410 case True |
|
411 show ?thesis |
|
412 proof(unfold True wq_es_cs wq'_def, rule someI2) |
|
413 show "distinct rest \<and> set rest = set rest" |
|
414 using assms[unfolded True wq_s_cs] by auto |
|
415 qed simp |
|
416 qed (insert assms, simp) |
|
417 |
|
418 end |
|
419 |
|
420 context valid_trace_set |
|
421 begin |
|
422 |
|
423 lemma wq_neq_simp [simp]: |
|
424 shows "wq (e#s) cs' = wq s cs'" |
|
425 using assms unfolding is_set wq_def |
|
426 by (auto simp:Let_def) |
|
427 |
|
428 lemma wq_distinct_kept: |
|
429 assumes "distinct (wq s cs')" |
|
430 shows "distinct (wq (e#s) cs')" |
|
431 using assms by simp |
|
432 end |
|
433 |
|
434 context valid_trace |
|
435 begin |
|
436 |
|
437 lemma actor_inv: |
|
438 assumes "PIP s e" |
|
439 and "\<not> isCreate e" |
|
440 shows "actor e \<in> runing s" |
|
441 using assms |
|
442 by (induct, auto) |
|
443 |
|
444 lemma isP_E: |
|
445 assumes "isP e" |
|
446 obtains cs where "e = P (actor e) cs" |
|
447 using assms by (cases e, auto) |
|
448 |
|
449 lemma isV_E: |
|
450 assumes "isV e" |
|
451 obtains cs where "e = V (actor e) cs" |
|
452 using assms by (cases e, auto) |
|
453 |
|
454 lemma wq_distinct: "distinct (wq s cs)" |
|
455 proof(induct rule:ind) |
|
456 case (Cons s e) |
|
457 interpret vt_e: valid_trace_e s e using Cons by simp |
|
458 show ?case |
|
459 proof(cases e) |
|
460 case (Create th prio) |
|
461 interpret vt_create: valid_trace_create s e th prio |
|
462 using Create by (unfold_locales, simp) |
|
463 show ?thesis using Cons by (simp add: vt_create.wq_distinct_kept) |
|
464 next |
|
465 case (Exit th) |
|
466 interpret vt_exit: valid_trace_exit s e th |
|
467 using Exit by (unfold_locales, simp) |
|
468 show ?thesis using Cons by (simp add: vt_exit.wq_distinct_kept) |
|
469 next |
|
470 case (P th cs) |
|
471 interpret vt_p: valid_trace_p s e th cs using P by (unfold_locales, simp) |
|
472 show ?thesis using Cons by (simp add: vt_p.wq_distinct_kept) |
|
473 next |
|
474 case (V th cs) |
|
475 interpret vt_v: valid_trace_v s e th cs using V by (unfold_locales, simp) |
|
476 show ?thesis using Cons by (simp add: vt_v.wq_distinct_kept) |
|
477 next |
|
478 case (Set th prio) |
|
479 interpret vt_set: valid_trace_set s e th prio |
|
480 using Set by (unfold_locales, simp) |
|
481 show ?thesis using Cons by (simp add: vt_set.wq_distinct_kept) |
|
482 qed |
|
483 qed (unfold wq_def Let_def, simp) |
|
484 |
|
485 end |
|
486 |
|
487 context valid_trace_e |
|
488 begin |
|
489 |
|
490 text {* |
|
491 The following lemma shows that only the @{text "P"} |
|
492 operation can add new thread into waiting queues. |
|
493 Such kind of lemmas are very obvious, but need to be checked formally. |
|
494 This is a kind of confirmation that our modelling is correct. |
|
495 *} |
|
496 |
|
497 lemma wq_in_inv: |
|
498 assumes s_ni: "thread \<notin> set (wq s cs)" |
|
499 and s_i: "thread \<in> set (wq (e#s) cs)" |
|
500 shows "e = P thread cs" |
|
501 proof(cases e) |
|
502 -- {* This is the only non-trivial case: *} |
|
503 case (V th cs1) |
|
504 have False |
|
505 proof(cases "cs1 = cs") |
|
506 case True |
|
507 show ?thesis |
|
508 proof(cases "(wq s cs1)") |
|
509 case (Cons w_hd w_tl) |
|
510 have "set (wq (e#s) cs) \<subseteq> set (wq s cs)" |
|
511 proof - |
|
512 have "(wq (e#s) cs) = (SOME q. distinct q \<and> set q = set w_tl)" |
|
513 using Cons V by (auto simp:wq_def Let_def True split:if_splits) |
|
514 moreover have "set ... \<subseteq> set (wq s cs)" |
|
515 proof(rule someI2) |
|
516 show "distinct w_tl \<and> set w_tl = set w_tl" |
|
517 by (metis distinct.simps(2) local.Cons wq_distinct) |
|
518 qed (insert Cons True, auto) |
|
519 ultimately show ?thesis by simp |
|
520 qed |
|
521 with assms show ?thesis by auto |
|
522 qed (insert assms V True, auto simp:wq_def Let_def split:if_splits) |
|
523 qed (insert assms V, auto simp:wq_def Let_def split:if_splits) |
|
524 thus ?thesis by auto |
|
525 qed (insert assms, auto simp:wq_def Let_def split:if_splits) |
|
526 |
|
527 lemma wq_out_inv: |
|
528 assumes s_in: "thread \<in> set (wq s cs)" |
|
529 and s_hd: "thread = hd (wq s cs)" |
|
530 and s_i: "thread \<noteq> hd (wq (e#s) cs)" |
|
531 shows "e = V thread cs" |
|
532 proof(cases e) |
|
533 -- {* There are only two non-trivial cases: *} |
|
534 case (V th cs1) |
|
535 show ?thesis |
|
536 proof(cases "cs1 = cs") |
|
537 case True |
|
538 have "PIP s (V th cs)" using pip_e[unfolded V[unfolded True]] . |
|
539 thus ?thesis |
|
540 proof(cases) |
|
541 case (thread_V) |
|
542 moreover have "th = thread" using thread_V(2) s_hd |
|
543 by (unfold s_holding_def wq_def, simp) |
|
544 ultimately show ?thesis using V True by simp |
|
545 qed |
|
546 qed (insert assms V, auto simp:wq_def Let_def split:if_splits) |
|
547 next |
|
548 case (P th cs1) |
|
549 show ?thesis |
|
550 proof(cases "cs1 = cs") |
|
551 case True |
|
552 with P have "wq (e#s) cs = wq_fun (schs s) cs @ [th]" |
|
553 by (auto simp:wq_def Let_def split:if_splits) |
|
554 with s_i s_hd s_in have False |
|
555 by (metis empty_iff hd_append2 list.set(1) wq_def) |
|
556 thus ?thesis by simp |
|
557 qed (insert assms P, auto simp:wq_def Let_def split:if_splits) |
|
558 qed (insert assms, auto simp:wq_def Let_def split:if_splits) |
|
559 |
|
560 end |
|
561 |
|
562 |
|
563 context valid_trace |
|
564 begin |
|
565 |
|
566 |
|
567 text {* (* ddd *) |
|
568 The nature of the work is like this: since it starts from a very simple and basic |
|
569 model, even intuitively very `basic` and `obvious` properties need to derived from scratch. |
|
570 For instance, the fact |
|
571 that one thread can not be blocked by two critical resources at the same time |
|
572 is obvious, because only running threads can make new requests, if one is waiting for |
|
573 a critical resource and get blocked, it can not make another resource request and get |
|
574 blocked the second time (because it is not running). |
|
575 |
|
576 To derive this fact, one needs to prove by contraction and |
|
577 reason about time (or @{text "moement"}). The reasoning is based on a generic theorem |
|
578 named @{text "p_split"}, which is about status changing along the time axis. It says if |
|
579 a condition @{text "Q"} is @{text "True"} at a state @{text "s"}, |
|
580 but it was @{text "False"} at the very beginning, then there must exits a moment @{text "t"} |
|
581 in the history of @{text "s"} (notice that @{text "s"} itself is essentially the history |
|
582 of events leading to it), such that @{text "Q"} switched |
|
583 from being @{text "False"} to @{text "True"} and kept being @{text "True"} |
|
584 till the last moment of @{text "s"}. |
|
585 |
|
586 Suppose a thread @{text "th"} is blocked |
|
587 on @{text "cs1"} and @{text "cs2"} in some state @{text "s"}, |
|
588 since no thread is blocked at the very beginning, by applying |
|
589 @{text "p_split"} to these two blocking facts, there exist |
|
590 two moments @{text "t1"} and @{text "t2"} in @{text "s"}, such that |
|
591 @{text "th"} got blocked on @{text "cs1"} and @{text "cs2"} |
|
592 and kept on blocked on them respectively ever since. |
|
593 |
|
594 Without lost of generality, we assume @{text "t1"} is earlier than @{text "t2"}. |
|
595 However, since @{text "th"} was blocked ever since memonent @{text "t1"}, so it was still |
|
596 in blocked state at moment @{text "t2"} and could not |
|
597 make any request and get blocked the second time: Contradiction. |
|
598 *} |
|
599 |
|
600 lemma waiting_unique_pre: (* ddd *) |
|
601 assumes h11: "thread \<in> set (wq s cs1)" |
|
602 and h12: "thread \<noteq> hd (wq s cs1)" |
|
603 assumes h21: "thread \<in> set (wq s cs2)" |
|
604 and h22: "thread \<noteq> hd (wq s cs2)" |
|
605 and neq12: "cs1 \<noteq> cs2" |
|
606 shows "False" |
|
607 proof - |
|
608 let "?Q" = "\<lambda> cs s. thread \<in> set (wq s cs) \<and> thread \<noteq> hd (wq s cs)" |
|
609 from h11 and h12 have q1: "?Q cs1 s" by simp |
|
610 from h21 and h22 have q2: "?Q cs2 s" by simp |
|
611 have nq1: "\<not> ?Q cs1 []" by (simp add:wq_def) |
|
612 have nq2: "\<not> ?Q cs2 []" by (simp add:wq_def) |
|
613 from p_split [of "?Q cs1", OF q1 nq1] |
|
614 obtain t1 where lt1: "t1 < length s" |
|
615 and np1: "\<not> ?Q cs1 (moment t1 s)" |
|
616 and nn1: "(\<forall>i'>t1. ?Q cs1 (moment i' s))" by auto |
|
617 from p_split [of "?Q cs2", OF q2 nq2] |
|
618 obtain t2 where lt2: "t2 < length s" |
|
619 and np2: "\<not> ?Q cs2 (moment t2 s)" |
|
620 and nn2: "(\<forall>i'>t2. ?Q cs2 (moment i' s))" by auto |
|
621 { fix s cs |
|
622 assume q: "?Q cs s" |
|
623 have "thread \<notin> runing s" |
|
624 proof |
|
625 assume "thread \<in> runing s" |
|
626 hence " \<forall>cs. \<not> (thread \<in> set (wq_fun (schs s) cs) \<and> |
|
627 thread \<noteq> hd (wq_fun (schs s) cs))" |
|
628 by (unfold runing_def s_waiting_def readys_def, auto) |
|
629 from this[rule_format, of cs] q |
|
630 show False by (simp add: wq_def) |
|
631 qed |
|
632 } note q_not_runing = this |
|
633 { fix t1 t2 cs1 cs2 |
|
634 assume lt1: "t1 < length s" |
|
635 and np1: "\<not> ?Q cs1 (moment t1 s)" |
|
636 and nn1: "(\<forall>i'>t1. ?Q cs1 (moment i' s))" |
|
637 and lt2: "t2 < length s" |
|
638 and np2: "\<not> ?Q cs2 (moment t2 s)" |
|
639 and nn2: "(\<forall>i'>t2. ?Q cs2 (moment i' s))" |
|
640 and lt12: "t1 < t2" |
|
641 let ?t3 = "Suc t2" |
|
642 from lt2 have le_t3: "?t3 \<le> length s" by auto |
|
643 from moment_plus [OF this] |
|
644 obtain e where eq_m: "moment ?t3 s = e#moment t2 s" by auto |
|
645 have "t2 < ?t3" by simp |
|
646 from nn2 [rule_format, OF this] and eq_m |
|
647 have h1: "thread \<in> set (wq (e#moment t2 s) cs2)" and |
|
648 h2: "thread \<noteq> hd (wq (e#moment t2 s) cs2)" by auto |
|
649 have "vt (e#moment t2 s)" |
|
650 proof - |
|
651 from vt_moment |
|
652 have "vt (moment ?t3 s)" . |
|
653 with eq_m show ?thesis by simp |
|
654 qed |
|
655 then interpret vt_e: valid_trace_e "moment t2 s" "e" |
|
656 by (unfold_locales, auto, cases, simp) |
|
657 have ?thesis |
|
658 proof - |
|
659 have "thread \<in> runing (moment t2 s)" |
|
660 proof(cases "thread \<in> set (wq (moment t2 s) cs2)") |
|
661 case True |
|
662 have "e = V thread cs2" |
|
663 proof - |
|
664 have eq_th: "thread = hd (wq (moment t2 s) cs2)" |
|
665 using True and np2 by auto |
|
666 from vt_e.wq_out_inv[OF True this h2] |
|
667 show ?thesis . |
|
668 qed |
|
669 thus ?thesis using vt_e.actor_inv[OF vt_e.pip_e] by auto |
|
670 next |
|
671 case False |
|
672 have "e = P thread cs2" using vt_e.wq_in_inv[OF False h1] . |
|
673 with vt_e.actor_inv[OF vt_e.pip_e] |
|
674 show ?thesis by auto |
|
675 qed |
|
676 moreover have "thread \<notin> runing (moment t2 s)" |
|
677 by (rule q_not_runing[OF nn1[rule_format, OF lt12]]) |
|
678 ultimately show ?thesis by simp |
|
679 qed |
|
680 } note lt_case = this |
|
681 show ?thesis |
|
682 proof - |
|
683 { assume "t1 < t2" |
|
684 from lt_case[OF lt1 np1 nn1 lt2 np2 nn2 this] |
|
685 have ?thesis . |
|
686 } moreover { |
|
687 assume "t2 < t1" |
|
688 from lt_case[OF lt2 np2 nn2 lt1 np1 nn1 this] |
|
689 have ?thesis . |
|
690 } moreover { |
|
691 assume eq_12: "t1 = t2" |
|
692 let ?t3 = "Suc t2" |
|
693 from lt2 have le_t3: "?t3 \<le> length s" by auto |
|
694 from moment_plus [OF this] |
|
695 obtain e where eq_m: "moment ?t3 s = e#moment t2 s" by auto |
|
696 have lt_2: "t2 < ?t3" by simp |
|
697 from nn2 [rule_format, OF this] and eq_m |
|
698 have h1: "thread \<in> set (wq (e#moment t2 s) cs2)" and |
|
699 h2: "thread \<noteq> hd (wq (e#moment t2 s) cs2)" by auto |
|
700 from nn1[rule_format, OF lt_2[folded eq_12]] eq_m[folded eq_12] |
|
701 have g1: "thread \<in> set (wq (e#moment t1 s) cs1)" and |
|
702 g2: "thread \<noteq> hd (wq (e#moment t1 s) cs1)" by auto |
|
703 have "vt (e#moment t2 s)" |
|
704 proof - |
|
705 from vt_moment |
|
706 have "vt (moment ?t3 s)" . |
|
707 with eq_m show ?thesis by simp |
|
708 qed |
|
709 then interpret vt_e: valid_trace_e "moment t2 s" "e" |
|
710 by (unfold_locales, auto, cases, simp) |
|
711 have "e = V thread cs2 \<or> e = P thread cs2" |
|
712 proof(cases "thread \<in> set (wq (moment t2 s) cs2)") |
|
713 case True |
|
714 have "e = V thread cs2" |
|
715 proof - |
|
716 have eq_th: "thread = hd (wq (moment t2 s) cs2)" |
|
717 using True and np2 by auto |
|
718 from vt_e.wq_out_inv[OF True this h2] |
|
719 show ?thesis . |
|
720 qed |
|
721 thus ?thesis by auto |
|
722 next |
|
723 case False |
|
724 have "e = P thread cs2" using vt_e.wq_in_inv[OF False h1] . |
|
725 thus ?thesis by auto |
|
726 qed |
|
727 moreover have "e = V thread cs1 \<or> e = P thread cs1" |
|
728 proof(cases "thread \<in> set (wq (moment t1 s) cs1)") |
|
729 case True |
|
730 have eq_th: "thread = hd (wq (moment t1 s) cs1)" |
|
731 using True and np1 by auto |
|
732 from vt_e.wq_out_inv[folded eq_12, OF True this g2] |
|
733 have "e = V thread cs1" . |
|
734 thus ?thesis by auto |
|
735 next |
|
736 case False |
|
737 have "e = P thread cs1" using vt_e.wq_in_inv[folded eq_12, OF False g1] . |
|
738 thus ?thesis by auto |
|
739 qed |
|
740 ultimately have ?thesis using neq12 by auto |
|
741 } ultimately show ?thesis using nat_neq_iff by blast |
|
742 qed |
|
743 qed |
|
744 |
|
745 text {* |
|
746 This lemma is a simple corrolary of @{text "waiting_unique_pre"}. |
|
747 *} |
|
748 |
|
749 lemma waiting_unique: |
|
750 assumes "waiting s th cs1" |
|
751 and "waiting s th cs2" |
|
752 shows "cs1 = cs2" |
|
753 using waiting_unique_pre assms |
|
754 unfolding wq_def s_waiting_def |
|
755 by auto |
|
756 |
|
757 end |
|
758 |
|
759 (* not used *) |
|
760 text {* |
|
761 Every thread can only be blocked on one critical resource, |
|
762 symmetrically, every critical resource can only be held by one thread. |
