Moment.thy~
changeset 81 c495eb16beb6
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Moment.thy~	Wed Jan 27 19:28:42 2016 +0800
@@ -0,0 +1,225 @@
+theory Moment
+imports Main
+begin
+
+definition moment :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list"
+where "moment n s = rev (take n (rev s))"
+
+value "moment 3 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9::int]"
+value "moment 2 [5, 4, 3, 2, 1, 0::int]"
+
+(*
+lemma length_moment_le:
+  assumes le_k: "k \<le> length s"
+  shows "length (moment k s) = k"
+using le_k unfolding moment_def by auto
+*)
+
+(*
+lemma length_moment_ge:
+  assumes le_k: "length s \<le> k"
+  shows "length (moment k s) = (length s)"
+using assms unfolding moment_def by simp
+*)
+
+lemma moment_app [simp]:
+  assumes ile: "i \<le> length s"
+  shows "moment i (s' @ s) = moment i s"
+using assms unfolding moment_def by simp
+
+lemma moment_eq [simp]: "moment (length s) (s' @ s) = s"
+  unfolding moment_def by simp
+
+lemma moment_ge [simp]: "length s \<le> n \<Longrightarrow> moment n s = s"
+  by (unfold moment_def, simp)
+
+lemma moment_zero [simp]: "moment 0 s = []"
+  by (simp add:moment_def)
+
+lemma p_split_gen: 
+  "\<lbrakk>Q s; \<not> Q (moment k s)\<rbrakk> \<Longrightarrow>
+  (\<exists> i. i < length s \<and> k \<le> i \<and> \<not> Q (moment i s) \<and> (\<forall> i' > i. Q (moment i' s)))"
+proof (induct s, simp)
+  fix a s
+  assume ih: "\<lbrakk>Q s; \<not> Q (moment k s)\<rbrakk>
+           \<Longrightarrow> \<exists>i<length s. k \<le> i \<and> \<not> Q (moment i s) \<and> (\<forall>i'>i. Q (moment i' s))"
+    and nq: "\<not> Q (moment k (a # s))" and qa: "Q (a # s)"
+  have le_k: "k \<le> length s"
+  proof -
+    { assume "length s < k"
+      hence "length (a#s) \<le> k" by simp
+      from moment_ge [OF this] and nq and qa
+      have "False" by auto
+    } thus ?thesis by arith
+  qed
+  have nq_k: "\<not> Q (moment k s)"
+  proof -
+    have "moment k (a#s) = moment k s"
+    proof -
+      from moment_app [OF le_k, of "[a]"] show ?thesis by simp
+    qed
+    with nq show ?thesis by simp
+  qed
+  show "\<exists>i<length (a # s). k \<le> i \<and> \<not> Q (moment i (a # s)) \<and> (\<forall>i'>i. Q (moment i' (a # s)))"
+  proof -
+    { assume "Q s"
+      from ih [OF this nq_k]
+      obtain i where lti: "i < length s" 
+        and nq: "\<not> Q (moment i s)" 
+        and rst: "\<forall>i'>i. Q (moment i' s)" 
+        and lki: "k \<le> i" by auto
+      have ?thesis 
+      proof -
+        from lti have "i < length (a # s)" by auto
+        moreover have " \<not> Q (moment i (a # s))"
+        proof -
+          from lti have "i \<le> (length s)" by simp
+          from moment_app [OF this, of "[a]"]
+          have "moment i (a # s) = moment i s" by simp
+          with nq show ?thesis by auto
+        qed
+        moreover have " (\<forall>i'>i. Q (moment i' (a # s)))"
+        proof -
+          {
+            fix i'
+            assume lti': "i < i'"
+            have "Q (moment i' (a # s))"
+            proof(cases "length (a#s) \<le> i'")
+              case True
+              from True have "moment i' (a#s) = a#s" by simp
+              with qa show ?thesis by simp
+            next
+              case False
+              from False have "i' \<le> length s" by simp
+              from moment_app [OF this, of "[a]"]
+              have "moment i' (a#s) = moment i' s" by simp
+              with rst lti' show ?thesis by auto
+            qed
+          } thus ?thesis by auto
+        qed
+        moreover note lki
+        ultimately show ?thesis by auto
+      qed
+    } moreover {
+      assume ns: "\<not> Q s"
+      have ?thesis
+      proof -
+        let ?i = "length s"
+        have "\<not> Q (moment ?i (a#s))"
+        proof -
+          have "?i \<le> length s" by simp
+          from moment_app [OF this, of "[a]"]
+          have "moment ?i (a#s) = moment ?i s" by simp
+          moreover have "\<dots> = s" by simp
+          ultimately show ?thesis using ns by auto
+        qed
+        moreover have "\<forall> i' > ?i. Q (moment i' (a#s))" 
+        proof -
+          { fix i'
+            assume "i' > ?i"
+            hence "length (a#s) \<le> i'" by simp
+            from moment_ge [OF this] 
+            have " moment i' (a # s) = a # s" .
