--- a/Journal/Paper.thy Fri Apr 21 20:17:13 2017 +0800
+++ b/Journal/Paper.thy Tue Apr 25 14:05:57 2017 +0100
@@ -392,7 +392,7 @@
\noindent
In this definition @{term "length s"} stands for the length of the list
of events @{text s}. Again the default value in this function is @{text 0}
- for threads that have not been created yet. An actor of an event is
+ for threads that have not been created yet. An \emph{actor} of an event is
defined as
\begin{isabelle}\ \ \ \ \ %%%
@@ -401,6 +401,8 @@
@{thm (rhs) actor.simps(5)}\\
@{thm (lhs) actor.simps(1)} & @{text "\<equiv>"} &
@{thm (rhs) actor.simps(1)}\\
+ @{thm (lhs) actor.simps(4)} & @{text "\<equiv>"} &
+ @{thm (rhs) actor.simps(4)}\\
@{thm (lhs) actor.simps(2)} & @{text "\<equiv>"} &
@{thm (rhs) actor.simps(2)}\\
@{thm (lhs) actor.simps(3)} & @{text "\<equiv>"} &
@@ -408,10 +410,10 @@
\end{tabular}}
\end{isabelle}
-
-
-
-
+ \noindent
+ This allows us to define what actions a set of threads @{text ths} might
+ perform in a list of events @{text s}, namely
+ @{thm actions_of_def[THEN eq_reflection]}.
A \emph{precedence} of a thread @{text th} in a
state @{text s} is the pair of natural numbers defined as
@@ -590,15 +592,15 @@
forrest} is a forrest which is well-founded and every node has
finitely many children (is only finitely branching).
- \endnote{
- \begin{isabelle}\ \ \ \ \ %%%
- @{thm rtrancl_path.intros}
- \end{isabelle}
-
+ %\endnote{
%\begin{isabelle}\ \ \ \ \ %%%
- %@{thm rpath_def}
+ %@ {thm rtrancl_path.intros}
+ %\end{isabelle}
+ %
+ %\begin{isabelle}\ \ \ \ \ %%%
+ %@ {thm rpath_def}
%\end{isabelle}
- }
+ %}
%\endnote{{\bf Lemma about overlapping paths}}
@@ -614,8 +616,7 @@
``chase'' outgoing arrows leading to a single root of a tree.
The use of relations for representing RAGs allows us to conveniently define
- the notion of the \emph{dependants} of a thread using the transitive closure
- operation for relations, written ~@{term "trancl DUMMY"}. This gives
+ the notion of the \emph{dependants} of a thread
\begin{isabelle}\ \ \ \ \ %%%
@{thm dependants_raw_def}
@@ -642,10 +643,11 @@
@{thm cpreced_def3}\hfill\numbered{cpreced}
\end{isabelle}
- \endnote{
- \begin{isabelle}\ \ \ \ \ %%%
- @{thm cp_alt_def cp_alt_def1}
- \end{isabelle}}
+ %\endnote{
+ %\begin{isabelle}\ \ \ \ \ %%%
+ %@ {thm cp_alt_def cp_alt_def1}
+ %\end{isabelle}
+ %}
\noindent where the dependants of @{text th} are given by the
waiting queue function. While the precedence @{term prec} of any
@@ -1163,24 +1165,24 @@
\end{proof}
- \endnote{
- In what follows we will describe properties of PIP that allow us to
- prove Theorem~\ref{mainthm} and, when instructive, briefly describe
- our argument. Recall we want to prove that in state @{term "s' @ s"}
- either @{term th} is either running or blocked by a thread @{term
- "th'"} (@{term "th \<noteq> th'"}) which was alive in state @{term s}. We
- can show that
+ %\endnote{
+ %In what follows we will describe properties of PIP that allow us to
+ %prove Theorem~\ref{mainthm} and, when instructive, briefly describe
+ %our argument. Recall we want to prove that in state @ {term "s' @ s"}
+ %either @{term th} is either running or blocked by a thread @ {term
+ %"th'"} (@{term "th \<noteq> th'"}) which was alive in state @{term s}. We
+ %can show that
- \begin{lemma}
- If @{thm (prem 2) eq_pv_blocked}
- then @{thm (concl) eq_pv_blocked}
- \end{lemma}
+ %\begin{lemma}
+ %If @{thm (prem 2) eq_pv_blocked}
+ %then @{thm (concl) eq_pv_blocked}
+ %\end{lemma}
- \begin{lemma}
- If @{thm (prem 2) eq_pv_persist}
- then @{thm (concl) eq_pv_persist}
- \end{lemma}}
+ %\begin{lemma}
+ %If @{thm (prem 2) eq_pv_persist}
+ %then @{thm (concl) eq_pv_persist}
+ %\end{lemma}}
\endnote{{\bf OUTLINE}
@@ -1677,10 +1679,10 @@
Consider the states @{text "s upto t"}. It holds that all the states where
@{text "th"} runs and all the states where @{text "th"} does not run is
- equalt to @{text "1 + len t"}. That means
+ equalt to @{text "len t"}. That means
\begin{center}
- @{text "states where th does not run = 1 + len t - states where th runs"} (*)
+ @{text "states where th does not run = len t - states where th runs"} (*)
\end{center}
It also holds that all the actions of @{text "th"} are less or equal to
@@ -1693,7 +1695,7 @@
That means in $(*)$ we have
\begin{center}
- @{text "states where th does not run \<le> 1 + len t - len (actions_of {th} t)"}
+ @{text "states where th does not run \<le> len t - len (actions_of {th} t)"}
\end{center}
If we look at all the events that can occur in @{text "s upto t"}, we have that