|
763 This fact is much more easier according to our definition. |
|
764 *} |
|
765 lemma held_unique: |
|
766 assumes "holding (s::event list) th1 cs" |
|
767 and "holding s th2 cs" |
|
768 shows "th1 = th2" |
|
769 by (insert assms, unfold s_holding_def, auto) |
|
770 |
|
771 lemma last_set_lt: "th \<in> threads s \<Longrightarrow> last_set th s < length s" |
|
772 apply (induct s, auto) |
|
773 by (case_tac a, auto split:if_splits) |
|
774 |
|
775 lemma last_set_unique: |
|
776 "\<lbrakk>last_set th1 s = last_set th2 s; th1 \<in> threads s; th2 \<in> threads s\<rbrakk> |
|
777 \<Longrightarrow> th1 = th2" |
|
778 apply (induct s, auto) |
|
779 by (case_tac a, auto split:if_splits dest:last_set_lt) |
|
780 |
|
781 lemma preced_unique : |
|
782 assumes pcd_eq: "preced th1 s = preced th2 s" |
|
783 and th_in1: "th1 \<in> threads s" |
|
784 and th_in2: " th2 \<in> threads s" |
|
785 shows "th1 = th2" |
|
786 proof - |
|
787 from pcd_eq have "last_set th1 s = last_set th2 s" by (simp add:preced_def) |
|
788 from last_set_unique [OF this th_in1 th_in2] |
|
789 show ?thesis . |
|
790 qed |
|
791 |
|
792 lemma preced_linorder: |
|
793 assumes neq_12: "th1 \<noteq> th2" |
|
794 and th_in1: "th1 \<in> threads s" |
|
795 and th_in2: " th2 \<in> threads s" |
|
796 shows "preced th1 s < preced th2 s \<or> preced th1 s > preced th2 s" |
|
797 proof - |
|
798 from preced_unique [OF _ th_in1 th_in2] and neq_12 |
|
799 have "preced th1 s \<noteq> preced th2 s" by auto |
|
800 thus ?thesis by auto |
|
801 qed |
|
802 |
|
803 text {* |
|
804 The following three lemmas show that @{text "RAG"} does not change |
|
805 by the happening of @{text "Set"}, @{text "Create"} and @{text "Exit"} |
|
806 events, respectively. |
|
807 *} |
|
808 |
|
809 lemma RAG_set_unchanged: "(RAG (Set th prio # s)) = RAG s" |
|
810 apply (unfold s_RAG_def s_waiting_def wq_def) |
|
811 by (simp add:Let_def) |
|
812 |
|
813 lemma (in valid_trace_set) |
|
814 RAG_unchanged: "(RAG (e # s)) = RAG s" |
|
815 by (unfold is_set RAG_set_unchanged, simp) |
|
816 |
|
817 lemma RAG_create_unchanged: "(RAG (Create th prio # s)) = RAG s" |
|
818 apply (unfold s_RAG_def s_waiting_def wq_def) |
|
819 by (simp add:Let_def) |
|
820 |
|
821 lemma (in valid_trace_create) |
|
822 RAG_unchanged: "(RAG (e # s)) = RAG s" |
|
823 by (unfold is_create RAG_create_unchanged, simp) |
|
824 |
|
825 lemma RAG_exit_unchanged: "(RAG (Exit th # s)) = RAG s" |
|
826 apply (unfold s_RAG_def s_waiting_def wq_def) |
|
827 by (simp add:Let_def) |
|
828 |
|
829 lemma (in valid_trace_exit) |
|
830 RAG_unchanged: "(RAG (e # s)) = RAG s" |
|
831 by (unfold is_exit RAG_exit_unchanged, simp) |
|
832 |
|
833 context valid_trace_v |
|
834 begin |
|
835 |
|
836 lemma distinct_rest: "distinct rest" |
|
837 by (simp add: distinct_tl rest_def wq_distinct) |
|
838 |
|
839 lemma holding_cs_eq_th: |
|
840 assumes "holding s t cs" |
|
841 shows "t = th" |
|
842 proof - |
|
843 from pip_e[unfolded is_v] |
|
844 show ?thesis |
|
845 proof(cases) |
|
846 case (thread_V) |
|
847 from held_unique[OF this(2) assms] |
|
848 show ?thesis by simp |
|
849 qed |
|
850 qed |
|
851 |
|
852 lemma distinct_wq': "distinct wq'" |
|
853 by (metis (mono_tags, lifting) distinct_rest some_eq_ex wq'_def) |
|
854 |
|
855 lemma set_wq': "set wq' = set rest" |
|
856 by (metis (mono_tags, lifting) distinct_rest rest_def |
|
857 some_eq_ex wq'_def) |
|
858 |
|
859 lemma th'_in_inv: |
|
860 assumes "th' \<in> set wq'" |
|
861 shows "th' \<in> set rest" |
|
862 using assms set_wq' by simp |
|
863 |
|
864 lemma neq_t_th: |
|
865 assumes "waiting (e#s) t c" |
|
866 shows "t \<noteq> th" |
|
867 proof |
|
868 assume otherwise: "t = th" |
|
869 show False |
|
870 proof(cases "c = cs") |
|
871 case True |
|
872 have "t \<in> set wq'" |
|
873 using assms[unfolded True s_waiting_def, folded wq_def, unfolded wq_es_cs] |
|
874 by simp |
|
875 from th'_in_inv[OF this] have "t \<in> set rest" . |
|
876 with wq_s_cs[folded otherwise] wq_distinct[of cs] |
|
877 show ?thesis by simp |
|
878 next |
|
879 case False |
|
880 have "wq (e#s) c = wq s c" using False |
|
881 by (unfold is_v, simp) |
|
882 hence "waiting s t c" using assms |
|
883 by (simp add: cs_waiting_def waiting_eq) |
|
884 hence "t \<notin> readys s" by (unfold readys_def, auto) |
|
885 hence "t \<notin> runing s" using runing_ready by auto |
|
886 with runing_th_s[folded otherwise] show ?thesis by auto |
|
887 qed |
|
888 qed |
|
889 |
|
890 lemma waiting_esI1: |
|
891 assumes "waiting s t c" |
|
892 and "c \<noteq> cs" |
|
893 shows "waiting (e#s) t c" |
|
894 proof - |
|
895 have "wq (e#s) c = wq s c" |
|
896 using assms(2) is_v by auto |
|
897 with assms(1) show ?thesis |
|
898 using cs_waiting_def waiting_eq by auto |
|
899 qed |
|
900 |
|
901 lemma holding_esI2: |
|
902 assumes "c \<noteq> cs" |
|
903 and "holding s t c" |
|
904 shows "holding (e#s) t c" |
|
905 proof - |
|
906 from assms(1) have "wq (e#s) c = wq s c" using is_v by auto |
|
907 from assms(2)[unfolded s_holding_def, folded wq_def, |
|
908 folded this, unfolded wq_def, folded s_holding_def] |
|
909 show ?thesis . |
|
910 qed |
|
911 |
|
912 lemma holding_esI1: |
|
913 assumes "holding s t c" |
|
914 and "t \<noteq> th" |
|
915 shows "holding (e#s) t c" |
|
916 proof - |
|
917 have "c \<noteq> cs" using assms using holding_cs_eq_th by blast |
|
918 from holding_esI2[OF this assms(1)] |
|
919 show ?thesis . |
|
920 qed |
|
921 |
|
922 end |
|
923 |
|
924 context valid_trace_v_n |
|
925 begin |
|
926 |
|
927 lemma neq_wq': "wq' \<noteq> []" |
|
928 proof (unfold wq'_def, rule someI2) |
|
929 show "distinct rest \<and> set rest = set rest" |
|
930 by (simp add: distinct_rest) |
|
931 next |
|
932 fix x |
|
933 assume " distinct x \<and> set x = set rest" |
|
934 thus "x \<noteq> []" using rest_nnl by auto |
|
935 qed |
|
936 |
|
937 definition "taker = hd wq'" |
|
938 |
|
939 definition "rest' = tl wq'" |
|
940 |
|
941 lemma eq_wq': "wq' = taker # rest'" |
|
942 by (simp add: neq_wq' rest'_def taker_def) |
|
943 |
|
944 lemma next_th_taker: |
|
945 shows "next_th s th cs taker" |
|
946 using rest_nnl taker_def wq'_def wq_s_cs |
|
947 by (auto simp:next_th_def) |
|
948 |
|
949 lemma taker_unique: |
|
950 assumes "next_th s th cs taker'" |
|
951 shows "taker' = taker" |
|
952 proof - |
|
953 from assms |
|
954 obtain rest' where |
|
955 h: "wq s cs = th # rest'" |
|
956 "taker' = hd (SOME q. distinct q \<and> set q = set rest')" |
|
957 by (unfold next_th_def, auto) |
|
958 with wq_s_cs have "rest' = rest" by auto |
|
959 thus ?thesis using h(2) taker_def wq'_def by auto |
|
960 qed |
|
961 |
|
962 lemma waiting_set_eq: |
|
963 "{(Th th', Cs cs) |th'. next_th s th cs th'} = {(Th taker, Cs cs)}" |
|
964 by (smt all_not_in_conv bot.extremum insertI1 insert_subset |
|
965 mem_Collect_eq next_th_taker subsetI subset_antisym taker_def taker_unique) |
|
966 |
|
967 lemma holding_set_eq: |
|
968 "{(Cs cs, Th th') |th'. next_th s th cs th'} = {(Cs cs, Th taker)}" |
|
969 using next_th_taker taker_def waiting_set_eq |
|
970 by fastforce |
|
971 |
|
972 lemma holding_taker: |
|
973 shows "holding (e#s) taker cs" |
|
974 by (unfold s_holding_def, fold wq_def, unfold wq_es_cs, |
|
975 auto simp:neq_wq' taker_def) |
|
976 |
|
977 lemma waiting_esI2: |
|
978 assumes "waiting s t cs" |
|
979 and "t \<noteq> taker" |
|
980 shows "waiting (e#s) t cs" |
|
981 proof - |
|
982 have "t \<in> set wq'" |
|
983 proof(unfold wq'_def, rule someI2) |
|
984 show "distinct rest \<and> set rest = set rest" |
|
985 by (simp add: distinct_rest) |
|
986 next |
|
987 fix x |
|
988 assume "distinct x \<and> set x = set rest" |
|
989 moreover have "t \<in> set rest" |
|
990 using assms(1) cs_waiting_def waiting_eq wq_s_cs by auto |
|
991 ultimately show "t \<in> set x" by simp |
|
992 qed |
|
993 moreover have "t \<noteq> hd wq'" |
|
994 using assms(2) taker_def by auto |
|
995 ultimately show ?thesis |
|
996 by (unfold s_waiting_def, fold wq_def, unfold wq_es_cs, simp) |
|
997 qed |
|
998 |
|
999 lemma waiting_esE: |
|
1000 assumes "waiting (e#s) t c" |
|
1001 obtains "c \<noteq> cs" "waiting s t c" |
|
1002 | "c = cs" "t \<noteq> taker" "waiting s t cs" "t \<in> set rest'" |
|
1003 proof(cases "c = cs") |
|
1004 case False |
|
1005 hence "wq (e#s) c = wq s c" using is_v by auto |
|
1006 with assms have "waiting s t c" using cs_waiting_def waiting_eq by auto |
|
1007 from that(1)[OF False this] show ?thesis . |
|
1008 next |
|
1009 case True |
|
1010 from assms[unfolded s_waiting_def True, folded wq_def, unfolded wq_es_cs] |
|
1011 have "t \<noteq> hd wq'" "t \<in> set wq'" by auto |
|
1012 hence "t \<noteq> taker" by (simp add: taker_def) |
|
1013 moreover hence "t \<noteq> th" using assms neq_t_th by blast |
|
1014 moreover have "t \<in> set rest" by (simp add: `t \<in> set wq'` th'_in_inv) |
|
1015 ultimately have "waiting s t cs" |
|
1016 by (metis cs_waiting_def list.distinct(2) list.sel(1) |
|
1017 list.set_sel(2) rest_def waiting_eq wq_s_cs) |
|
1018 show ?thesis using that(2) |
|
1019 using True `t \<in> set wq'` `t \<noteq> taker` `waiting s t cs` eq_wq' by auto |
|
1020 qed |
|
1021 |
|
1022 lemma holding_esI1: |
|
1023 assumes "c = cs" |
|
1024 and "t = taker" |
|
1025 shows "holding (e#s) t c" |
|
1026 by (unfold assms, simp add: holding_taker) |
|
1027 |
|
1028 lemma holding_esE: |
|
1029 assumes "holding (e#s) t c" |
|
1030 obtains "c = cs" "t = taker" |
|
1031 | "c \<noteq> cs" "holding s t c" |
|
1032 proof(cases "c = cs") |
|
1033 case True |
|
1034 from assms[unfolded True, unfolded s_holding_def, |
|
1035 folded wq_def, unfolded wq_es_cs] |
|
1036 have "t = taker" by (simp add: taker_def) |
|
1037 from that(1)[OF True this] show ?thesis . |
|
1038 next |
|
1039 case False |
|
1040 hence "wq (e#s) c = wq s c" using is_v by auto |
|
1041 from assms[unfolded s_holding_def, folded wq_def, |
|
1042 unfolded this, unfolded wq_def, folded s_holding_def] |
|
1043 have "holding s t c" . |
|
1044 from that(2)[OF False this] show ?thesis . |
|
1045 qed |
|
1046 |
|
1047 end |
|
1048 |
|
1049 |
|
1050 context valid_trace_v_e |
|
1051 begin |
|
1052 |
|
1053 lemma nil_wq': "wq' = []" |
|
1054 proof (unfold wq'_def, rule someI2) |
|
1055 show "distinct rest \<and> set rest = set rest" |
|
1056 by (simp add: distinct_rest) |
|
1057 next |
|
1058 fix x |
|
1059 assume " distinct x \<and> set x = set rest" |
|
1060 thus "x = []" using rest_nil by auto |
|
1061 qed |
|
1062 |
|
1063 lemma no_taker: |
|
1064 assumes "next_th s th cs taker" |
|
1065 shows "False" |
|
1066 proof - |
|
1067 from assms[unfolded next_th_def] |
|
1068 obtain rest' where "wq s cs = th # rest'" "rest' \<noteq> []" |
|
1069 by auto |
|
1070 thus ?thesis using rest_def rest_nil by auto |
|
1071 qed |
|
1072 |
|
1073 lemma waiting_set_eq: |
|
1074 "{(Th th', Cs cs) |th'. next_th s th cs th'} = {}" |
|
1075 using no_taker by auto |
|
1076 |
|
1077 lemma holding_set_eq: |
|
1078 "{(Cs cs, Th th') |th'. next_th s th cs th'} = {}" |
|
1079 using no_taker by auto |
|
1080 |
|
1081 lemma no_holding: |
|
1082 assumes "holding (e#s) taker cs" |
|
1083 shows False |
|
1084 proof - |
|
1085 from wq_es_cs[unfolded nil_wq'] |
|
1086 have " wq (e # s) cs = []" . |
|
1087 from assms[unfolded s_holding_def, folded wq_def, unfolded this] |
|
1088 show ?thesis by auto |
|
1089 qed |
|
1090 |
|
1091 lemma no_waiting: |
|
1092 assumes "waiting (e#s) t cs" |
|
1093 shows False |
|
1094 proof - |
|
1095 from wq_es_cs[unfolded nil_wq'] |
|
1096 have " wq (e # s) cs = []" . |
|
1097 from assms[unfolded s_waiting_def, folded wq_def, unfolded this] |
|
1098 show ?thesis by auto |
|
1099 qed |
|
1100 |
|
1101 lemma waiting_esI2: |
|
1102 assumes "waiting s t c" |
|
1103 shows "waiting (e#s) t c" |
|
1104 proof - |
|
1105 have "c \<noteq> cs" using assms |
|
1106 using cs_waiting_def rest_nil waiting_eq wq_s_cs by auto |
|
1107 from waiting_esI1[OF assms this] |
|
1108 show ?thesis . |
|
1109 qed |
|
1110 |
|
1111 lemma waiting_esE: |
|
1112 assumes "waiting (e#s) t c" |
|
1113 obtains "c \<noteq> cs" "waiting s t c" |
|
1114 proof(cases "c = cs") |
|
1115 case False |
|
1116 hence "wq (e#s) c = wq s c" using is_v by auto |
|
1117 with assms have "waiting s t c" using cs_waiting_def waiting_eq by auto |
|
1118 from that(1)[OF False this] show ?thesis . |
|
1119 next |
|
1120 case True |
|
1121 from no_waiting[OF assms[unfolded True]] |
|
1122 show ?thesis by auto |
|
1123 qed |
|
1124 |
|
1125 lemma holding_esE: |
|
1126 assumes "holding (e#s) t c" |
|
1127 obtains "c \<noteq> cs" "holding s t c" |
|
1128 proof(cases "c = cs") |
|
1129 case True |
|
1130 from no_holding[OF assms[unfolded True]] |
|
1131 show ?thesis by auto |
|
1132 next |
|
1133 case False |
|
1134 hence "wq (e#s) c = wq s c" using is_v by auto |
|
1135 from assms[unfolded s_holding_def, folded wq_def, |
|
1136 unfolded this, unfolded wq_def, folded s_holding_def] |
|
1137 have "holding s t c" . |
|
1138 from that[OF False this] show ?thesis . |
|
1139 qed |
|
1140 |
|
1141 end |
|
1142 |
|
1143 lemma rel_eqI: |
|
1144 assumes "\<And> x y. (x,y) \<in> A \<Longrightarrow> (x,y) \<in> B" |
|
1145 and "\<And> x y. (x,y) \<in> B \<Longrightarrow> (x, y) \<in> A" |
|
1146 shows "A = B" |
|
1147 using assms by auto |
|
1148 |
|
1149 lemma in_RAG_E: |
|
1150 assumes "(n1, n2) \<in> RAG (s::state)" |
|
1151 obtains (waiting) th cs where "n1 = Th th" "n2 = Cs cs" "waiting s th cs" |
|
1152 | (holding) th cs where "n1 = Cs cs" "n2 = Th th" "holding s th cs" |
|
1153 using assms[unfolded s_RAG_def, folded waiting_eq holding_eq] |
|
1154 by auto |
|
1155 |
|
1156 context valid_trace_v |
|
1157 begin |
|
1158 |
|
1159 lemma RAG_es: |
|
1160 "RAG (e # s) = |
|
1161 RAG s - {(Cs cs, Th th)} - |
|
