Moment.thy~
changeset 81 c495eb16beb6
equal deleted inserted replaced
80:17305a85493d 81:c495eb16beb6
       
     1 theory Moment
       
     2 imports Main
       
     3 begin
       
     4 
       
     5 definition moment :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list"
       
     6 where "moment n s = rev (take n (rev s))"
       
     7 
       
     8 value "moment 3 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9::int]"
       
     9 value "moment 2 [5, 4, 3, 2, 1, 0::int]"
       
    10 
       
    11 (*
       
    12 lemma length_moment_le:
       
    13   assumes le_k: "k \<le> length s"
       
    14   shows "length (moment k s) = k"
       
    15 using le_k unfolding moment_def by auto
       
    16 *)
       
    17 
       
    18 (*
       
    19 lemma length_moment_ge:
       
    20   assumes le_k: "length s \<le> k"
       
    21   shows "length (moment k s) = (length s)"
       
    22 using assms unfolding moment_def by simp
       
    23 *)
       
    24 
       
    25 lemma moment_app [simp]:
       
    26   assumes ile: "i \<le> length s"
       
    27   shows "moment i (s' @ s) = moment i s"
       
    28 using assms unfolding moment_def by simp
       
    29 
       
    30 lemma moment_eq [simp]: "moment (length s) (s' @ s) = s"
       
    31   unfolding moment_def by simp
       
    32 
       
    33 lemma moment_ge [simp]: "length s \<le> n \<Longrightarrow> moment n s = s"
       
    34   by (unfold moment_def, simp)
       
    35 
       
    36 lemma moment_zero [simp]: "moment 0 s = []"
       
    37   by (simp add:moment_def)
       
    38 
       
    39 lemma p_split_gen: 
       
    40   "\<lbrakk>Q s; \<not> Q (moment k s)\<rbrakk> \<Longrightarrow>
       
    41   (\<exists> i. i < length s \<and> k \<le> i \<and> \<not> Q (moment i s) \<and> (\<forall> i' > i. Q (moment i' s)))"
       
    42 proof (induct s, simp)
       
    43   fix a s
       
    44   assume ih: "\<lbrakk>Q s; \<not> Q (moment k s)\<rbrakk>
       
    45            \<Longrightarrow> \<exists>i<length s. k \<le> i \<and> \<not> Q (moment i s) \<and> (\<forall>i'>i. Q (moment i' s))"
       
    46     and nq: "\<not> Q (moment k (a # s))" and qa: "Q (a # s)"
       
    47   have le_k: "k \<le> length s"
       
    48   proof -
       
    49     { assume "length s < k"
       
    50       hence "length (a#s) \<le> k" by simp
       
    51       from moment_ge [OF this] and nq and qa
       
    52       have "False" by auto
       
    53     } thus ?thesis by arith
       
    54   qed
       
    55   have nq_k: "\<not> Q (moment k s)"
       
    56   proof -
       
    57     have "moment k (a#s) = moment k s"
       
    58     proof -
       
    59       from moment_app [OF le_k, of "[a]"] show ?thesis by simp
       
    60     qed
       
    61     with nq show ?thesis by simp
       
    62   qed
       
    63   show "\<exists>i<length (a # s). k \<le> i \<and> \<not> Q (moment i (a # s)) \<and> (\<forall>i'>i. Q (moment i' (a # s)))"
       
    64   proof -
       
    65     { assume "Q s"
       
    66       from ih [OF this nq_k]
       
    67       obtain i where lti: "i < length s" 
       
    68         and nq: "\<not> Q (moment i s)" 
       
    69         and rst: "\<forall>i'>i. Q (moment i' s)" 
       
    70         and lki: "k \<le> i" by auto
       
    71       have ?thesis 
       
    72       proof -
       
    73         from lti have "i < length (a # s)" by auto
       
    74         moreover have " \<not> Q (moment i (a # s))"
       
    75         proof -
       
    76           from lti have "i \<le> (length s)" by simp
       
    77           from moment_app [OF this, of "[a]"]
       
    78           have "moment i (a # s) = moment i s" by simp
       
    79           with nq show ?thesis by auto
       
    80         qed
       
    81         moreover have " (\<forall>i'>i. Q (moment i' (a # s)))"
       
    82         proof -
       
    83           {
       
    84             fix i'
       
    85             assume lti': "i < i'"
       
    86             have "Q (moment i' (a # s))"
       
    87             proof(cases "length (a#s) \<le> i'")
       
    88               case True
       
    89               from True have "moment i' (a#s) = a#s" by simp
       
    90               with qa show ?thesis by simp
       
    91             next
       
    92               case False
       
    93               from False have "i' \<le> length s" by simp
       
    94               from moment_app [OF this, of "[a]"]
       
    95               have "moment i' (a#s) = moment i' s" by simp
       
    96               with rst lti' show ?thesis by auto
       
    97             qed
       
    98           } thus ?thesis by auto
       
    99         qed
       
   100         moreover note lki
       
   101         ultimately show ?thesis by auto
       
   102       qed
       
   103     } moreover {
       
   104       assume ns: "\<not> Q s"
       
   105       have ?thesis
       
   106       proof -
       
   107         let ?i = "length s"
       
   108         have "\<not> Q (moment ?i (a#s))"
       
   109         proof -
       
   110           have "?i \<le> length s" by simp
       
   111           from moment_app [OF this, of "[a]"]
       
   112           have "moment ?i (a#s) = moment ?i s" by simp
       
   113           moreover have "\<dots> = s" by simp
       
   114           ultimately show ?thesis using ns by auto
       
   115         qed
       
   116         moreover have "\<forall> i' > ?i. Q (moment i' (a#s))" 
       
   117         proof -
       
   118           { fix i'
       
   119             assume "i' > ?i"
       
   120             hence "length (a#s) \<le> i'" by simp
       
   121             from moment_ge [OF this] 
       
   122             have " moment i' (a # s) = a # s" .
       