+            with qa have "Q (moment i' (a#s))" by simp
+          } thus ?thesis by auto
+        qed
+        moreover have "?i < length (a#s)" by simp
+        moreover note le_k
+        ultimately show ?thesis by auto
+      qed
+    } ultimately show ?thesis by auto
+  qed
+qed
+
+lemma p_split: 
+  "\<lbrakk>Q s; \<not> Q []\<rbrakk> \<Longrightarrow> 
+       (\<exists> i. i < length s \<and> \<not> Q (moment i s) \<and> (\<forall> i' > i. Q (moment i' s)))"
+proof -
+  fix s Q
+  assume qs: "Q s" and nq: "\<not> Q []"
+  from nq have "\<not> Q (moment 0 s)" by simp
+  from p_split_gen [of Q s 0, OF qs this]
+  show "(\<exists> i. i < length s \<and> \<not> Q (moment i s) \<and> (\<forall> i' > i. Q (moment i' s)))"
+    by auto
+qed
+
+lemma moment_Suc_tl:
+  assumes "Suc i \<le> length s"
+  shows "tl (moment (Suc i) s) = moment i s"
+  using assms unfolding moment_def rev_take
+by (simp, metis Suc_diff_le diff_Suc_Suc drop_Suc tl_drop)
+
+lemma moment_plus:
+  assumes "Suc i \<le> length s"
+  shows "(moment (Suc i) s) = (hd (moment (Suc i) s)) # (moment i s)"
+proof -
+  have "(moment (Suc i) s) \<noteq> []"
+  using assms by (auto simp add: moment_def)
+  hence "(moment (Suc i) s) = (hd (moment (Suc i) s)) #  tl (moment (Suc i) s)"
+    by auto
+<<<<<<< local
+  have "moment (i + length s) (t @ s) = moment i t @ moment (length s) (t @ s)" 
+    by (simp add: moment_def)
+  with moment_app show ?thesis by auto
+qed
+
+lemma moment_Suc_tl:
+  assumes "Suc i \<le> length s"
+  shows "tl (moment (Suc i) s) = moment i s"
+  using assms unfolding moment_def rev_take
+  by (simp, metis Suc_diff_le diff_Suc_Suc drop_Suc tl_drop)
+  
+lemma moment_plus':
+  assumes "Suc i \<le> length s"
+  shows "(moment (Suc i) s) = (hd (moment (Suc i) s)) # (moment i s)"
+proof -
+  have "(moment (Suc i) s) \<noteq> []"
+  using assms length_moment_le by fastforce 
+  hence "(moment (Suc i) s) = (hd (moment (Suc i) s)) #  tl (moment (Suc i) s)"
+    by auto
+  with moment_Suc_tl[OF assms]
+  show ?thesis by metis
+qed
+
+lemma moment_plus: 
+  "Suc i \<le> length s \<Longrightarrow> moment (Suc i) s = (hd (moment (Suc i) s)) # (moment i s)"
+proof(induct s, simp+)
+  fix a s
+  assume ih: "Suc i \<le> length s \<Longrightarrow> moment (Suc i) s = hd (moment (Suc i) s) # moment i s"
+    and le_i: "i \<le> length s"
+  show "moment (Suc i) (a # s) = hd (moment (Suc i) (a # s)) # moment i (a # s)"
+  proof(cases "i= length s")
+    case True
+    hence "Suc i = length (a#s)" by simp
+    with moment_eq have "moment (Suc i) (a#s) = a#s" by auto
+    moreover have "moment i (a#s) = s"
+    proof -
+      from moment_app [OF le_i, of "[a]"]
+      and True show ?thesis by simp
+    qed
+    ultimately show ?thesis by auto
+  next
+    case False
+    from False and le_i have lti: "i < length s" by arith
+    hence les_i: "Suc i \<le> length s" by arith
+    show ?thesis 
+    proof -
+      from moment_app [OF les_i, of "[a]"]
+      have "moment (Suc i) (a # s) = moment (Suc i) s" by simp
+      moreover have "moment i (a#s) = moment i s" 
+      proof -
+        from lti have "i \<le> length s" by simp
+        from moment_app [OF this, of "[a]"] show ?thesis by simp
+      qed
+      moreover note ih [OF les_i]
+      ultimately show ?thesis by auto
+    qed
+  qed
+=======
+  with moment_Suc_tl[OF assms]
+  show ?thesis by metis
+>>>>>>> other
+qed
+
+end
+