1162 {(Th th', Cs cs) |th'. next_th s th cs th'} \<union> |
|
1163 {(Cs cs, Th th') |th'. next_th s th cs th'}" (is "?L = ?R") |
|
1164 proof(rule rel_eqI) |
|
1165 fix n1 n2 |
|
1166 assume "(n1, n2) \<in> ?L" |
|
1167 thus "(n1, n2) \<in> ?R" |
|
1168 proof(cases rule:in_RAG_E) |
|
1169 case (waiting th' cs') |
|
1170 show ?thesis |
|
1171 proof(cases "rest = []") |
|
1172 case False |
|
1173 interpret h_n: valid_trace_v_n s e th cs |
|
1174 by (unfold_locales, insert False, simp) |
|
1175 from waiting(3) |
|
1176 show ?thesis |
|
1177 proof(cases rule:h_n.waiting_esE) |
|
1178 case 1 |
|
1179 with waiting(1,2) |
|
1180 show ?thesis |
|
1181 by (unfold h_n.waiting_set_eq h_n.holding_set_eq s_RAG_def, |
|
1182 fold waiting_eq, auto) |
|
1183 next |
|
1184 case 2 |
|
1185 with waiting(1,2) |
|
1186 show ?thesis |
|
1187 by (unfold h_n.waiting_set_eq h_n.holding_set_eq s_RAG_def, |
|
1188 fold waiting_eq, auto) |
|
1189 qed |
|
1190 next |
|
1191 case True |
|
1192 interpret h_e: valid_trace_v_e s e th cs |
|
1193 by (unfold_locales, insert True, simp) |
|
1194 from waiting(3) |
|
1195 show ?thesis |
|
1196 proof(cases rule:h_e.waiting_esE) |
|
1197 case 1 |
|
1198 with waiting(1,2) |
|
1199 show ?thesis |
|
1200 by (unfold h_e.waiting_set_eq h_e.holding_set_eq s_RAG_def, |
|
1201 fold waiting_eq, auto) |
|
1202 qed |
|
1203 qed |
|
1204 next |
|
1205 case (holding th' cs') |
|
1206 show ?thesis |
|
1207 proof(cases "rest = []") |
|
1208 case False |
|
1209 interpret h_n: valid_trace_v_n s e th cs |
|
1210 by (unfold_locales, insert False, simp) |
|
1211 from holding(3) |
|
1212 show ?thesis |
|
1213 proof(cases rule:h_n.holding_esE) |
|
1214 case 1 |
|
1215 with holding(1,2) |
|
1216 show ?thesis |
|
1217 by (unfold h_n.waiting_set_eq h_n.holding_set_eq s_RAG_def, |
|
1218 fold waiting_eq, auto) |
|
1219 next |
|
1220 case 2 |
|
1221 with holding(1,2) |
|
1222 show ?thesis |
|
1223 by (unfold h_n.waiting_set_eq h_n.holding_set_eq s_RAG_def, |
|
1224 fold holding_eq, auto) |
|
1225 qed |
|
1226 next |
|
1227 case True |
|
1228 interpret h_e: valid_trace_v_e s e th cs |
|
1229 by (unfold_locales, insert True, simp) |
|
1230 from holding(3) |
|
1231 show ?thesis |
|
1232 proof(cases rule:h_e.holding_esE) |
|
1233 case 1 |
|
1234 with holding(1,2) |
|
1235 show ?thesis |
|
1236 by (unfold h_e.waiting_set_eq h_e.holding_set_eq s_RAG_def, |
|
1237 fold holding_eq, auto) |
|
1238 qed |
|
1239 qed |
|
1240 qed |
|
1241 next |
|
1242 fix n1 n2 |
|
1243 assume h: "(n1, n2) \<in> ?R" |
|
1244 show "(n1, n2) \<in> ?L" |
|
1245 proof(cases "rest = []") |
|
1246 case False |
|
1247 interpret h_n: valid_trace_v_n s e th cs |
|
1248 by (unfold_locales, insert False, simp) |
|
1249 from h[unfolded h_n.waiting_set_eq h_n.holding_set_eq] |
|
1250 have "((n1, n2) \<in> RAG s \<and> (n1 \<noteq> Cs cs \<or> n2 \<noteq> Th th) |
|
1251 \<and> (n1 \<noteq> Th h_n.taker \<or> n2 \<noteq> Cs cs)) \<or> |
|
1252 (n2 = Th h_n.taker \<and> n1 = Cs cs)" |
|
1253 by auto |
|
1254 thus ?thesis |
|
1255 proof |
|
1256 assume "n2 = Th h_n.taker \<and> n1 = Cs cs" |
|
1257 with h_n.holding_taker |
|
1258 show ?thesis |
|
1259 by (unfold s_RAG_def, fold holding_eq, auto) |
|
1260 next |
|
1261 assume h: "(n1, n2) \<in> RAG s \<and> |
|
1262 (n1 \<noteq> Cs cs \<or> n2 \<noteq> Th th) \<and> (n1 \<noteq> Th h_n.taker \<or> n2 \<noteq> Cs cs)" |
|
1263 hence "(n1, n2) \<in> RAG s" by simp |
|
1264 thus ?thesis |
|
1265 proof(cases rule:in_RAG_E) |
|
1266 case (waiting th' cs') |
|
1267 from h and this(1,2) |
|
1268 have "th' \<noteq> h_n.taker \<or> cs' \<noteq> cs" by auto |
|
1269 hence "waiting (e#s) th' cs'" |
|
1270 proof |
|
1271 assume "cs' \<noteq> cs" |
|
1272 from waiting_esI1[OF waiting(3) this] |
|
1273 show ?thesis . |
|
1274 next |
|
1275 assume neq_th': "th' \<noteq> h_n.taker" |
|
1276 show ?thesis |
|
1277 proof(cases "cs' = cs") |
|
1278 case False |
|
1279 from waiting_esI1[OF waiting(3) this] |
|
1280 show ?thesis . |
|
1281 next |
|
1282 case True |
|
1283 from h_n.waiting_esI2[OF waiting(3)[unfolded True] neq_th', folded True] |
|
1284 show ?thesis . |
|
1285 qed |
|
1286 qed |
|
1287 thus ?thesis using waiting(1,2) |
|
1288 by (unfold s_RAG_def, fold waiting_eq, auto) |
|
1289 next |
|
1290 case (holding th' cs') |
|
1291 from h this(1,2) |
|
1292 have "cs' \<noteq> cs \<or> th' \<noteq> th" by auto |
|
1293 hence "holding (e#s) th' cs'" |
|
1294 proof |
|
1295 assume "cs' \<noteq> cs" |
|
1296 from holding_esI2[OF this holding(3)] |
|
1297 show ?thesis . |
|
1298 next |
|
1299 assume "th' \<noteq> th" |
|
1300 from holding_esI1[OF holding(3) this] |
|
1301 show ?thesis . |
|
1302 qed |
|
1303 thus ?thesis using holding(1,2) |
|
1304 by (unfold s_RAG_def, fold holding_eq, auto) |
|
1305 qed |
|
1306 qed |
|
1307 next |
|
1308 case True |
|
1309 interpret h_e: valid_trace_v_e s e th cs |
|
1310 by (unfold_locales, insert True, simp) |
|
1311 from h[unfolded h_e.waiting_set_eq h_e.holding_set_eq] |
|
1312 have h_s: "(n1, n2) \<in> RAG s" "(n1, n2) \<noteq> (Cs cs, Th th)" |
|
1313 by auto |
|
1314 from h_s(1) |
|
1315 show ?thesis |
|
1316 proof(cases rule:in_RAG_E) |
|
1317 case (waiting th' cs') |
|
1318 from h_e.waiting_esI2[OF this(3)] |
|
1319 show ?thesis using waiting(1,2) |
|
1320 by (unfold s_RAG_def, fold waiting_eq, auto) |
|
1321 next |
|
1322 case (holding th' cs') |
|
1323 with h_s(2) |
|
1324 have "cs' \<noteq> cs \<or> th' \<noteq> th" by auto |
|
1325 thus ?thesis |
|
1326 proof |
|
1327 assume neq_cs: "cs' \<noteq> cs" |
|
1328 from holding_esI2[OF this holding(3)] |
|
1329 show ?thesis using holding(1,2) |
|
1330 by (unfold s_RAG_def, fold holding_eq, auto) |
|
1331 next |
|
1332 assume "th' \<noteq> th" |
|
1333 from holding_esI1[OF holding(3) this] |
|
1334 show ?thesis using holding(1,2) |
|
1335 by (unfold s_RAG_def, fold holding_eq, auto) |
|
1336 qed |
|
1337 qed |
|
1338 qed |
|
1339 qed |
|
1340 |
|
1341 end |
|
1342 |
|
1343 lemma step_RAG_v: |
|
1344 assumes vt: |
|
1345 "vt (V th cs#s)" |
|
1346 shows " |
|
1347 RAG (V th cs # s) = |
|
1348 RAG s - {(Cs cs, Th th)} - |
|
1349 {(Th th', Cs cs) |th'. next_th s th cs th'} \<union> |
|
1350 {(Cs cs, Th th') |th'. next_th s th cs th'}" (is "?L = ?R") |
|
1351 proof - |
|
1352 interpret vt_v: valid_trace_v s "V th cs" |
|
1353 using assms step_back_vt by (unfold_locales, auto) |
|
1354 show ?thesis using vt_v.RAG_es . |
|
1355 qed |
|
1356 |
|
1357 lemma (in valid_trace_create) |
|
1358 th_not_in_threads: "th \<notin> threads s" |
|
1359 proof - |
|
1360 from pip_e[unfolded is_create] |
|
1361 show ?thesis by (cases, simp) |
|
1362 qed |
|
1363 |
|
1364 lemma (in valid_trace_create) |
|
1365 threads_es [simp]: "threads (e#s) = threads s \<union> {th}" |
|
1366 by (unfold is_create, simp) |
|
1367 |
|
1368 lemma (in valid_trace_exit) |
|
1369 threads_es [simp]: "threads (e#s) = threads s - {th}" |
|
1370 by (unfold is_exit, simp) |
|
1371 |
|
1372 lemma (in valid_trace_p) |
|
1373 threads_es [simp]: "threads (e#s) = threads s" |
|
1374 by (unfold is_p, simp) |
|
1375 |
|
1376 lemma (in valid_trace_v) |
|
1377 threads_es [simp]: "threads (e#s) = threads s" |
|
1378 by (unfold is_v, simp) |
|
1379 |
|
1380 lemma (in valid_trace_v) |
|
1381 th_not_in_rest[simp]: "th \<notin> set rest" |
|
1382 proof |
|
1383 assume otherwise: "th \<in> set rest" |
|
1384 have "distinct (wq s cs)" by (simp add: wq_distinct) |
|
1385 from this[unfolded wq_s_cs] and otherwise |
|
1386 show False by auto |
|
1387 qed |
|
1388 |
|
1389 lemma (in valid_trace_v) |
|
1390 set_wq_es_cs [simp]: "set (wq (e#s) cs) = set (wq s cs) - {th}" |
|
1391 proof(unfold wq_es_cs wq'_def, rule someI2) |
|
1392 show "distinct rest \<and> set rest = set rest" |
|
1393 by (simp add: distinct_rest) |
|
1394 next |
|
1395 fix x |
|
1396 assume "distinct x \<and> set x = set rest" |
|
1397 thus "set x = set (wq s cs) - {th}" |
|
1398 by (unfold wq_s_cs, simp) |
|
1399 qed |
|
1400 |
|
1401 lemma (in valid_trace_exit) |
|
1402 th_not_in_wq: "th \<notin> set (wq s cs)" |
|
1403 proof - |
|
1404 from pip_e[unfolded is_exit] |
|
1405 show ?thesis |
|
1406 by (cases, unfold holdents_def s_holding_def, fold wq_def, |
|
1407 auto elim!:runing_wqE) |
|
1408 qed |
|
1409 |
|
1410 lemma (in valid_trace) wq_threads: |
|
1411 assumes "th \<in> set (wq s cs)" |
|
1412 shows "th \<in> threads s" |
|
1413 using assms |
|
1414 proof(induct rule:ind) |
|
1415 case (Nil) |
|
1416 thus ?case by (auto simp:wq_def) |
|
1417 next |
|
1418 case (Cons s e) |
|
1419 interpret vt_e: valid_trace_e s e using Cons by simp |
|
1420 show ?case |
|
1421 proof(cases e) |
|
1422 case (Create th' prio') |
|
1423 interpret vt: valid_trace_create s e th' prio' |
|
1424 using Create by (unfold_locales, simp) |
|
1425 show ?thesis |
|
1426 using Cons.hyps(2) Cons.prems by auto |
|
1427 next |
|
1428 case (Exit th') |
|
1429 interpret vt: valid_trace_exit s e th' |
|
1430 using Exit by (unfold_locales, simp) |
|
1431 show ?thesis |
|
1432 using Cons.hyps(2) Cons.prems vt.th_not_in_wq by auto |
|
1433 next |
|
1434 case (P th' cs') |
|
1435 interpret vt: valid_trace_p s e th' cs' |
|
1436 using P by (unfold_locales, simp) |
|
1437 show ?thesis |
|
1438 using Cons.hyps(2) Cons.prems readys_threads |
|
1439 runing_ready vt.is_p vt.runing_th_s vt_e.wq_in_inv |
|
1440 by fastforce |
|
1441 next |
|
1442 case (V th' cs') |
|
1443 interpret vt: valid_trace_v s e th' cs' |
|
1444 using V by (unfold_locales, simp) |
|
1445 show ?thesis using Cons |
|
1446 using vt.is_v vt.threads_es vt_e.wq_in_inv by blast |
|
1447 next |
|
1448 case (Set th' prio) |
|
1449 interpret vt: valid_trace_set s e th' prio |
|
1450 using Set by (unfold_locales, simp) |
|
1451 show ?thesis using Cons.hyps(2) Cons.prems vt.is_set |
|
1452 by (auto simp:wq_def Let_def) |
|
1453 qed |
|
1454 qed |
|
1455 |
|
1456 context valid_trace |
|
1457 begin |
|
1458 |
|
1459 lemma dm_RAG_threads: |
|
1460 assumes in_dom: "(Th th) \<in> Domain (RAG s)" |
|
1461 shows "th \<in> threads s" |
|
1462 proof - |
|
1463 from in_dom obtain n where "(Th th, n) \<in> RAG s" by auto |
|
1464 moreover from RAG_target_th[OF this] obtain cs where "n = Cs cs" by auto |
|
1465 ultimately have "(Th th, Cs cs) \<in> RAG s" by simp |
|
1466 hence "th \<in> set (wq s cs)" |
|
1467 by (unfold s_RAG_def, auto simp:cs_waiting_def) |
|
1468 from wq_threads [OF this] show ?thesis . |
|
1469 qed |
|
1470 |
|
1471 lemma rg_RAG_threads: |
|
1472 assumes "(Th th) \<in> Range (RAG s)" |
|
1473 shows "th \<in> threads s" |
|
1474 using assms |
|
1475 by (unfold s_RAG_def cs_waiting_def cs_holding_def, |
|
1476 auto intro:wq_threads) |
|
1477 |
|
1478 end |
|
1479 |
|
1480 |
|
1481 |
|
1482 |
|
1483 lemma preced_v [simp]: "preced th' (V th cs#s) = preced th' s" |
|
1484 by (unfold preced_def, simp) |
|
1485 |
|
1486 lemma (in valid_trace_v) |
|
1487 preced_es: "preced th (e#s) = preced th s" |
|
1488 by (unfold is_v preced_def, simp) |
|
1489 |
|
1490 lemma the_preced_v[simp]: "the_preced (V th cs#s) = the_preced s" |
|
1491 proof |
|
1492 fix th' |
|
1493 show "the_preced (V th cs # s) th' = the_preced s th'" |
|
1494 by (unfold the_preced_def preced_def, simp) |
|
1495 qed |
|
1496 |
|
1497 lemma (in valid_trace_v) |
|
1498 the_preced_es: "the_preced (e#s) = the_preced s" |
|
1499 by (unfold is_v preced_def, simp) |
|
1500 |
|
1501 context valid_trace_p |
|
1502 begin |
|
1503 |
|
1504 lemma not_holding_s_th_cs: "\<not> holding s th cs" |
|
1505 proof |
|
1506 assume otherwise: "holding s th cs" |
|
1507 from pip_e[unfolded is_p] |
|
1508 show False |
|
1509 proof(cases) |
|
1510 case (thread_P) |
|
1511 moreover have "(Cs cs, Th th) \<in> RAG s" |
|
1512 using otherwise cs_holding_def |
|
1513 holding_eq th_not_in_wq by auto |
|
1514 ultimately show ?thesis by auto |
|
1515 qed |
|
1516 qed |
|
1517 |
|
1518 lemma waiting_kept: |
|
1519 assumes "waiting s th' cs'" |
|
1520 shows "waiting (e#s) th' cs'" |
|
1521 using assms |
|
1522 by (metis cs_waiting_def hd_append2 list.sel(1) list.set_intros(2) |
|
1523 rotate1.simps(2) self_append_conv2 set_rotate1 |
|
1524 th_not_in_wq waiting_eq wq_es_cs wq_neq_simp) |
|
1525 |
|
1526 lemma holding_kept: |
|
1527 assumes "holding s th' cs'" |
|
1528 shows "holding (e#s) th' cs'" |
|
1529 proof(cases "cs' = cs") |
|
1530 case False |
|
1531 hence "wq (e#s) cs' = wq s cs'" by simp |
|
1532 with assms show ?thesis using cs_holding_def holding_eq by auto |
|
1533 next |
|
1534 case True |
|
1535 from assms[unfolded s_holding_def, folded wq_def] |
|
1536 obtain rest where eq_wq: "wq s cs' = th'#rest" |
|
1537 by (metis empty_iff list.collapse list.set(1)) |
|
1538 hence "wq (e#s) cs' = th'#(rest@[th])" |
|
1539 by (simp add: True wq_es_cs) |
|
1540 thus ?thesis |
|
1541 by (simp add: cs_holding_def holding_eq) |
|
1542 qed |
|
1543 |
|
1544 end |
|
1545 |
|
1546 locale valid_trace_p_h = valid_trace_p + |
|
1547 assumes we: "wq s cs = []" |
|
1548 |
|
1549 locale valid_trace_p_w = valid_trace_p + |
|
1550 assumes wne: "wq s cs \<noteq> []" |
|
1551 begin |
|
1552 |
|
1553 definition "holder = hd (wq s cs)" |
|
1554 definition "waiters = tl (wq s cs)" |
|
1555 definition "waiters' = waiters @ [th]" |
|
1556 |
|
1557 lemma wq_s_cs: "wq s cs = holder#waiters" |
|
1558 by (simp add: holder_def waiters_def wne) |
|
1559 |
|
1560 lemma wq_es_cs': "wq (e#s) cs = holder#waiters@[th]" |
|
1561 by (simp add: wq_es_cs wq_s_cs) |
|
1562 |
|
1563 lemma waiting_es_th_cs: "waiting (e#s) th cs" |
|
1564 using cs_waiting_def th_not_in_wq waiting_eq wq_es_cs' wq_s_cs by auto |
|
1565 |
|
1566 lemma RAG_edge: "(Th th, Cs cs) \<in> RAG (e#s)" |
|
1567 by (unfold s_RAG_def, fold waiting_eq, insert waiting_es_th_cs, auto) |
|
1568 |
|
1569 lemma holding_esE: |
|
