diff -r 83da37e8b1d2 -r f1d82f6c05a3 Journal/Paper.thy --- a/Journal/Paper.thy Fri Apr 21 20:17:13 2017 +0800 +++ b/Journal/Paper.thy Tue Apr 25 14:05:57 2017 +0100 @@ -392,7 +392,7 @@ \noindent In this definition @{term "length s"} stands for the length of the list of events @{text s}. Again the default value in this function is @{text 0} - for threads that have not been created yet. An actor of an event is + for threads that have not been created yet. An \emph{actor} of an event is defined as \begin{isabelle}\ \ \ \ \ %%% @@ -401,6 +401,8 @@ @{thm (rhs) actor.simps(5)}\\ @{thm (lhs) actor.simps(1)} & @{text "\"} & @{thm (rhs) actor.simps(1)}\\ + @{thm (lhs) actor.simps(4)} & @{text "\"} & + @{thm (rhs) actor.simps(4)}\\ @{thm (lhs) actor.simps(2)} & @{text "\"} & @{thm (rhs) actor.simps(2)}\\ @{thm (lhs) actor.simps(3)} & @{text "\"} & @@ -408,10 +410,10 @@ \end{tabular}} \end{isabelle} - - - - + \noindent + This allows us to define what actions a set of threads @{text ths} might + perform in a list of events @{text s}, namely + @{thm actions_of_def[THEN eq_reflection]}. A \emph{precedence} of a thread @{text th} in a state @{text s} is the pair of natural numbers defined as @@ -590,15 +592,15 @@ forrest} is a forrest which is well-founded and every node has finitely many children (is only finitely branching). - \endnote{ - \begin{isabelle}\ \ \ \ \ %%% - @{thm rtrancl_path.intros} - \end{isabelle} - + %\endnote{ %\begin{isabelle}\ \ \ \ \ %%% - %@{thm rpath_def} + %@ {thm rtrancl_path.intros} + %\end{isabelle} + % + %\begin{isabelle}\ \ \ \ \ %%% + %@ {thm rpath_def} %\end{isabelle} - } + %} %\endnote{{\bf Lemma about overlapping paths}} @@ -614,8 +616,7 @@ ``chase'' outgoing arrows leading to a single root of a tree. The use of relations for representing RAGs allows us to conveniently define - the notion of the \emph{dependants} of a thread using the transitive closure - operation for relations, written ~@{term "trancl DUMMY"}. This gives + the notion of the \emph{dependants} of a thread \begin{isabelle}\ \ \ \ \ %%% @{thm dependants_raw_def} @@ -642,10 +643,11 @@ @{thm cpreced_def3}\hfill\numbered{cpreced} \end{isabelle} - \endnote{ - \begin{isabelle}\ \ \ \ \ %%% - @{thm cp_alt_def cp_alt_def1} - \end{isabelle}} + %\endnote{ + %\begin{isabelle}\ \ \ \ \ %%% + %@ {thm cp_alt_def cp_alt_def1} + %\end{isabelle} + %} \noindent where the dependants of @{text th} are given by the waiting queue function. While the precedence @{term prec} of any @@ -1163,24 +1165,24 @@ \end{proof} - \endnote{ - In what follows we will describe properties of PIP that allow us to - prove Theorem~\ref{mainthm} and, when instructive, briefly describe - our argument. Recall we want to prove that in state @{term "s' @ s"} - either @{term th} is either running or blocked by a thread @{term - "th'"} (@{term "th \ th'"}) which was alive in state @{term s}. We - can show that + %\endnote{ + %In what follows we will describe properties of PIP that allow us to + %prove Theorem~\ref{mainthm} and, when instructive, briefly describe + %our argument. Recall we want to prove that in state @ {term "s' @ s"} + %either @{term th} is either running or blocked by a thread @ {term + %"th'"} (@{term "th \ th'"}) which was alive in state @{term s}. We + %can show that - \begin{lemma} - If @{thm (prem 2) eq_pv_blocked} - then @{thm (concl) eq_pv_blocked} - \end{lemma} + %\begin{lemma} + %If @{thm (prem 2) eq_pv_blocked} + %then @{thm (concl) eq_pv_blocked} + %\end{lemma} - \begin{lemma} - If @{thm (prem 2) eq_pv_persist} - then @{thm (concl) eq_pv_persist} - \end{lemma}} + %\begin{lemma} + %If @{thm (prem 2) eq_pv_persist} + %then @{thm (concl) eq_pv_persist} + %\end{lemma}} \endnote{{\bf OUTLINE} @@ -1677,10 +1679,10 @@ Consider the states @{text "s upto t"}. It holds that all the states where @{text "th"} runs and all the states where @{text "th"} does not run is - equalt to @{text "1 + len t"}. That means + equalt to @{text "len t"}. That means \begin{center} - @{text "states where th does not run = 1 + len t - states where th runs"} (*) + @{text "states where th does not run = len t - states where th runs"} (*) \end{center} It also holds that all the actions of @{text "th"} are less or equal to @@ -1693,7 +1695,7 @@ That means in $(*)$ we have \begin{center} - @{text "states where th does not run \ 1 + len t - len (actions_of {th} t)"} + @{text "states where th does not run \ len t - len (actions_of {th} t)"} \end{center} If we look at all the events that can occur in @{text "s upto t"}, we have that