1570 assumes "holding (e#s) th' cs'" |
|
1571 obtains "holding s th' cs'" |
|
1572 using assms |
|
1573 proof(cases "cs' = cs") |
|
1574 case False |
|
1575 hence "wq (e#s) cs' = wq s cs'" by simp |
|
1576 with assms show ?thesis |
|
1577 using cs_holding_def holding_eq that by auto |
|
1578 next |
|
1579 case True |
|
1580 with assms show ?thesis |
|
1581 by (metis cs_holding_def holding_eq list.sel(1) list.set_intros(1) that |
|
1582 wq_es_cs' wq_s_cs) |
|
1583 qed |
|
1584 |
|
1585 lemma waiting_esE: |
|
1586 assumes "waiting (e#s) th' cs'" |
|
1587 obtains "th' \<noteq> th" "waiting s th' cs'" |
|
1588 | "th' = th" "cs' = cs" |
|
1589 proof(cases "waiting s th' cs'") |
|
1590 case True |
|
1591 have "th' \<noteq> th" |
|
1592 proof |
|
1593 assume otherwise: "th' = th" |
|
1594 from True[unfolded this] |
|
1595 show False by (simp add: th_not_waiting) |
|
1596 qed |
|
1597 from that(1)[OF this True] show ?thesis . |
|
1598 next |
|
1599 case False |
|
1600 hence "th' = th \<and> cs' = cs" |
|
1601 by (metis assms cs_waiting_def holder_def list.sel(1) rotate1.simps(2) |
|
1602 set_ConsD set_rotate1 waiting_eq wq_es_cs wq_es_cs' wq_neq_simp) |
|
1603 with that(2) show ?thesis by metis |
|
1604 qed |
|
1605 |
|
1606 lemma RAG_es: "RAG (e # s) = RAG s \<union> {(Th th, Cs cs)}" (is "?L = ?R") |
|
1607 proof(rule rel_eqI) |
|
1608 fix n1 n2 |
|
1609 assume "(n1, n2) \<in> ?L" |
|
1610 thus "(n1, n2) \<in> ?R" |
|
1611 proof(cases rule:in_RAG_E) |
|
1612 case (waiting th' cs') |
|
1613 from this(3) |
|
1614 show ?thesis |
|
1615 proof(cases rule:waiting_esE) |
|
1616 case 1 |
|
1617 thus ?thesis using waiting(1,2) |
|
1618 by (unfold s_RAG_def, fold waiting_eq, auto) |
|
1619 next |
|
1620 case 2 |
|
1621 thus ?thesis using waiting(1,2) by auto |
|
1622 qed |
|
1623 next |
|
1624 case (holding th' cs') |
|
1625 from this(3) |
|
1626 show ?thesis |
|
1627 proof(cases rule:holding_esE) |
|
1628 case 1 |
|
1629 with holding(1,2) |
|
1630 show ?thesis by (unfold s_RAG_def, fold holding_eq, auto) |
|
1631 qed |
|
1632 qed |
|
1633 next |
|
1634 fix n1 n2 |
|
1635 assume "(n1, n2) \<in> ?R" |
|
1636 hence "(n1, n2) \<in> RAG s \<or> (n1 = Th th \<and> n2 = Cs cs)" by auto |
|
1637 thus "(n1, n2) \<in> ?L" |
|
1638 proof |
|
1639 assume "(n1, n2) \<in> RAG s" |
|
1640 thus ?thesis |
|
1641 proof(cases rule:in_RAG_E) |
|
1642 case (waiting th' cs') |
|
1643 from waiting_kept[OF this(3)] |
|
1644 show ?thesis using waiting(1,2) |
|
1645 by (unfold s_RAG_def, fold waiting_eq, auto) |
|
1646 next |
|
1647 case (holding th' cs') |
|
1648 from holding_kept[OF this(3)] |
|
1649 show ?thesis using holding(1,2) |
|
1650 by (unfold s_RAG_def, fold holding_eq, auto) |
|
1651 qed |
|
1652 next |
|
1653 assume "n1 = Th th \<and> n2 = Cs cs" |
|
1654 thus ?thesis using RAG_edge by auto |
|
1655 qed |
|
1656 qed |
|
1657 |
|
1658 end |
|
1659 |
|
1660 context valid_trace_p_h |
|
1661 begin |
|
1662 |
|
1663 lemma wq_es_cs': "wq (e#s) cs = [th]" |
|
1664 using wq_es_cs[unfolded we] by simp |
|
1665 |
|
1666 lemma holding_es_th_cs: |
|
1667 shows "holding (e#s) th cs" |
|
1668 proof - |
|
1669 from wq_es_cs' |
|
1670 have "th \<in> set (wq (e#s) cs)" "th = hd (wq (e#s) cs)" by auto |
|
1671 thus ?thesis using cs_holding_def holding_eq by blast |
|
1672 qed |
|
1673 |
|
1674 lemma RAG_edge: "(Cs cs, Th th) \<in> RAG (e#s)" |
|
1675 by (unfold s_RAG_def, fold holding_eq, insert holding_es_th_cs, auto) |
|
1676 |
|
1677 lemma waiting_esE: |
|
1678 assumes "waiting (e#s) th' cs'" |
|
1679 obtains "waiting s th' cs'" |
|
1680 using assms |
|
1681 by (metis cs_waiting_def event.distinct(15) is_p list.sel(1) |
|
1682 set_ConsD waiting_eq we wq_es_cs' wq_neq_simp wq_out_inv) |
|
1683 |
|
1684 lemma holding_esE: |
|
1685 assumes "holding (e#s) th' cs'" |
|
1686 obtains "cs' \<noteq> cs" "holding s th' cs'" |
|
1687 | "cs' = cs" "th' = th" |
|
1688 proof(cases "cs' = cs") |
|
1689 case True |
|
1690 from held_unique[OF holding_es_th_cs assms[unfolded True]] |
|
1691 have "th' = th" by simp |
|
1692 from that(2)[OF True this] show ?thesis . |
|
1693 next |
|
1694 case False |
|
1695 have "holding s th' cs'" using assms |
|
1696 using False cs_holding_def holding_eq by auto |
|
1697 from that(1)[OF False this] show ?thesis . |
|
1698 qed |
|
1699 |
|
1700 lemma RAG_es: "RAG (e # s) = RAG s \<union> {(Cs cs, Th th)}" (is "?L = ?R") |
|
1701 proof(rule rel_eqI) |
|
1702 fix n1 n2 |
|
1703 assume "(n1, n2) \<in> ?L" |
|
1704 thus "(n1, n2) \<in> ?R" |
|
1705 proof(cases rule:in_RAG_E) |
|
1706 case (waiting th' cs') |
|
1707 from this(3) |
|
1708 show ?thesis |
|
1709 proof(cases rule:waiting_esE) |
|
1710 case 1 |
|
1711 thus ?thesis using waiting(1,2) |
|
1712 by (unfold s_RAG_def, fold waiting_eq, auto) |
|
1713 qed |
|
1714 next |
|
1715 case (holding th' cs') |
|
1716 from this(3) |
|
1717 show ?thesis |
|
1718 proof(cases rule:holding_esE) |
|
1719 case 1 |
|
1720 with holding(1,2) |
|
1721 show ?thesis by (unfold s_RAG_def, fold holding_eq, auto) |
|
1722 next |
|
1723 case 2 |
|
1724 with holding(1,2) show ?thesis by auto |
|
1725 qed |
|
1726 qed |
|
1727 next |
|
1728 fix n1 n2 |
|
1729 assume "(n1, n2) \<in> ?R" |
|
1730 hence "(n1, n2) \<in> RAG s \<or> (n1 = Cs cs \<and> n2 = Th th)" by auto |
|
1731 thus "(n1, n2) \<in> ?L" |
|
1732 proof |
|
1733 assume "(n1, n2) \<in> RAG s" |
|
1734 thus ?thesis |
|
1735 proof(cases rule:in_RAG_E) |
|
1736 case (waiting th' cs') |
|
1737 from waiting_kept[OF this(3)] |
|
1738 show ?thesis using waiting(1,2) |
|
1739 by (unfold s_RAG_def, fold waiting_eq, auto) |
|
1740 next |
|
1741 case (holding th' cs') |
|
1742 from holding_kept[OF this(3)] |
|
1743 show ?thesis using holding(1,2) |
|
1744 by (unfold s_RAG_def, fold holding_eq, auto) |
|
1745 qed |
|
1746 next |
|
1747 assume "n1 = Cs cs \<and> n2 = Th th" |
|
1748 with holding_es_th_cs |
|
1749 show ?thesis |
|
1750 by (unfold s_RAG_def, fold holding_eq, auto) |
|
1751 qed |
|
1752 qed |
|
1753 |
|
1754 end |
|
1755 |
|
1756 context valid_trace_p |
|
1757 begin |
|
1758 |
|
1759 lemma RAG_es': "RAG (e # s) = (if (wq s cs = []) then RAG s \<union> {(Cs cs, Th th)} |
|
1760 else RAG s \<union> {(Th th, Cs cs)})" |
|
1761 proof(cases "wq s cs = []") |
|
1762 case True |
|
1763 interpret vt_p: valid_trace_p_h using True |
|
1764 by (unfold_locales, simp) |
|
1765 show ?thesis by (simp add: vt_p.RAG_es vt_p.we) |
|
1766 next |
|
1767 case False |
|
1768 interpret vt_p: valid_trace_p_w using False |
|
1769 by (unfold_locales, simp) |
|
1770 show ?thesis by (simp add: vt_p.RAG_es vt_p.wne) |
|
1771 qed |
|
1772 |
|
1773 end |
|
1774 |
|
1775 lemma (in valid_trace_v_n) finite_waiting_set: |
|
1776 "finite {(Th th', Cs cs) |th'. next_th s th cs th'}" |
|
1777 by (simp add: waiting_set_eq) |
|
1778 |
|
1779 lemma (in valid_trace_v_n) finite_holding_set: |
|
1780 "finite {(Cs cs, Th th') |th'. next_th s th cs th'}" |
|
1781 by (simp add: holding_set_eq) |
|
1782 |
|
1783 lemma (in valid_trace_v_e) finite_waiting_set: |
|
1784 "finite {(Th th', Cs cs) |th'. next_th s th cs th'}" |
|
1785 by (simp add: waiting_set_eq) |
|
1786 |
|
1787 lemma (in valid_trace_v_e) finite_holding_set: |
|
1788 "finite {(Cs cs, Th th') |th'. next_th s th cs th'}" |
|
1789 by (simp add: holding_set_eq) |
|
1790 |
|
1791 context valid_trace_v |
|
1792 begin |
|
1793 |
|
1794 lemma |
|
1795 finite_RAG_kept: |
|
1796 assumes "finite (RAG s)" |
|
1797 shows "finite (RAG (e#s))" |
|
1798 proof(cases "rest = []") |
|
1799 case True |
|
1800 interpret vt: valid_trace_v_e using True |
|
1801 by (unfold_locales, simp) |
|
1802 show ?thesis using assms |
|
1803 by (unfold RAG_es vt.waiting_set_eq vt.holding_set_eq, simp) |
|
1804 next |
|
1805 case False |
|
1806 interpret vt: valid_trace_v_n using False |
|
1807 by (unfold_locales, simp) |
|
1808 show ?thesis using assms |
|
1809 by (unfold RAG_es vt.waiting_set_eq vt.holding_set_eq, simp) |
|
1810 qed |
|
1811 |
|
1812 end |
|
1813 |
|
1814 context valid_trace_v_e |
|
1815 begin |
|
1816 |
|
1817 lemma |
|
1818 acylic_RAG_kept: |
|
1819 assumes "acyclic (RAG s)" |
|
1820 shows "acyclic (RAG (e#s))" |
|
1821 proof(rule acyclic_subset[OF assms]) |
|
1822 show "RAG (e # s) \<subseteq> RAG s" |
|
1823 by (unfold RAG_es waiting_set_eq holding_set_eq, auto) |
|
1824 qed |
|
1825 |
|
1826 end |
|
1827 |
|
1828 context valid_trace_v_n |
|
1829 begin |
|
1830 |
|
1831 lemma waiting_taker: "waiting s taker cs" |
|
1832 apply (unfold s_waiting_def, fold wq_def, unfold wq_s_cs taker_def) |
|
1833 using eq_wq' th'_in_inv wq'_def by fastforce |
|
1834 |
|
1835 lemma |
|
1836 acylic_RAG_kept: |
|
1837 assumes "acyclic (RAG s)" |
|
1838 shows "acyclic (RAG (e#s))" |
|
1839 proof - |
|
1840 have "acyclic ((RAG s - {(Cs cs, Th th)} - {(Th taker, Cs cs)}) \<union> |
|
1841 {(Cs cs, Th taker)})" (is "acyclic (?A \<union> _)") |
|
1842 proof - |
|
1843 from assms |
|
1844 have "acyclic ?A" |
|
1845 by (rule acyclic_subset, auto) |
|
1846 moreover have "(Th taker, Cs cs) \<notin> ?A^*" |
|
1847 proof |
|
1848 assume otherwise: "(Th taker, Cs cs) \<in> ?A^*" |
|
1849 hence "(Th taker, Cs cs) \<in> ?A^+" |
|
1850 by (unfold rtrancl_eq_or_trancl, auto) |
|
1851 from tranclD[OF this] |
|
1852 obtain cs' where h: "(Th taker, Cs cs') \<in> ?A" |
|
1853 "(Th taker, Cs cs') \<in> RAG s" |
|
1854 by (unfold s_RAG_def, auto) |
|
1855 from this(2) have "waiting s taker cs'" |
|
1856 by (unfold s_RAG_def, fold waiting_eq, auto) |
|
1857 from waiting_unique[OF this waiting_taker] |
|
1858 have "cs' = cs" . |
|
1859 from h(1)[unfolded this] show False by auto |
|
1860 qed |
|
1861 ultimately show ?thesis by auto |
|
1862 qed |
|
1863 thus ?thesis |
|
1864 by (unfold RAG_es waiting_set_eq holding_set_eq, simp) |
|
1865 qed |
|
1866 |
|
1867 end |
|
1868 |
|
1869 context valid_trace_p_h |
|
1870 begin |
|
1871 |
|
1872 lemma |
|
1873 acylic_RAG_kept: |
|
1874 assumes "acyclic (RAG s)" |
|
1875 shows "acyclic (RAG (e#s))" |
|
1876 proof - |
|
1877 have "acyclic (RAG s \<union> {(Cs cs, Th th)})" (is "acyclic (?A \<union> _)") |
|
1878 proof - |
|
1879 from assms |
|
1880 have "acyclic ?A" |
|
1881 by (rule acyclic_subset, auto) |
|
1882 moreover have "(Th th, Cs cs) \<notin> ?A^*" |
|
1883 proof |
|
1884 assume otherwise: "(Th th, Cs cs) \<in> ?A^*" |
|
1885 hence "(Th th, Cs cs) \<in> ?A^+" |
|
1886 by (unfold rtrancl_eq_or_trancl, auto) |
|
1887 from tranclD[OF this] |
|
1888 obtain cs' where h: "(Th th, Cs cs') \<in> RAG s" |
|
1889 by (unfold s_RAG_def, auto) |
|
1890 hence "waiting s th cs'" |
|
1891 by (unfold s_RAG_def, fold waiting_eq, auto) |
|
1892 with th_not_waiting show False by auto |
|
1893 qed |
|
1894 ultimately show ?thesis by auto |
|
1895 qed |
|
1896 thus ?thesis by (unfold RAG_es, simp) |
|
1897 qed |
|
1898 |
|
1899 end |
|
1900 |
|
1901 context valid_trace_p_w |
|
1902 begin |
|
1903 |
|
1904 lemma |
|
1905 acylic_RAG_kept: |
|
1906 assumes "acyclic (RAG s)" |
|
1907 shows "acyclic (RAG (e#s))" |
|
1908 proof - |
|
1909 have "acyclic (RAG s \<union> {(Th th, Cs cs)})" (is "acyclic (?A \<union> _)") |
|
1910 proof - |
|
1911 from assms |
|
1912 have "acyclic ?A" |
|
1913 by (rule acyclic_subset, auto) |
|
1914 moreover have "(Cs cs, Th th) \<notin> ?A^*" |
|
1915 proof |
|
1916 assume otherwise: "(Cs cs, Th th) \<in> ?A^*" |
|
1917 from pip_e[unfolded is_p] |
|
1918 show False |
|
1919 proof(cases) |
|
1920 case (thread_P) |
|
1921 moreover from otherwise have "(Cs cs, Th th) \<in> ?A^+" |
|
1922 by (unfold rtrancl_eq_or_trancl, auto) |
|
1923 ultimately show ?thesis by auto |
|
1924 qed |
|
1925 qed |
|
1926 ultimately show ?thesis by auto |
|
1927 qed |
|
1928 thus ?thesis by (unfold RAG_es, simp) |
|
1929 qed |
|
1930 |
|
1931 end |
|
1932 |
|
1933 context valid_trace |
|
1934 begin |
|
1935 |
|
1936 lemma finite_RAG: |
|
1937 shows "finite (RAG s)" |
|
1938 proof(induct rule:ind) |
|
1939 case Nil |
|
1940 show ?case |
|
1941 by (auto simp: s_RAG_def cs_waiting_def |
|
1942 cs_holding_def wq_def acyclic_def) |
|
1943 next |
|
1944 case (Cons s e) |
|
1945 interpret vt_e: valid_trace_e s e using Cons by simp |
|
1946 show ?case |
|
1947 proof(cases e) |
|
1948 case (Create th prio) |
|
1949 interpret vt: valid_trace_create s e th prio using Create |
|
1950 by (unfold_locales, simp) |
|
1951 show ?thesis using Cons by (simp add: vt.RAG_unchanged) |
|
1952 next |
|
1953 case (Exit th) |
|
1954 interpret vt: valid_trace_exit s e th using Exit |
|
1955 by (unfold_locales, simp) |
|
1956 show ?thesis using Cons by (simp add: vt.RAG_unchanged) |
|
1957 next |
|
1958 case (P th cs) |
|
1959 interpret vt: valid_trace_p s e th cs using P |
|
1960 by (unfold_locales, simp) |
|
1961 show ?thesis using Cons using vt.RAG_es' by auto |
|
1962 next |
|
1963 case (V th cs) |
|
1964 interpret vt: valid_trace_v s e th cs using V |
|
1965 by (unfold_locales, simp) |
|
1966 show ?thesis using Cons by (simp add: vt.finite_RAG_kept) |
|
1967 next |
|
1968 case (Set th prio) |
|
1969 interpret vt: valid_trace_set s e th prio using Set |
|
1970 by (unfold_locales, simp) |
|
1971 show ?thesis using Cons by (simp add: vt.RAG_unchanged) |
|
1972 qed |
|
1973 qed |
|
1974 |
|
1975 lemma acyclic_RAG: |
|
1976 shows "acyclic (RAG s)" |
|
1977 proof(induct rule:ind) |
|
1978 case Nil |
|
1979 show ?case |
|
1980 by (auto simp: s_RAG_def cs_waiting_def |
|
1981 cs_holding_def wq_def acyclic_def) |
|
1982 next |
|
1983 case (Cons s e) |
|
1984 interpret vt_e: valid_trace_e s e using Cons by simp |
|
1985 show ?case |
|
1986 proof(cases e) |
|
1987 case (Create th prio) |
|
1988 interpret vt: valid_trace_create s e th prio using Create |
|
1989 by (unfold_locales, simp) |
|
1990 show ?thesis using Cons by (simp add: vt.RAG_unchanged) |
|
1991 next |
|
1992 case (Exit th) |
|
1993 interpret vt: valid_trace_exit s e th using Exit |
|
1994 by (unfold_locales, simp) |
|
1995 show ?thesis using Cons by (simp add: vt.RAG_unchanged) |
|
1996 next |
|
1997 case (P th cs) |
|
1998 interpret vt: valid_trace_p s e th cs using P |
|
1999 by (unfold_locales, simp) |
|
2000 show ?thesis |
|
2001 proof(cases "wq s cs = []") |
|
2002 case True |
|
2003 then interpret vt_h: valid_trace_p_h s e th cs |
|
2004 by (unfold_locales, simp) |
|
2005 show ?thesis using Cons by (simp add: vt_h.acylic_RAG_kept) |
|
2006 next |
|
2007 case False |
|
2008 then interpret vt_w: valid_trace_p_w s e th cs |
|
2009 by (unfold_locales, simp) |
|
2010 show ?thesis using Cons by (simp add: vt_w.acylic_RAG_kept) |
|
2011 qed |
|
2012 next |
|
2013 case (V th cs) |
|
2014 interpret vt: valid_trace_v s e th cs using V |
|
2015 by (unfold_locales, simp) |
|
2016 show ?thesis |
|
2017 proof(cases "vt.rest = []") |
|
2018 case True |
|
2019 then interpret vt_e: valid_trace_v_e s e th cs |
|
2020 by (unfold_locales, simp) |
|
2021 show ?thesis by (simp add: Cons.hyps(2) vt_e.acylic_RAG_kept) |
|
2022 next |
|
2023 case False |
|
2024 then interpret vt_n: valid_trace_v_n s e th cs |
|
2025 by (unfold_locales, simp) |
|
2026 show ?thesis by (simp add: Cons.hyps(2) vt_n.acylic_RAG_kept) |
|
2027 qed |
|
2028 next |
|
2029 case (Set th prio) |
|
2030 interpret vt: valid_trace_set s e th prio using Set |
|
2031 by (unfold_locales, simp) |
|
2032 show ?thesis using Cons by (simp add: vt.RAG_unchanged) |
|
2033 qed |
|
2034 qed |
|
2035 |
|
2036 lemma wf_RAG: "wf (RAG s)" |
|
2037 proof(rule finite_acyclic_wf) |
|
2038 from finite_RAG show "finite (RAG s)" . |
|
2039 next |
|
2040 from acyclic_RAG show "acyclic (RAG s)" . |
|
2041 qed |
|
2042 |
|
2043 lemma sgv_wRAG: "single_valued (wRAG s)" |
|
2044 using waiting_unique |
|
2045 by (unfold single_valued_def wRAG_def, auto) |
|
2046 |
|
2047 lemma sgv_hRAG: "single_valued (hRAG s)" |
|
2048 using held_unique |
|
2049 by (unfold single_valued_def hRAG_def, auto) |
|
2050 |
|
2051 lemma sgv_tRAG: "single_valued (tRAG s)" |
|
2052 by (unfold tRAG_def, rule single_valued_relcomp, |
|
2053 insert sgv_wRAG sgv_hRAG, auto) |
|
2054 |
|
2055 lemma acyclic_tRAG: "acyclic (tRAG s)" |
|
2056 proof(unfold tRAG_def, rule acyclic_compose) |
|
2057 show "acyclic (RAG s)" using acyclic_RAG . |
|
2058 next |
|
2059 show "wRAG s \<subseteq> RAG s" unfolding RAG_split by auto |
|
2060 next |
|
2061 show "hRAG s \<subseteq> RAG s" unfolding RAG_split by auto |
|
2062 qed |
|
2063 |
|
2064 lemma unique_RAG: "\<lbrakk>(n, n1) \<in> RAG s; (n, n2) \<in> RAG s\<rbrakk> \<Longrightarrow> n1 = n2" |
|
2065 apply(unfold s_RAG_def, auto, fold waiting_eq holding_eq) |
|
2066 by(auto elim:waiting_unique held_unique) |
|
2067 |
|
2068 lemma sgv_RAG: "single_valued (RAG s)" |
|
2069 using unique_RAG by (auto simp:single_valued_def) |
|
2070 |
|
2071 lemma rtree_RAG: "rtree (RAG s)" |
|
2072 using sgv_RAG acyclic_RAG |
|
2073 by (unfold rtree_def rtree_axioms_def sgv_def, auto) |
|
2074 |
|
2075 end |
|
2076 |
|
2077 sublocale valid_trace < fsbtRAGs : fsubtree "RAG s" |
|
2078 proof - |
|
2079 show "fsubtree (RAG s)" |
|
2080 proof(intro_locales) |
|
2081 show "fbranch (RAG s)" using finite_fbranchI[OF finite_RAG] . |
|
2082 next |
|
2083 show "fsubtree_axioms (RAG s)" |
|
2084 proof(unfold fsubtree_axioms_def) |
|
2085 from wf_RAG show "wf (RAG s)" . |
|
2086 qed |
|
2087 qed |
|
2088 qed |
|
2089 |
|
2090 context valid_trace |
|
2091 begin |
|
2092 |
|
2093 lemma finite_subtree_threads: |
|
2094 "finite {th'. Th th' \<in> subtree (RAG s) (Th th)}" (is "finite ?A") |
|
2095 proof - |
|
2096 have "?A = the_thread ` {Th th' | th' . Th th' \<in> subtree (RAG s) (Th th)}" |
|
2097 by (auto, insert image_iff, fastforce) |
|
2098 moreover have "finite {Th th' | th' . Th th' \<in> subtree (RAG s) (Th th)}" |
|
2099 (is "finite ?B") |
|
2100 proof - |
|
2101 have "?B = (subtree (RAG s) (Th th)) \<inter> {Th th' | th'. True}" |
|
2102 by auto |
|
2103 moreover have "... \<subseteq> (subtree (RAG s) (Th th))" by auto |
|
2104 moreover have "finite ..." by (simp add: finite_subtree) |
|
2105 ultimately show ?thesis by auto |
|
2106 qed |
|
2107 ultimately show ?thesis by auto |
|
2108 qed |
|
2109 |
|
2110 lemma le_cp: |
|
2111 shows "preced th s \<le> cp s th" |
|
2112 proof(unfold cp_alt_def, rule Max_ge) |
|
2113 show "finite (the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th)})" |
|
2114 by (simp add: finite_subtree_threads) |
|
2115 next |
|
2116 show "preced th s \<in> the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th)}" |
|
2117 by (simp add: subtree_def the_preced_def) |
|
2118 qed |
|
2119 |
|
2120 lemma cp_le: |
|
2121 assumes th_in: "th \<in> threads s" |
|
2122 shows "cp s th \<le> Max (the_preced s ` threads s)" |
|
2123 proof(unfold cp_alt_def, rule Max_f_mono) |
|
2124 show "finite (threads s)" by (simp add: finite_threads) |
|
2125 next |
|
2126 show " {th'. Th th' \<in> subtree (RAG s) (Th th)} \<noteq> {}" |
|
2127 using subtree_def by fastforce |
|
2128 next |
|
2129 show "{th'. Th th' \<in> subtree (RAG s) (Th th)} \<subseteq> threads s" |
|
2130 using assms |
|
2131 by (smt Domain.DomainI dm_RAG_threads mem_Collect_eq |
|
2132 node.inject(1) rtranclD subsetI subtree_def trancl_domain) |
|
2133 qed |
|
2134 |
|
2135 lemma max_cp_eq: |
|
2136 shows "Max ((cp s) ` threads s) = Max (the_preced s ` threads s)" |
|
2137 (is "?L = ?R") |
|
2138 proof - |
|
2139 have "?L \<le> ?R" |
|
2140 proof(cases "threads s = {}") |
|
2141 case False |
|
2142 show ?thesis |
|
2143 by (rule Max.boundedI, |
|
2144 insert cp_le, |
|
2145 auto simp:finite_threads False) |
|
2146 qed auto |
|
2147 moreover have "?R \<le> ?L" |
|
2148 by (rule Max_fg_mono, |
|
2149 simp add: finite_threads, |
|
2150 simp add: le_cp the_preced_def) |
|
2151 ultimately show ?thesis by auto |
|
2152 qed |
|
2153 |
|
2154 lemma max_cp_eq_the_preced: |
|
2155 shows "Max ((cp s) ` threads s) = Max (the_preced s ` threads s)" |
|
2156 using max_cp_eq using the_preced_def by presburger |
|
2157 |
|
2158 lemma wf_RAG_converse: |
|
2159 shows "wf ((RAG s)^-1)" |
|
2160 proof(rule finite_acyclic_wf_converse) |
|
2161 from finite_RAG |
|
2162 show "finite (RAG s)" . |
|
2163 next |
|
2164 from acyclic_RAG |
|
2165 show "acyclic (RAG s)" . |
|
2166 qed |
|
2167 |
|
2168 lemma chain_building: |
|
2169 assumes "node \<in> Domain (RAG s)" |
|
2170 obtains th' where "th' \<in> readys s" "(node, Th th') \<in> (RAG s)^+" |
|
2171 proof - |
|
2172 from assms have "node \<in> Range ((RAG s)^-1)" by auto |
|
2173 from wf_base[OF wf_RAG_converse this] |
|
2174 obtain b where h_b: "(b, node) \<in> ((RAG s)\<inverse>)\<^sup>+" "\<forall>c. (c, b) \<notin> (RAG s)\<inverse>" by auto |
|
2175 obtain th' where eq_b: "b = Th th'" |
|
2176 proof(cases b) |
|
2177 case (Cs cs) |
|
2178 from h_b(1)[unfolded trancl_converse] |
|
2179 have "(node, b) \<in> ((RAG s)\<^sup>+)" by auto |
|
2180 from tranclE[OF this] |
|
2181 obtain n where "(n, b) \<in> RAG s" by auto |
|
2182 from this[unfolded Cs] |
|
2183 obtain th1 where "waiting s th1 cs" |
|
2184 by (unfold s_RAG_def, fold waiting_eq, auto) |
|
2185 from waiting_holding[OF this] |
|
2186 obtain th2 where "holding s th2 cs" . |
|
2187 hence "(Cs cs, Th th2) \<in> RAG s" |
|
2188 by (unfold s_RAG_def, fold holding_eq, auto) |
|
2189 with h_b(2)[unfolded Cs, rule_format] |
|
2190 have False by auto |
|
2191 thus ?thesis by auto |
|
2192 qed auto |
|
2193 have "th' \<in> readys s" |
|
2194 proof - |
|
2195 from h_b(2)[unfolded eq_b] |
|
2196 have "\<forall>cs. \<not> waiting s th' cs" |
|
2197 by (unfold s_RAG_def, fold waiting_eq, auto) |
|
2198 moreover have "th' \<in> threads s" |
|
2199 proof(rule rg_RAG_threads) |
|
2200 from tranclD[OF h_b(1), unfolded eq_b] |
|
2201 obtain z where "(z, Th th') \<in> (RAG s)" by auto |
|
2202 thus "Th th' \<in> Range (RAG s)" by auto |
|
2203 qed |
|
2204 ultimately show ?thesis by (auto simp:readys_def) |
|
2205 qed |
|
2206 moreover have "(node, Th th') \<in> (RAG s)^+" |
|
2207 using h_b(1)[unfolded trancl_converse] eq_b by auto |
|
2208 ultimately show ?thesis using that by metis |
|
2209 qed |
|
2210 |
|
2211 text {* \noindent |
|
2212 The following is just an instance of @{text "chain_building"}. |
|
2213 *} |
|
2214 lemma th_chain_to_ready: |
|
2215 assumes th_in: "th \<in> threads s" |
|
2216 shows "th \<in> readys s \<or> (\<exists> th'. th' \<in> readys s \<and> (Th th, Th th') \<in> (RAG s)^+)" |
|
2217 proof(cases "th \<in> readys s") |
|
2218 case True |
|
2219 thus ?thesis by auto |
|
2220 next |
|
2221 case False |
|
2222 from False and th_in have "Th th \<in> Domain (RAG s)" |
|
2223 by (auto simp:readys_def s_waiting_def s_RAG_def wq_def cs_waiting_def Domain_def) |
|
2224 from chain_building [rule_format, OF this] |
|
2225 show ?thesis by auto |
|
2226 qed |
|
2227 |
|
2228 end |
|
2229 |
|
2230 lemma count_rec1 [simp]: |
|
2231 assumes "Q e" |
|
2232 shows "count Q (e#es) = Suc (count Q es)" |
|
2233 using assms |
|
2234 by (unfold count_def, auto) |
|
2235 |
|
2236 lemma count_rec2 [simp]: |
|
2237 assumes "\<not>Q e" |
|
2238 shows "count Q (e#es) = (count Q es)" |
|
2239 using assms |
|
2240 by (unfold count_def, auto) |
|
2241 |
|
2242 lemma count_rec3 [simp]: |
|
2243 shows "count Q [] = 0" |
|
2244 by (unfold count_def, auto) |
|
2245 |
|
2246 lemma cntP_simp1[simp]: |
|
2247 "cntP (P th cs'#s) th = cntP s th + 1" |
|
2248 by (unfold cntP_def, simp) |
|
2249 |
|
2250 lemma cntP_simp2[simp]: |
|
2251 assumes "th' \<noteq> th" |
|
2252 shows "cntP (P th cs'#s) th' = cntP s th'" |
|
2253 using assms |
|
2254 by (unfold cntP_def, simp) |
|
2255 |
|
2256 lemma cntP_simp3[simp]: |
|
2257 assumes "\<not> isP e" |
|
2258 shows "cntP (e#s) th' = cntP s th'" |
|
2259 using assms |
|
2260 by (unfold cntP_def, cases e, simp+) |
|
2261 |
|
2262 lemma cntV_simp1[simp]: |
|
2263 "cntV (V th cs'#s) th = cntV s th + 1" |
|
2264 by (unfold cntV_def, simp) |
|
2265 |
|
2266 lemma cntV_simp2[simp]: |
|
2267 assumes "th' \<noteq> th" |
|
2268 shows "cntV (V th cs'#s) th' = cntV s th'" |
|
2269 using assms |
|
2270 by (unfold cntV_def, simp) |
|
2271 |
|
2272 lemma cntV_simp3[simp]: |
|
2273 assumes "\<not> isV e" |
|
2274 shows "cntV (e#s) th' = cntV s th'" |
|
2275 using assms |
|
2276 by (unfold cntV_def, cases e, simp+) |
|
2277 |
|
2278 lemma cntP_diff_inv: |
|
2279 assumes "cntP (e#s) th \<noteq> cntP s th" |
|
2280 shows "isP e \<and> actor e = th" |
|
2281 proof(cases e) |
|
2282 case (P th' pty) |
|
2283 show ?thesis |
|
2284 by (cases "(\<lambda>e. \<exists>cs. e = P th cs) (P th' pty)", |
|
2285 insert assms P, auto simp:cntP_def) |
|
2286 qed (insert assms, auto simp:cntP_def) |
|
2287 |
|
2288 lemma cntV_diff_inv: |
|
2289 assumes "cntV (e#s) th \<noteq> cntV s th" |
|
2290 shows "isV e \<and> actor e = th" |
|
2291 proof(cases e) |
|
2292 case (V th' pty) |
|
2293 show ?thesis |
|
2294 by (cases "(\<lambda>e. \<exists>cs. e = V th cs) (V th' pty)", |
|
2295 insert assms V, auto simp:cntV_def) |
|
2296 qed (insert assms, auto simp:cntV_def) |
|
2297 |
|
2298 lemma children_RAG_alt_def: |
|
2299 "children (RAG (s::state)) (Th th) = Cs ` {cs. holding s th cs}" |
|
2300 by (unfold s_RAG_def, auto simp:children_def holding_eq) |
|
2301 |
|
2302 fun the_cs :: "node \<Rightarrow> cs" where |
|
2303 "the_cs (Cs cs) = cs" |
|
2304 |
|
2305 lemma holdents_alt_def: |
|
2306 "holdents s th = the_cs ` (children (RAG (s::state)) (Th th))" |
|
2307 by (unfold children_RAG_alt_def holdents_def, simp add: image_image) |
|
2308 |
|
2309 lemma cntCS_alt_def: |
|
2310 "cntCS s th = card (children (RAG s) (Th th))" |
|
2311 apply (unfold children_RAG_alt_def cntCS_def holdents_def) |
|
2312 by (rule card_image[symmetric], auto simp:inj_on_def) |
|
2313 |
|
2314 context valid_trace |
|
2315 begin |
|
2316 |
|
2317 lemma finite_holdents: "finite (holdents s th)" |
|
2318 by (unfold holdents_alt_def, insert finite_children, auto) |
|
2319 |
|
2320 end |
|
2321 |
|
2322 context valid_trace_p_w |
|
2323 begin |
|
2324 |
|
2325 lemma holding_s_holder: "holding s holder cs" |
|
2326 by (unfold s_holding_def, fold wq_def, unfold wq_s_cs, auto) |
|
2327 |
|
2328 lemma holding_es_holder: "holding (e#s) holder cs" |
|
2329 by (unfold s_holding_def, fold wq_def, unfold wq_es_cs wq_s_cs, auto) |
|
2330 |
|
2331 lemma holdents_es: |
|
2332 shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R") |
|
2333 proof - |
|
2334 { fix cs' |
|
2335 assume "cs' \<in> ?L" |
|
2336 hence h: "holding (e#s) th' cs'" by (auto simp:holdents_def) |
|
2337 have "holding s th' cs'" |
|
2338 proof(cases "cs' = cs") |
|
2339 case True |
|
2340 from held_unique[OF h[unfolded True] holding_es_holder] |
|
2341 have "th' = holder" . |
|
2342 thus ?thesis |
|
2343 by (unfold True holdents_def, insert holding_s_holder, simp) |
|
2344 next |
|
2345 case False |
|
2346 hence "wq (e#s) cs' = wq s cs'" by simp |
|
2347 from h[unfolded s_holding_def, folded wq_def, unfolded this] |
|
2348 show ?thesis |
|
2349 by (unfold s_holding_def, fold wq_def, auto) |
|
2350 qed |
|
2351 hence "cs' \<in> ?R" by (auto simp:holdents_def) |
|
2352 } moreover { |
|
2353 fix cs' |
|
2354 assume "cs' \<in> ?R" |
|
2355 hence h: "holding s th' cs'" by (auto simp:holdents_def) |
|
2356 have "holding (e#s) th' cs'" |
|
2357 proof(cases "cs' = cs") |
|
2358 case True |
|
2359 from held_unique[OF h[unfolded True] holding_s_holder] |
|
2360 have "th' = holder" . |
|
2361 thus ?thesis |
|
2362 by (unfold True holdents_def, insert holding_es_holder, simp) |
|
2363 next |
|
2364 case False |
|
2365 hence "wq s cs' = wq (e#s) cs'" by simp |
|
2366 from h[unfolded s_holding_def, folded wq_def, unfolded this] |
|
2367 show ?thesis |
|
2368 by (unfold s_holding_def, fold wq_def, auto) |
|
2369 qed |
|
2370 hence "cs' \<in> ?L" by (auto simp:holdents_def) |
|
2371 } ultimately show ?thesis by auto |
|
2372 qed |
|
2373 |
|
2374 lemma cntCS_es_th[simp]: "cntCS (e#s) th' = cntCS s th'" |
|
2375 by (unfold cntCS_def holdents_es, simp) |
|
2376 |
|
2377 lemma th_not_ready_es: |
|
2378 shows "th \<notin> readys (e#s)" |
|
2379 using waiting_es_th_cs |
|
2380 by (unfold readys_def, auto) |
|
2381 |
|
2382 end |
|
2383 |
|
2384 context valid_trace_p_h |
|
2385 begin |
|
2386 |
|
2387 lemma th_not_waiting': |
|
2388 "\<not> waiting (e#s) th cs'" |
|
2389 proof(cases "cs' = cs") |
|
2390 case True |
|
2391 show ?thesis |
|
2392 by (unfold True s_waiting_def, fold wq_def, unfold wq_es_cs', auto) |
|
2393 next |
|
2394 case False |
|
2395 from th_not_waiting[of cs', unfolded s_waiting_def, folded wq_def] |
|
2396 show ?thesis |
|
2397 by (unfold s_waiting_def, fold wq_def, insert False, simp) |
|
2398 qed |
|
2399 |
|
2400 lemma ready_th_es: |
|
2401 shows "th \<in> readys (e#s)" |
|
2402 using th_not_waiting' |
|
2403 by (unfold readys_def, insert live_th_es, auto) |
|
2404 |
|
2405 lemma holdents_es_th: |
|
2406 "holdents (e#s) th = (holdents s th) \<union> {cs}" (is "?L = ?R") |
|
2407 proof - |
|
2408 { fix cs' |
|
2409 assume "cs' \<in> ?L" |
|
2410 hence "holding (e#s) th cs'" |
|
2411 by (unfold holdents_def, auto) |
|
2412 hence "cs' \<in> ?R" |
|
2413 by (cases rule:holding_esE, auto simp:holdents_def) |
|
2414 } moreover { |
|
2415 fix cs' |
|
2416 assume "cs' \<in> ?R" |
|
2417 hence "holding s th cs' \<or> cs' = cs" |
|
2418 by (auto simp:holdents_def) |
|
2419 hence "cs' \<in> ?L" |
|
2420 proof |
|
2421 assume "holding s th cs'" |
|
2422 from holding_kept[OF this] |
|
2423 show ?thesis by (auto simp:holdents_def) |
|
2424 next |
|
2425 assume "cs' = cs" |
|
2426 thus ?thesis using holding_es_th_cs |
|
2427 by (unfold holdents_def, auto) |
|
2428 qed |
|
2429 } ultimately show ?thesis by auto |
|
2430 qed |
|
2431 |
|
2432 lemma cntCS_es_th: "cntCS (e#s) th = cntCS s th + 1" |
|
2433 proof - |
|
2434 have "card (holdents s th \<union> {cs}) = card (holdents s th) + 1" |
|
2435 proof(subst card_Un_disjoint) |
|
2436 show "holdents s th \<inter> {cs} = {}" |
|
2437 using not_holding_s_th_cs by (auto simp:holdents_def) |
|
2438 qed (auto simp:finite_holdents) |
|
2439 thus ?thesis |
|
2440 by (unfold cntCS_def holdents_es_th, simp) |
|
2441 qed |
|
2442 |
|
2443 lemma no_holder: |
|
2444 "\<not> holding s th' cs" |
|
2445 proof |
|
2446 assume otherwise: "holding s th' cs" |
|
2447 from this[unfolded s_holding_def, folded wq_def, unfolded we] |
|
2448 show False by auto |
|
2449 qed |
|
2450 |
|
2451 lemma holdents_es_th': |
|
2452 assumes "th' \<noteq> th" |
|
2453 shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R") |
|
2454 proof - |
|
2455 { fix cs' |
|
2456 assume "cs' \<in> ?L" |
|
2457 hence h_e: "holding (e#s) th' cs'" by (auto simp:holdents_def) |
|
2458 have "cs' \<noteq> cs" |
|
2459 proof |
|
2460 assume "cs' = cs" |
|
2461 from held_unique[OF h_e[unfolded this] holding_es_th_cs] |
|
2462 have "th' = th" . |
|
2463 with assms show False by simp |
|
2464 qed |
|
2465 from h_e[unfolded s_holding_def, folded wq_def, unfolded wq_neq_simp[OF this]] |
|
2466 have "th' \<in> set (wq s cs') \<and> th' = hd (wq s cs')" . |
|
2467 hence "cs' \<in> ?R" |
|
2468 by (unfold holdents_def s_holding_def, fold wq_def, auto) |
|
2469 } moreover { |
|
2470 fix cs' |
|
2471 assume "cs' \<in> ?R" |
|
2472 hence "holding s th' cs'" by (auto simp:holdents_def) |
|
2473 from holding_kept[OF this] |
|
2474 have "holding (e # s) th' cs'" . |
|
2475 hence "cs' \<in> ?L" |
|
2476 by (unfold holdents_def, auto) |
|
2477 } ultimately show ?thesis by auto |
|
2478 qed |
|
2479 |
|
2480 lemma cntCS_es_th'[simp]: |
|
2481 assumes "th' \<noteq> th" |
|
2482 shows "cntCS (e#s) th' = cntCS s th'" |
|
2483 by (unfold cntCS_def holdents_es_th'[OF assms], simp) |
|
2484 |
|
2485 end |
|
2486 |
|
2487 context valid_trace_p |
|
2488 begin |
|
2489 |
|
2490 lemma readys_kept1: |
|
2491 assumes "th' \<noteq> th" |
|
2492 and "th' \<in> readys (e#s)" |
|
2493 shows "th' \<in> readys s" |
|
2494 proof - |
|
2495 { fix cs' |
|
2496 assume wait: "waiting s th' cs'" |
|
2497 have n_wait: "\<not> waiting (e#s) th' cs'" |
|
2498 using assms(2)[unfolded readys_def] by auto |
|
2499 have False |
|
2500 proof(cases "cs' = cs") |
|
2501 case False |
|
2502 with n_wait wait |
|
2503 show ?thesis |
|
2504 by (unfold s_waiting_def, fold wq_def, auto) |
|
2505 next |
|
2506 case True |
|
2507 show ?thesis |
|
2508 proof(cases "wq s cs = []") |
|
2509 case True |
|
2510 then interpret vt: valid_trace_p_h |
|
2511 by (unfold_locales, simp) |
|
2512 show ?thesis using n_wait wait waiting_kept by auto |
|
2513 next |
|
2514 case False |
|
2515 then interpret vt: valid_trace_p_w by (unfold_locales, simp) |
|
2516 show ?thesis using n_wait wait waiting_kept by blast |
|
2517 qed |
|
2518 qed |
|
2519 } with assms(2) show ?thesis |
|
2520 by (unfold readys_def, auto) |
|
2521 qed |
|
2522 |
|
2523 lemma readys_kept2: |
|
2524 assumes "th' \<noteq> th" |
|
2525 and "th' \<in> readys s" |
|
2526 shows "th' \<in> readys (e#s)" |
|
2527 proof - |
|
2528 { fix cs' |
|
2529 assume wait: "waiting (e#s) th' cs'" |
|
2530 have n_wait: "\<not> waiting s th' cs'" |
|
2531 using assms(2)[unfolded readys_def] by auto |
|
2532 have False |
|
2533 proof(cases "cs' = cs") |
|
2534 case False |
|
2535 with n_wait wait |
|
2536 show ?thesis |
|
2537 by (unfold s_waiting_def, fold wq_def, auto) |
|
2538 next |
|
2539 case True |
|
2540 show ?thesis |
|
2541 proof(cases "wq s cs = []") |
|
2542 case True |
|
2543 then interpret vt: valid_trace_p_h |
|
2544 by (unfold_locales, simp) |
|
2545 show ?thesis using n_wait vt.waiting_esE wait by blast |
|
2546 next |
|
2547 case False |
|
2548 then interpret vt: valid_trace_p_w by (unfold_locales, simp) |
|
2549 show ?thesis using assms(1) n_wait vt.waiting_esE wait by auto |
|
2550 qed |
|
2551 qed |
|
2552 } with assms(2) show ?thesis |
|
2553 by (unfold readys_def, auto) |
|
2554 qed |
|
2555 |
|
2556 lemma readys_simp [simp]: |
|
2557 assumes "th' \<noteq> th" |
|
2558 shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)" |
|
2559 using readys_kept1[OF assms] readys_kept2[OF assms] |
|
2560 by metis |
|
2561 |
|
2562 lemma cnp_cnv_cncs_kept: |
|
2563 assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'" |
|
2564 shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'" |
|
2565 proof(cases "th' = th") |
|
2566 case True |
|
2567 note eq_th' = this |
|
2568 show ?thesis |
|
2569 proof(cases "wq s cs = []") |
|
2570 case True |
|
2571 then interpret vt: valid_trace_p_h by (unfold_locales, simp) |
|
2572 show ?thesis |
|
2573 using assms eq_th' is_p ready_th_s vt.cntCS_es_th vt.ready_th_es pvD_def by auto |
|
2574 next |
|
2575 case False |
|
2576 then interpret vt: valid_trace_p_w by (unfold_locales, simp) |
|
2577 show ?thesis |
|
2578 using add.commute add.left_commute assms eq_th' is_p live_th_s |
|
2579 ready_th_s vt.th_not_ready_es pvD_def |
|
2580 apply (auto) |
|
2581 by (fold is_p, simp) |
|
2582 qed |
|
2583 next |
|
2584 case False |
|
2585 note h_False = False |
|
2586 thus ?thesis |
|
2587 proof(cases "wq s cs = []") |
|
2588 case True |
|
2589 then interpret vt: valid_trace_p_h by (unfold_locales, simp) |
|
2590 show ?thesis using assms |
|
2591 by (insert True h_False pvD_def, auto split:if_splits,unfold is_p, auto) |
|
2592 next |
|
2593 case False |
|
2594 then interpret vt: valid_trace_p_w by (unfold_locales, simp) |
|
2595 show ?thesis using assms |
|
2596 by (insert False h_False pvD_def, auto split:if_splits,unfold is_p, auto) |
|
2597 qed |
|
2598 qed |
|
2599 |
|
2600 end |
|
2601 |
|
2602 |
|
2603 context valid_trace_v (* ccc *) |
|
2604 begin |
|
2605 |
|
2606 lemma holding_th_cs_s: |
|
2607 "holding s th cs" |
|
2608 by (unfold s_holding_def, fold wq_def, unfold wq_s_cs, auto) |
|
2609 |
|
2610 lemma th_ready_s [simp]: "th \<in> readys s" |
|
2611 using runing_th_s |
|
2612 by (unfold runing_def readys_def, auto) |
|
2613 |
|
2614 lemma th_live_s [simp]: "th \<in> threads s" |
|
2615 using th_ready_s by (unfold readys_def, auto) |
|
2616 |
|
2617 lemma th_ready_es [simp]: "th \<in> readys (e#s)" |
|
2618 using runing_th_s neq_t_th |
|
2619 by (unfold is_v runing_def readys_def, auto) |
|
2620 |
|
2621 lemma th_live_es [simp]: "th \<in> threads (e#s)" |
|
2622 using th_ready_es by (unfold readys_def, auto) |
|
2623 |
|
2624 lemma pvD_th_s[simp]: "pvD s th = 0" |
|
2625 by (unfold pvD_def, simp) |
|
2626 |
|
2627 lemma pvD_th_es[simp]: "pvD (e#s) th = 0" |
|
2628 by (unfold pvD_def, simp) |
|
2629 |
|
2630 lemma cntCS_s_th [simp]: "cntCS s th > 0" |
|
2631 proof - |
|
2632 have "cs \<in> holdents s th" using holding_th_cs_s |
|
2633 by (unfold holdents_def, simp) |
|
2634 moreover have "finite (holdents s th)" using finite_holdents |
|
2635 by simp |
|
2636 ultimately show ?thesis |
|
2637 by (unfold cntCS_def, |
|
2638 auto intro!:card_gt_0_iff[symmetric, THEN iffD1]) |
|
2639 qed |
|
2640 |
|
2641 end |
|
2642 |
|
2643 context valid_trace_v_n |
|
2644 begin |
|
2645 |
|
2646 lemma not_ready_taker_s[simp]: |
|
2647 "taker \<notin> readys s" |
|
2648 using waiting_taker |
|
2649 by (unfold readys_def, auto) |
|
2650 |
|
2651 lemma taker_live_s [simp]: "taker \<in> threads s" |
|
2652 proof - |
|
2653 have "taker \<in> set wq'" by (simp add: eq_wq') |
|
2654 from th'_in_inv[OF this] |
|
2655 have "taker \<in> set rest" . |
|
2656 hence "taker \<in> set (wq s cs)" by (simp add: wq_s_cs) |
|
2657 thus ?thesis using wq_threads by auto |
|
2658 qed |
|
2659 |
|
2660 lemma taker_live_es [simp]: "taker \<in> threads (e#s)" |
|
2661 using taker_live_s threads_es by blast |
|
2662 |
|
2663 lemma taker_ready_es [simp]: |
|
2664 shows "taker \<in> readys (e#s)" |
|
2665 proof - |
|
2666 { fix cs' |
|
2667 assume "waiting (e#s) taker cs'" |
|
2668 hence False |
|
2669 proof(cases rule:waiting_esE) |
|
2670 case 1 |
|
2671 thus ?thesis using waiting_taker waiting_unique by auto |
|
2672 qed simp |
|
2673 } thus ?thesis by (unfold readys_def, auto) |
|
2674 qed |
|
2675 |
|
2676 lemma neq_taker_th: "taker \<noteq> th" |
|
2677 using th_not_waiting waiting_taker by blast |
|
2678 |
|
2679 lemma not_holding_taker_s_cs: |
|
2680 shows "\<not> holding s taker cs" |
|
2681 using holding_cs_eq_th neq_taker_th by auto |
|
2682 |
|
2683 lemma holdents_es_taker: |
|
2684 "holdents (e#s) taker = holdents s taker \<union> {cs}" (is "?L = ?R") |
|
2685 proof - |
|
2686 { fix cs' |
|
2687 assume "cs' \<in> ?L" |
|
2688 hence "holding (e#s) taker cs'" by (auto simp:holdents_def) |
|
2689 hence "cs' \<in> ?R" |
|
2690 proof(cases rule:holding_esE) |
|
2691 case 2 |
|
2692 thus ?thesis by (auto simp:holdents_def) |
|
2693 qed auto |
|
2694 } moreover { |
|
2695 fix cs' |
|
2696 assume "cs' \<in> ?R" |
|
2697 hence "holding s taker cs' \<or> cs' = cs" by (auto simp:holdents_def) |
|
2698 hence "cs' \<in> ?L" |
|
2699 proof |
|
2700 assume "holding s taker cs'" |
|
2701 hence "holding (e#s) taker cs'" |
|
2702 using holding_esI2 holding_taker by fastforce |
|
2703 thus ?thesis by (auto simp:holdents_def) |
|
2704 next |
|
2705 assume "cs' = cs" |
|
2706 with holding_taker |
|
2707 show ?thesis by (auto simp:holdents_def) |
|
2708 qed |
|
2709 } ultimately show ?thesis by auto |
|
2710 qed |
|
2711 |
|
2712 lemma cntCS_es_taker [simp]: "cntCS (e#s) taker = cntCS s taker + 1" |
|
2713 proof - |
|
2714 have "card (holdents s taker \<union> {cs}) = card (holdents s taker) + 1" |
|
2715 proof(subst card_Un_disjoint) |
|
2716 show "holdents s taker \<inter> {cs} = {}" |
|
2717 using not_holding_taker_s_cs by (auto simp:holdents_def) |
|
2718 qed (auto simp:finite_holdents) |
|
2719 thus ?thesis |
|
2720 by (unfold cntCS_def, insert holdents_es_taker, simp) |
|
2721 qed |
|
2722 |
|
2723 lemma pvD_taker_s[simp]: "pvD s taker = 1" |
|
2724 by (unfold pvD_def, simp) |
|
2725 |
|
2726 lemma pvD_taker_es[simp]: "pvD (e#s) taker = 0" |
|
2727 by (unfold pvD_def, simp) |
|
2728 |
|
2729 lemma pvD_th_s[simp]: "pvD s th = 0" |
|
2730 by (unfold pvD_def, simp) |
|
2731 |
|
2732 lemma pvD_th_es[simp]: "pvD (e#s) th = 0" |
|
2733 by (unfold pvD_def, simp) |
|
2734 |
|
2735 lemma holdents_es_th: |
|
2736 "holdents (e#s) th = holdents s th - {cs}" (is "?L = ?R") |
|
2737 proof - |
|
2738 { fix cs' |
|
2739 assume "cs' \<in> ?L" |
|
2740 hence "holding (e#s) th cs'" by (auto simp:holdents_def) |
|
2741 hence "cs' \<in> ?R" |
|
2742 proof(cases rule:holding_esE) |
|
2743 case 2 |
|
2744 thus ?thesis by (auto simp:holdents_def) |
|
2745 qed (insert neq_taker_th, auto) |
|
2746 } moreover { |
|
2747 fix cs' |
|
2748 assume "cs' \<in> ?R" |
|
2749 hence "cs' \<noteq> cs" "holding s th cs'" by (auto simp:holdents_def) |
|
2750 from holding_esI2[OF this] |
|
2751 have "cs' \<in> ?L" by (auto simp:holdents_def) |
|
2752 } ultimately show ?thesis by auto |
|
2753 qed |
|
2754 |
|
2755 lemma cntCS_es_th [simp]: "cntCS (e#s) th = cntCS s th - 1" |
|
2756 proof - |
|
2757 have "card (holdents s th - {cs}) = card (holdents s th) - 1" |
|
2758 proof - |
|
2759 have "cs \<in> holdents s th" using holding_th_cs_s |
|
2760 by (auto simp:holdents_def) |
|
2761 moreover have "finite (holdents s th)" |
|
2762 by (simp add: finite_holdents) |
|
2763 ultimately show ?thesis by auto |
|
2764 qed |
|
2765 thus ?thesis by (unfold cntCS_def holdents_es_th) |
|
2766 qed |
|
2767 |
|
2768 lemma holdents_kept: |
|
2769 assumes "th' \<noteq> taker" |
|
2770 and "th' \<noteq> th" |
|
2771 shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R") |
|
2772 proof - |
|
2773 { fix cs' |
|
2774 assume h: "cs' \<in> ?L" |
|
2775 have "cs' \<in> ?R" |
|
2776 proof(cases "cs' = cs") |
|
2777 case False |
|
2778 hence eq_wq: "wq (e#s) cs' = wq s cs'" by simp |
|
2779 from h have "holding (e#s) th' cs'" by (auto simp:holdents_def) |
|
2780 from this[unfolded s_holding_def, folded wq_def, unfolded eq_wq] |
|
2781 show ?thesis |
|
2782 by (unfold holdents_def s_holding_def, fold wq_def, auto) |
|
2783 next |
|
2784 case True |
|
2785 from h[unfolded this] |
|
2786 have "holding (e#s) th' cs" by (auto simp:holdents_def) |
|
2787 from held_unique[OF this holding_taker] |
|
2788 have "th' = taker" . |
|
2789 with assms show ?thesis by auto |
|
2790 qed |
|
2791 } moreover { |
|
2792 fix cs' |
|
2793 assume h: "cs' \<in> ?R" |
|
2794 have "cs' \<in> ?L" |
|
2795 proof(cases "cs' = cs") |
|
2796 case False |
|
2797 hence eq_wq: "wq (e#s) cs' = wq s cs'" by simp |
|
2798 from h have "holding s th' cs'" by (auto simp:holdents_def) |
|
2799 from this[unfolded s_holding_def, folded wq_def, unfolded eq_wq] |
|
2800 show ?thesis |
|
2801 by (unfold holdents_def s_holding_def, fold wq_def, insert eq_wq, simp) |
|
2802 next |
|
2803 case True |
|
2804 from h[unfolded this] |
|
2805 have "holding s th' cs" by (auto simp:holdents_def) |
|
2806 from held_unique[OF this holding_th_cs_s] |
|
2807 have "th' = th" . |
|
2808 with assms show ?thesis by auto |
|
2809 qed |
|
2810 } ultimately show ?thesis by auto |
|
2811 qed |
|
2812 |
|
2813 lemma cntCS_kept [simp]: |
|
2814 assumes "th' \<noteq> taker" |
|
2815 and "th' \<noteq> th" |
|
2816 shows "cntCS (e#s) th' = cntCS s th'" |
|
2817 by (unfold cntCS_def holdents_kept[OF assms], simp) |
|
2818 |
|
2819 lemma readys_kept1: |
|
2820 assumes "th' \<noteq> taker" |
|
2821 and "th' \<in> readys (e#s)" |
|
2822 shows "th' \<in> readys s" |
|
2823 proof - |
|
2824 { fix cs' |
|
2825 assume wait: "waiting s th' cs'" |
|
2826 have n_wait: "\<not> waiting (e#s) th' cs'" |
|
2827 using assms(2)[unfolded readys_def] by auto |
|
2828 have False |
|
2829 proof(cases "cs' = cs") |
|
2830 case False |
|
2831 with n_wait wait |
|
2832 show ?thesis |
|
2833 by (unfold s_waiting_def, fold wq_def, auto) |
|
2834 next |
|
2835 case True |
|
2836 have "th' \<in> set (th # rest) \<and> th' \<noteq> hd (th # rest)" |
|
2837 using wait[unfolded True s_waiting_def, folded wq_def, unfolded wq_s_cs] . |
|
2838 moreover have "\<not> (th' \<in> set rest \<and> th' \<noteq> hd (taker # rest'))" |
|
2839 using n_wait[unfolded True s_waiting_def, folded wq_def, |
|
2840 unfolded wq_es_cs set_wq', unfolded eq_wq'] . |
|
2841 ultimately have "th' = taker" by auto |
|
2842 with assms(1) |
|
2843 show ?thesis by simp |
|
2844 qed |
|
2845 } with assms(2) show ?thesis |
|
2846 by (unfold readys_def, auto) |
|
2847 qed |
|
2848 |
|
2849 lemma readys_kept2: |
|
2850 assumes "th' \<noteq> taker" |
|
2851 and "th' \<in> readys s" |
|
2852 shows "th' \<in> readys (e#s)" |
|
2853 proof - |
|
2854 { fix cs' |
|
2855 assume wait: "waiting (e#s) th' cs'" |
|
2856 have n_wait: "\<not> waiting s th' cs'" |
|
2857 using assms(2)[unfolded readys_def] by auto |
|
2858 have False |
|
2859 proof(cases "cs' = cs") |
|
2860 case False |
|
2861 with n_wait wait |
|
2862 show ?thesis |
|
2863 by (unfold s_waiting_def, fold wq_def, auto) |
|
2864 next |
|
2865 case True |
|
2866 have "th' \<in> set rest \<and> th' \<noteq> hd (taker # rest')" |
|
2867 using wait [unfolded True s_waiting_def, folded wq_def, |
|
2868 unfolded wq_es_cs set_wq', unfolded eq_wq'] . |
|
2869 moreover have "\<not> (th' \<in> set (th # rest) \<and> th' \<noteq> hd (th # rest))" |
|
2870 using n_wait[unfolded True s_waiting_def, folded wq_def, unfolded wq_s_cs] . |
|
2871 ultimately have "th' = taker" by auto |
|
2872 with assms(1) |
|
2873 show ?thesis by simp |
|
2874 qed |
|
2875 } with assms(2) show ?thesis |
|
2876 by (unfold readys_def, auto) |
|
2877 qed |
|
2878 |
|
2879 lemma readys_simp [simp]: |
|
2880 assumes "th' \<noteq> taker" |
|
2881 shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)" |
|
2882 using readys_kept1[OF assms] readys_kept2[OF assms] |
|
2883 by metis |
|
2884 |
|
2885 lemma cnp_cnv_cncs_kept: |
|
2886 assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'" |
|
2887 shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'" |
|
2888 proof - |
|
2889 { assume eq_th': "th' = taker" |
|
2890 have ?thesis |
|
2891 apply (unfold eq_th' pvD_taker_es cntCS_es_taker) |
|
2892 by (insert neq_taker_th assms[unfolded eq_th'], unfold is_v, simp) |
|
2893 } moreover { |
|
2894 assume eq_th': "th' = th" |
|
2895 have ?thesis |
|
2896 apply (unfold eq_th' pvD_th_es cntCS_es_th) |
|
2897 by (insert assms[unfolded eq_th'], unfold is_v, simp) |
|
2898 } moreover { |
|
2899 assume h: "th' \<noteq> taker" "th' \<noteq> th" |
|
2900 have ?thesis using assms |
|
2901 apply (unfold cntCS_kept[OF h], insert h, unfold is_v, simp) |
|
2902 by (fold is_v, unfold pvD_def, simp) |
|
2903 } ultimately show ?thesis by metis |
|
2904 qed |
|
2905 |
|
2906 end |
|
2907 |
|
2908 context valid_trace_v_e |
|
2909 begin |
|
2910 |
|
2911 lemma holdents_es_th: |
|
2912 "holdents (e#s) th = holdents s th - {cs}" (is "?L = ?R") |
|
2913 proof - |
|
2914 { fix cs' |
|
2915 assume "cs' \<in> ?L" |
|
2916 hence "holding (e#s) th cs'" by (auto simp:holdents_def) |
|
2917 hence "cs' \<in> ?R" |
|
2918 proof(cases rule:holding_esE) |
|
2919 case 1 |
|
2920 thus ?thesis by (auto simp:holdents_def) |
|
2921 qed |
|
2922 } moreover { |
|
2923 fix cs' |
|
2924 assume "cs' \<in> ?R" |
|
2925 hence "cs' \<noteq> cs" "holding s th cs'" by (auto simp:holdents_def) |
|
2926 from holding_esI2[OF this] |
|
2927 have "cs' \<in> ?L" by (auto simp:holdents_def) |
|
2928 } ultimately show ?thesis by auto |
|
2929 qed |
|
2930 |
|
2931 lemma cntCS_es_th [simp]: "cntCS (e#s) th = cntCS s th - 1" |
|
2932 proof - |
|
2933 have "card (holdents s th - {cs}) = card (holdents s th) - 1" |
|
2934 proof - |
|
2935 have "cs \<in> holdents s th" using holding_th_cs_s |
|
2936 by (auto simp:holdents_def) |
|
2937 moreover have "finite (holdents s th)" |
|
2938 by (simp add: finite_holdents) |
|
2939 ultimately show ?thesis by auto |
|
2940 qed |
|
2941 thus ?thesis by (unfold cntCS_def holdents_es_th) |
|
2942 qed |
|
2943 |
|
2944 lemma holdents_kept: |
|
2945 assumes "th' \<noteq> th" |
|
2946 shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R") |
|
2947 proof - |
|
2948 { fix cs' |
|
2949 assume h: "cs' \<in> ?L" |
|
2950 have "cs' \<in> ?R" |
|
2951 proof(cases "cs' = cs") |
|
2952 case False |
|
2953 hence eq_wq: "wq (e#s) cs' = wq s cs'" by simp |
|
2954 from h have "holding (e#s) th' cs'" by (auto simp:holdents_def) |
|
2955 from this[unfolded s_holding_def, folded wq_def, unfolded eq_wq] |
|
2956 show ?thesis |
|
2957 by (unfold holdents_def s_holding_def, fold wq_def, auto) |
|
2958 next |
|
2959 case True |
|
2960 from h[unfolded this] |
|
2961 have "holding (e#s) th' cs" by (auto simp:holdents_def) |
|
2962 from this[unfolded s_holding_def, folded wq_def, |
|
2963 unfolded wq_es_cs nil_wq'] |
|
2964 show ?thesis by auto |
|
2965 qed |
|
2966 } moreover { |
|
2967 fix cs' |
|
2968 assume h: "cs' \<in> ?R" |
|
2969 have "cs' \<in> ?L" |
|
2970 proof(cases "cs' = cs") |
|
2971 case False |
|
2972 hence eq_wq: "wq (e#s) cs' = wq s cs'" by simp |
|
2973 from h have "holding s th' cs'" by (auto simp:holdents_def) |
|
2974 from this[unfolded s_holding_def, folded wq_def, unfolded eq_wq] |
|
2975 show ?thesis |
|
2976 by (unfold holdents_def s_holding_def, fold wq_def, insert eq_wq, simp) |
|
2977 next |
|
2978 case True |
|
2979 from h[unfolded this] |
|
2980 have "holding s th' cs" by (auto simp:holdents_def) |
|
2981 from held_unique[OF this holding_th_cs_s] |
|
2982 have "th' = th" . |
|
2983 with assms show ?thesis by auto |
|
2984 qed |
|
2985 } ultimately show ?thesis by auto |
|
2986 qed |
|
2987 |
|
2988 lemma cntCS_kept [simp]: |
|
2989 assumes "th' \<noteq> th" |
|
2990 shows "cntCS (e#s) th' = cntCS s th'" |
|
2991 by (unfold cntCS_def holdents_kept[OF assms], simp) |
|
2992 |
|
2993 lemma readys_kept1: |
|
2994 assumes "th' \<in> readys (e#s)" |
|
2995 shows "th' \<in> readys s" |
|
2996 proof - |
|
2997 { fix cs' |
|
2998 assume wait: "waiting s th' cs'" |
|
2999 have n_wait: "\<not> waiting (e#s) th' cs'" |
|
3000 using assms(1)[unfolded readys_def] by auto |
|
3001 have False |
|
3002 proof(cases "cs' = cs") |
|
3003 case False |
|
3004 with n_wait wait |
|
3005 show ?thesis |
|
3006 by (unfold s_waiting_def, fold wq_def, auto) |
|
3007 next |
|
3008 case True |
|
3009 have "th' \<in> set (th # rest) \<and> th' \<noteq> hd (th # rest)" |
|
3010 using wait[unfolded True s_waiting_def, folded wq_def, unfolded wq_s_cs] . |
|
3011 hence "th' \<in> set rest" by auto |
|
3012 with set_wq' have "th' \<in> set wq'" by metis |
|
3013 with nil_wq' show ?thesis by simp |
|
3014 qed |
|
3015 } thus ?thesis using assms |
|
3016 by (unfold readys_def, auto) |
|
3017 qed |
|
3018 |
|
3019 lemma readys_kept2: |
|
3020 assumes "th' \<in> readys s" |
|
3021 shows "th' \<in> readys (e#s)" |
|
3022 proof - |
|
3023 { fix cs' |
|
3024 assume wait: "waiting (e#s) th' cs'" |
|
3025 have n_wait: "\<not> waiting s th' cs'" |
|
3026 using assms[unfolded readys_def] by auto |
|
3027 have False |
|
3028 proof(cases "cs' = cs") |
|
3029 case False |
|
3030 with n_wait wait |
|
3031 show ?thesis |
|
3032 by (unfold s_waiting_def, fold wq_def, auto) |
|
3033 next |
|
3034 case True |
|
3035 have "th' \<in> set [] \<and> th' \<noteq> hd []" |
|
3036 using wait[unfolded True s_waiting_def, folded wq_def, |
|
3037 unfolded wq_es_cs nil_wq'] . |
|
3038 thus ?thesis by simp |
|
3039 qed |
|
3040 } with assms show ?thesis |
|
3041 by (unfold readys_def, auto) |
|
3042 qed |
|
3043 |
|
3044 lemma readys_simp [simp]: |
|
3045 shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)" |
|
3046 using readys_kept1[OF assms] readys_kept2[OF assms] |
|
3047 by metis |
|
3048 |
|
3049 lemma cnp_cnv_cncs_kept: |
|
3050 assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'" |
|
3051 shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'" |
|
3052 proof - |
|
3053 { |
|
3054 assume eq_th': "th' = th" |
|
3055 have ?thesis |
|
3056 apply (unfold eq_th' pvD_th_es cntCS_es_th) |
|
3057 by (insert assms[unfolded eq_th'], unfold is_v, simp) |
|
3058 } moreover { |
|
3059 assume h: "th' \<noteq> th" |
|
3060 have ?thesis using assms |
|
3061 apply (unfold cntCS_kept[OF h], insert h, unfold is_v, simp) |
|
3062 by (fold is_v, unfold pvD_def, simp) |
|
3063 } ultimately show ?thesis by metis |
|
3064 qed |
|
3065 |
|
3066 end |
|
3067 |
|
3068 context valid_trace_v |
|
3069 begin |
|
3070 |
|
3071 lemma cnp_cnv_cncs_kept: |
|
3072 assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'" |
|
3073 shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'" |
|
3074 proof(cases "rest = []") |
|
3075 case True |
|
3076 then interpret vt: valid_trace_v_e by (unfold_locales, simp) |
|
3077 show ?thesis using assms using vt.cnp_cnv_cncs_kept by blast |
|
3078 next |
|
3079 case False |
|
3080 then interpret vt: valid_trace_v_n by (unfold_locales, simp) |
|
3081 show ?thesis using assms using vt.cnp_cnv_cncs_kept by blast |
|
3082 qed |
|
3083 |
|
3084 end |
|
3085 |
|
3086 context valid_trace_create |
|
3087 begin |
|
3088 |
|
3089 lemma th_not_live_s [simp]: "th \<notin> threads s" |
|
3090 proof - |
|
3091 from pip_e[unfolded is_create] |
|
3092 show ?thesis by (cases, simp) |
|
3093 qed |
|
3094 |
|
3095 lemma th_not_ready_s [simp]: "th \<notin> readys s" |
|
3096 using th_not_live_s by (unfold readys_def, simp) |
|
3097 |
|
3098 lemma th_live_es [simp]: "th \<in> threads (e#s)" |
|
3099 by (unfold is_create, simp) |
|
3100 |
|
3101 lemma not_waiting_th_s [simp]: "\<not> waiting s th cs'" |
|
3102 proof |
|
3103 assume "waiting s th cs'" |
|
3104 from this[unfolded s_waiting_def, folded wq_def, unfolded wq_neq_simp] |
|
3105 have "th \<in> set (wq s cs')" by auto |
|
3106 from wq_threads[OF this] have "th \<in> threads s" . |
|
3107 with th_not_live_s show False by simp |
|
3108 qed |
|
3109 |
|
3110 lemma not_holding_th_s [simp]: "\<not> holding s th cs'" |
|
3111 proof |
|
3112 assume "holding s th cs'" |
|
3113 from this[unfolded s_holding_def, folded wq_def, unfolded wq_neq_simp] |
|
3114 have "th \<in> set (wq s cs')" by auto |
|
3115 from wq_threads[OF this] have "th \<in> threads s" . |
|
3116 with th_not_live_s show False by simp |
|
3117 qed |
|
3118 |
|
3119 lemma not_waiting_th_es [simp]: "\<not> waiting (e#s) th cs'" |
|
3120 proof |
|
3121 assume "waiting (e # s) th cs'" |
|
3122 from this[unfolded s_waiting_def, folded wq_def, unfolded wq_neq_simp] |
|
3123 have "th \<in> set (wq s cs')" by auto |
|
3124 from wq_threads[OF this] have "th \<in> threads s" . |
|
3125 with th_not_live_s show False by simp |
|
3126 qed |
|
3127 |
|
3128 lemma not_holding_th_es [simp]: "\<not> holding (e#s) th cs'" |
|
3129 proof |
|
3130 assume "holding (e # s) th cs'" |
|
3131 from this[unfolded s_holding_def, folded wq_def, unfolded wq_neq_simp] |
|
3132 have "th \<in> set (wq s cs')" by auto |
|
3133 from wq_threads[OF this] have "th \<in> threads s" . |
|
3134 with th_not_live_s show False by simp |
|
3135 qed |
|
3136 |
|
3137 lemma ready_th_es [simp]: "th \<in> readys (e#s)" |
|
3138 by (simp add:readys_def) |
|
3139 |
|
3140 lemma holdents_th_s: "holdents s th = {}" |
|
3141 by (unfold holdents_def, auto) |
|
3142 |
|
3143 lemma holdents_th_es: "holdents (e#s) th = {}" |
|
3144 by (unfold holdents_def, auto) |
|
3145 |
|
3146 lemma cntCS_th_s [simp]: "cntCS s th = 0" |
|
3147 by (unfold cntCS_def, simp add:holdents_th_s) |
|
3148 |
|
3149 lemma cntCS_th_es [simp]: "cntCS (e#s) th = 0" |
|
3150 by (unfold cntCS_def, simp add:holdents_th_es) |
|
3151 |
|
3152 lemma pvD_th_s [simp]: "pvD s th = 0" |
|
3153 by (unfold pvD_def, simp) |
|
3154 |
|
3155 lemma pvD_th_es [simp]: "pvD (e#s) th = 0" |
|
3156 by (unfold pvD_def, simp) |
|
3157 |
|
3158 lemma holdents_kept: |
|
3159 assumes "th' \<noteq> th" |
|
3160 shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R") |
|
3161 proof - |
|
3162 { fix cs' |
|
3163 assume h: "cs' \<in> ?L" |
|
3164 hence "cs' \<in> ?R" |
|
3165 by (unfold holdents_def s_holding_def, fold wq_def, |
|
3166 unfold wq_neq_simp, auto) |
|
3167 } moreover { |
|
3168 fix cs' |
|
3169 assume h: "cs' \<in> ?R" |
|
3170 hence "cs' \<in> ?L" |
|
3171 by (unfold holdents_def s_holding_def, fold wq_def, |
|
3172 unfold wq_neq_simp, auto) |
|
3173 } ultimately show ?thesis by auto |
|
3174 qed |
|
3175 |
|
3176 lemma cntCS_kept [simp]: |
|
3177 assumes "th' \<noteq> th" |
|
3178 shows "cntCS (e#s) th' = cntCS s th'" (is "?L = ?R") |
|
3179 using holdents_kept[OF assms] |
|
3180 by (unfold cntCS_def, simp) |
|
3181 |
|
3182 lemma readys_kept1: |
|
3183 assumes "th' \<noteq> th" |
|
3184 and "th' \<in> readys (e#s)" |
|
3185 shows "th' \<in> readys s" |
|
3186 proof - |
|
3187 { fix cs' |
|
3188 assume wait: "waiting s th' cs'" |
|
3189 have n_wait: "\<not> waiting (e#s) th' cs'" |
|
3190 using assms by (auto simp:readys_def) |
|
3191 from wait[unfolded s_waiting_def, folded wq_def] |
|
3192 n_wait[unfolded s_waiting_def, folded wq_def, unfolded wq_neq_simp] |
|
3193 have False by auto |
|
3194 } thus ?thesis using assms |
|
3195 by (unfold readys_def, auto) |
|
3196 qed |
|
3197 |
|
3198 lemma readys_kept2: |
|
3199 assumes "th' \<noteq> th" |
|
3200 and "th' \<in> readys s" |
|
3201 shows "th' \<in> readys (e#s)" |
|
3202 proof - |
|
3203 { fix cs' |
|
3204 assume wait: "waiting (e#s) th' cs'" |
|
3205 have n_wait: "\<not> waiting s th' cs'" |
|
3206 using assms(2) by (auto simp:readys_def) |
|
3207 from wait[unfolded s_waiting_def, folded wq_def, unfolded wq_neq_simp] |
|
3208 n_wait[unfolded s_waiting_def, folded wq_def] |
|
3209 have False by auto |
|
3210 } with assms show ?thesis |
|
3211 by (unfold readys_def, auto) |
|
3212 qed |
|
3213 |
|
3214 lemma readys_simp [simp]: |
|
3215 assumes "th' \<noteq> th" |
|
3216 shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)" |
|
3217 using readys_kept1[OF assms] readys_kept2[OF assms] |
|
3218 by metis |
|
3219 |
|
3220 lemma pvD_kept [simp]: |
|
3221 assumes "th' \<noteq> th" |
|
3222 shows "pvD (e#s) th' = pvD s th'" |
|
3223 using assms |
|
3224 by (unfold pvD_def, simp) |
|
3225 |
|
3226 lemma cnp_cnv_cncs_kept: |
|
3227 assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'" |
|
3228 shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'" |
|
3229 proof - |
|
3230 { |
|
3231 assume eq_th': "th' = th" |
|
3232 have ?thesis using assms |
|
3233 by (unfold eq_th', simp, unfold is_create, simp) |
|
3234 } moreover { |
|
3235 assume h: "th' \<noteq> th" |
|
3236 hence ?thesis using assms |
|
3237 by (simp, simp add:is_create) |
|
3238 } ultimately show ?thesis by metis |
|
3239 qed |
|
3240 |
|
3241 end |
|
3242 |
|
3243 context valid_trace_exit |
|
3244 begin |
|
3245 |
|
3246 lemma th_live_s [simp]: "th \<in> threads s" |
|
3247 proof - |
|
3248 from pip_e[unfolded is_exit] |
|
3249 show ?thesis |
|
3250 by (cases, unfold runing_def readys_def, simp) |
|
3251 qed |
|
3252 |
|
3253 lemma th_ready_s [simp]: "th \<in> readys s" |
|
3254 proof - |
|
3255 from pip_e[unfolded is_exit] |
|
3256 show ?thesis |
|
3257 by (cases, unfold runing_def, simp) |
|
3258 qed |
|
3259 |
|
3260 lemma th_not_live_es [simp]: "th \<notin> threads (e#s)" |
|
3261 by (unfold is_exit, simp) |
|
3262 |
|
3263 lemma not_holding_th_s [simp]: "\<not> holding s th cs'" |
|
3264 proof - |
|
3265 from pip_e[unfolded is_exit] |
|
3266 show ?thesis |
|
3267 by (cases, unfold holdents_def, auto) |
|
3268 qed |
|
3269 |
|
3270 lemma cntCS_th_s [simp]: "cntCS s th = 0" |
|
3271 proof - |
|
3272 from pip_e[unfolded is_exit] |
|
3273 show ?thesis |
|
3274 by (cases, unfold cntCS_def, simp) |
|
3275 qed |
|
3276 |
|
3277 lemma not_holding_th_es [simp]: "\<not> holding (e#s) th cs'" |
|
3278 proof |
|
3279 assume "holding (e # s) th cs'" |
|
3280 from this[unfolded s_holding_def, folded wq_def, unfolded wq_neq_simp] |
|
3281 have "holding s th cs'" |
|
3282 by (unfold s_holding_def, fold wq_def, auto) |
|
3283 with not_holding_th_s |
|
3284 show False by simp |
|
3285 qed |
|
3286 |
|
3287 lemma ready_th_es [simp]: "th \<notin> readys (e#s)" |
|
3288 by (simp add:readys_def) |
|
3289 |
|
3290 lemma holdents_th_s: "holdents s th = {}" |
|
3291 by (unfold holdents_def, auto) |
|
3292 |
|
3293 lemma holdents_th_es: "holdents (e#s) th = {}" |
|
3294 by (unfold holdents_def, auto) |
|
3295 |
|
3296 lemma cntCS_th_es [simp]: "cntCS (e#s) th = 0" |
|
3297 by (unfold cntCS_def, simp add:holdents_th_es) |
|
3298 |
|
3299 lemma pvD_th_s [simp]: "pvD s th = 0" |
|
3300 by (unfold pvD_def, simp) |
|
3301 |
|
3302 lemma pvD_th_es [simp]: "pvD (e#s) th = 0" |
|
3303 by (unfold pvD_def, simp) |
|
3304 |
|
3305 lemma holdents_kept: |
|
3306 assumes "th' \<noteq> th" |
|
3307 shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R") |
|
3308 proof - |
|
3309 { fix cs' |
|
3310 assume h: "cs' \<in> ?L" |
|
3311 hence "cs' \<in> ?R" |
|
3312 by (unfold holdents_def s_holding_def, fold wq_def, |
|
3313 unfold wq_neq_simp, auto) |
|
3314 } moreover { |
|
3315 fix cs' |
|
3316 assume h: "cs' \<in> ?R" |
|
3317 hence "cs' \<in> ?L" |
|
3318 by (unfold holdents_def s_holding_def, fold wq_def, |
|
3319 unfold wq_neq_simp, auto) |
|
3320 } ultimately show ?thesis by auto |
|
3321 qed |
|
3322 |
|
3323 lemma cntCS_kept [simp]: |
|
3324 assumes "th' \<noteq> th" |
|
3325 shows "cntCS (e#s) th' = cntCS s th'" (is "?L = ?R") |
|
3326 using holdents_kept[OF assms] |
|
3327 by (unfold cntCS_def, simp) |
|
3328 |
|
3329 lemma readys_kept1: |
|
3330 assumes "th' \<noteq> th" |
|
3331 and "th' \<in> readys (e#s)" |
|
3332 shows "th' \<in> readys s" |
|
3333 proof - |
|
3334 { fix cs' |
|
3335 assume wait: "waiting s th' cs'" |
|
3336 have n_wait: "\<not> waiting (e#s) th' cs'" |
|
3337 using assms by (auto simp:readys_def) |
|
3338 from wait[unfolded s_waiting_def, folded wq_def] |
|
3339 n_wait[unfolded s_waiting_def, folded wq_def, unfolded wq_neq_simp] |
|
3340 have False by auto |
|
3341 } thus ?thesis using assms |
|
3342 by (unfold readys_def, auto) |
|
3343 qed |
|
3344 |
|
3345 lemma readys_kept2: |
|
3346 assumes "th' \<noteq> th" |
|
3347 and "th' \<in> readys s" |
|
3348 shows "th' \<in> readys (e#s)" |
|
3349 proof - |
|
3350 { fix cs' |
|
3351 assume wait: "waiting (e#s) th' cs'" |
|
3352 have n_wait: "\<not> waiting s th' cs'" |
|
3353 using assms(2) by (auto simp:readys_def) |
|
3354 from wait[unfolded s_waiting_def, folded wq_def, unfolded wq_neq_simp] |
|
3355 n_wait[unfolded s_waiting_def, folded wq_def] |
|
3356 have False by auto |
|
3357 } with assms show ?thesis |
|
3358 by (unfold readys_def, auto) |
|
3359 qed |
|
3360 |
|
3361 lemma readys_simp [simp]: |
|
3362 assumes "th' \<noteq> th" |
|
3363 shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)" |
|
3364 using readys_kept1[OF assms] readys_kept2[OF assms] |
|
3365 by metis |
|
3366 |
|
3367 lemma pvD_kept [simp]: |
|
3368 assumes "th' \<noteq> th" |
|
3369 shows "pvD (e#s) th' = pvD s th'" |
|
3370 using assms |
|
3371 by (unfold pvD_def, simp) |
|
3372 |
|
3373 lemma cnp_cnv_cncs_kept: |
|
3374 assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'" |
|
3375 shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'" |
|
3376 proof - |
|
3377 { |
|
3378 assume eq_th': "th' = th" |
|
3379 have ?thesis using assms |
|
3380 by (unfold eq_th', simp, unfold is_exit, simp) |
|
3381 } moreover { |
|
3382 assume h: "th' \<noteq> th" |
|
3383 hence ?thesis using assms |
|
3384 by (simp, simp add:is_exit) |
|
3385 } ultimately show ?thesis by metis |
|
3386 qed |
|
3387 |
|
3388 end |
|
3389 |
|
3390 context valid_trace_set |
|
3391 begin |
|
3392 |
|
3393 lemma th_live_s [simp]: "th \<in> threads s" |
|
3394 proof - |
|
3395 from pip_e[unfolded is_set] |
|
3396 show ?thesis |
|
3397 by (cases, unfold runing_def readys_def, simp) |
|
3398 qed |
|
3399 |
|
3400 lemma th_ready_s [simp]: "th \<in> readys s" |
|
3401 proof - |
|
3402 from pip_e[unfolded is_set] |
|
3403 show ?thesis |
|
3404 by (cases, unfold runing_def, simp) |
|
3405 qed |
|
3406 |
|
3407 lemma th_not_live_es [simp]: "th \<in> threads (e#s)" |
|
3408 by (unfold is_set, simp) |
|
3409 |
|
3410 |
|
3411 lemma holdents_kept: |
|
3412 shows "holdents (e#s) th' = holdents s th'" (is "?L = ?R") |
|
3413 proof - |
|
3414 { fix cs' |
|
3415 assume h: "cs' \<in> ?L" |
|
3416 hence "cs' \<in> ?R" |
|
3417 by (unfold holdents_def s_holding_def, fold wq_def, |
|
3418 unfold wq_neq_simp, auto) |
|
3419 } moreover { |
|
3420 fix cs' |
|
3421 assume h: "cs' \<in> ?R" |
|
3422 hence "cs' \<in> ?L" |
|
3423 by (unfold holdents_def s_holding_def, fold wq_def, |
|
3424 unfold wq_neq_simp, auto) |
|
3425 } ultimately show ?thesis by auto |
|
3426 qed |
|
3427 |
|
3428 lemma cntCS_kept [simp]: |
|
3429 shows "cntCS (e#s) th' = cntCS s th'" (is "?L = ?R") |
|
3430 using holdents_kept |
|
3431 by (unfold cntCS_def, simp) |
|
3432 |
|
3433 lemma threads_kept[simp]: |
|
3434 "threads (e#s) = threads s" |
|
3435 by (unfold is_set, simp) |
|
3436 |
|
3437 lemma readys_kept1: |
|
3438 assumes "th' \<in> readys (e#s)" |
|
3439 shows "th' \<in> readys s" |
|
3440 proof - |
|
3441 { fix cs' |
|
3442 assume wait: "waiting s th' cs'" |
|
3443 have n_wait: "\<not> waiting (e#s) th' cs'" |
|
3444 using assms by (auto simp:readys_def) |
|
3445 from wait[unfolded s_waiting_def, folded wq_def] |
|
3446 n_wait[unfolded s_waiting_def, folded wq_def, unfolded wq_neq_simp] |
|
3447 have False by auto |
|
3448 } moreover have "th' \<in> threads s" |
|
3449 using assms[unfolded readys_def] by auto |
|
3450 ultimately show ?thesis |
|
3451 by (unfold readys_def, auto) |
|
3452 qed |
|
3453 |
|
3454 lemma readys_kept2: |
|
3455 assumes "th' \<in> readys s" |
|
3456 shows "th' \<in> readys (e#s)" |
|
3457 proof - |
|
3458 { fix cs' |
|
3459 assume wait: "waiting (e#s) th' cs'" |
|
3460 have n_wait: "\<not> waiting s th' cs'" |
|
3461 using assms by (auto simp:readys_def) |
|
3462 from wait[unfolded s_waiting_def, folded wq_def, unfolded wq_neq_simp] |
|
3463 n_wait[unfolded s_waiting_def, folded wq_def] |
|
3464 have False by auto |
|
3465 } with assms show ?thesis |
|
3466 by (unfold readys_def, auto) |
|
3467 qed |
|
3468 |
|
3469 lemma readys_simp [simp]: |
|
3470 shows "(th' \<in> readys (e#s)) = (th' \<in> readys s)" |
|
3471 using readys_kept1 readys_kept2 |
|
3472 by metis |
|
3473 |
|
3474 lemma pvD_kept [simp]: |
|
3475 shows "pvD (e#s) th' = pvD s th'" |
|
3476 by (unfold pvD_def, simp) |
|
3477 |
|
3478 lemma cnp_cnv_cncs_kept: |
|
3479 assumes "cntP s th' = cntV s th' + cntCS s th' + pvD s th'" |
|
3480 shows "cntP (e#s) th' = cntV (e#s) th' + cntCS (e#s) th' + pvD (e#s) th'" |
|
3481 using assms |
|
3482 by (unfold is_set, simp, fold is_set, simp) |
|
3483 |
|
3484 end |
|
3485 |
|
3486 context valid_trace |
|
3487 begin |
|
3488 |
|
3489 lemma cnp_cnv_cncs: "cntP s th' = cntV s th' + cntCS s th' + pvD s th'" |
|
3490 proof(induct rule:ind) |
|
3491 case Nil |
|
3492 thus ?case |
|
3493 by (unfold cntP_def cntV_def pvD_def cntCS_def holdents_def |
|
3494 s_holding_def, simp) |
|
3495 next |
|
3496 case (Cons s e) |
|
3497 interpret vt_e: valid_trace_e s e using Cons by simp |
|
3498 show ?case |
|
3499 proof(cases e) |
|
3500 case (Create th prio) |
|
3501 interpret vt_create: valid_trace_create s e th prio |
|
3502 using Create by (unfold_locales, simp) |
|
3503 show ?thesis using Cons by (simp add: vt_create.cnp_cnv_cncs_kept) |
|
3504 next |
|
3505 case (Exit th) |
|
3506 interpret vt_exit: valid_trace_exit s e th |
|
3507 using Exit by (unfold_locales, simp) |
|
3508 show ?thesis using Cons by (simp add: vt_exit.cnp_cnv_cncs_kept) |
|
3509 next |
|
3510 case (P th cs) |
|
3511 interpret vt_p: valid_trace_p s e th cs using P by (unfold_locales, simp) |
|
3512 show ?thesis using Cons by (simp add: vt_p.cnp_cnv_cncs_kept) |
|
3513 next |
|
3514 case (V th cs) |
|
3515 interpret vt_v: valid_trace_v s e th cs using V by (unfold_locales, simp) |
|
3516 show ?thesis using Cons by (simp add: vt_v.cnp_cnv_cncs_kept) |
|
3517 next |
|
3518 case (Set th prio) |
|
3519 interpret vt_set: valid_trace_set s e th prio |
|
3520 using Set by (unfold_locales, simp) |
|
3521 show ?thesis using Cons by (simp add: vt_set.cnp_cnv_cncs_kept) |
|
3522 qed |
|
3523 qed |
|
3524 |
|
3525 lemma not_thread_holdents: |
|
3526 assumes not_in: "th \<notin> threads s" |
|
3527 shows "holdents s th = {}" |
|
3528 proof - |
|
3529 { fix cs |
|
3530 assume "cs \<in> holdents s th" |
|
3531 hence "holding s th cs" by (auto simp:holdents_def) |
|
3532 from this[unfolded s_holding_def, folded wq_def] |
|
3533 have "th \<in> set (wq s cs)" by auto |
|
3534 with wq_threads have "th \<in> threads s" by auto |
|
3535 with assms |
|
3536 have False by simp |
|
3537 } thus ?thesis by auto |
|
3538 qed |
|
3539 |
|
3540 lemma not_thread_cncs: |
|
3541 assumes not_in: "th \<notin> threads s" |
|
3542 shows "cntCS s th = 0" |
|
3543 using not_thread_holdents[OF assms] |
|
3544 by (simp add:cntCS_def) |
|
3545 |
|
3546 lemma cnp_cnv_eq: |
|
3547 assumes "th \<notin> threads s" |
|
3548 shows "cntP s th = cntV s th" |
|
3549 using assms cnp_cnv_cncs not_thread_cncs pvD_def |
|
3550 by (auto) |
|
3551 |
|
3552 end |
|
3553 |
|
3554 |
|
3555 |
|
3556 end |
|
3557 |