   123             with qa have "Q (moment i' (a#s))" by simp
       
   124           } thus ?thesis by auto
       
   125         qed
       
   126         moreover have "?i < length (a#s)" by simp
       
   127         moreover note le_k
       
   128         ultimately show ?thesis by auto
       
   129       qed
       
   130     } ultimately show ?thesis by auto
       
   131   qed
       
   132 qed
       
   133 
       
   134 lemma p_split: 
       
   135   "\<lbrakk>Q s; \<not> Q []\<rbrakk> \<Longrightarrow> 
       
   136        (\<exists> i. i < length s \<and> \<not> Q (moment i s) \<and> (\<forall> i' > i. Q (moment i' s)))"
       
   137 proof -
       
   138   fix s Q
       
   139   assume qs: "Q s" and nq: "\<not> Q []"
       
   140   from nq have "\<not> Q (moment 0 s)" by simp
       
   141   from p_split_gen [of Q s 0, OF qs this]
       
   142   show "(\<exists> i. i < length s \<and> \<not> Q (moment i s) \<and> (\<forall> i' > i. Q (moment i' s)))"
       
   143     by auto
       
   144 qed
       
   145 
       
   146 lemma moment_Suc_tl:
       
   147   assumes "Suc i \<le> length s"
       
   148   shows "tl (moment (Suc i) s) = moment i s"
       
   149   using assms unfolding moment_def rev_take
       
   150 by (simp, metis Suc_diff_le diff_Suc_Suc drop_Suc tl_drop)
       
   151 
       
   152 lemma moment_plus:
       
   153   assumes "Suc i \<le> length s"
       
   154   shows "(moment (Suc i) s) = (hd (moment (Suc i) s)) # (moment i s)"
       
   155 proof -
       
   156   have "(moment (Suc i) s) \<noteq> []"
       
   157   using assms by (auto simp add: moment_def)
       
   158   hence "(moment (Suc i) s) = (hd (moment (Suc i) s)) #  tl (moment (Suc i) s)"
       
   159     by auto
       
   160 <<<<<<< local
       
   161   have "moment (i + length s) (t @ s) = moment i t @ moment (length s) (t @ s)" 
       
   162     by (simp add: moment_def)
       
   163   with moment_app show ?thesis by auto
       
   164 qed
       
   165 
       
   166 lemma moment_Suc_tl:
       
   167   assumes "Suc i \<le> length s"
       
   168   shows "tl (moment (Suc i) s) = moment i s"
       
   169   using assms unfolding moment_def rev_take
       
   170   by (simp, metis Suc_diff_le diff_Suc_Suc drop_Suc tl_drop)
       
   171   
       
   172 lemma moment_plus':
       
   173   assumes "Suc i \<le> length s"
       
   174   shows "(moment (Suc i) s) = (hd (moment (Suc i) s)) # (moment i s)"
       
   175 proof -
       
   176   have "(moment (Suc i) s) \<noteq> []"
       
   177   using assms length_moment_le by fastforce 
       
   178   hence "(moment (Suc i) s) = (hd (moment (Suc i) s)) #  tl (moment (Suc i) s)"
       
   179     by auto
       
   180   with moment_Suc_tl[OF assms]
       
   181   show ?thesis by metis
       
   182 qed
       
   183 
       
   184 lemma moment_plus: 
       
   185   "Suc i \<le> length s \<Longrightarrow> moment (Suc i) s = (hd (moment (Suc i) s)) # (moment i s)"
       
   186 proof(induct s, simp+)
       
   187   fix a s
       
   188   assume ih: "Suc i \<le> length s \<Longrightarrow> moment (Suc i) s = hd (moment (Suc i) s) # moment i s"
       
   189     and le_i: "i \<le> length s"
       
   190   show "moment (Suc i) (a # s) = hd (moment (Suc i) (a # s)) # moment i (a # s)"
       
   191   proof(cases "i= length s")
       
   192     case True
       
   193     hence "Suc i = length (a#s)" by simp
       
   194     with moment_eq have "moment (Suc i) (a#s) = a#s" by auto
       
   195     moreover have "moment i (a#s) = s"
       
   196     proof -
       
   197       from moment_app [OF le_i, of "[a]"]
       
   198       and True show ?thesis by simp
       
   199     qed
       
   200     ultimately show ?thesis by auto
       
   201   next
       
   202     case False
       
   203     from False and le_i have lti: "i < length s" by arith
       
   204     hence les_i: "Suc i \<le> length s" by arith
       
   205     show ?thesis 
       
   206     proof -
       
   207       from moment_app [OF les_i, of "[a]"]
       
   208       have "moment (Suc i) (a # s) = moment (Suc i) s" by simp
       
   209       moreover have "moment i (a#s) = moment i s" 
       
   210       proof -
       
   211         from lti have "i \<le> length s" by simp
       
   212         from moment_app [OF this, of "[a]"] show ?thesis by simp
       
   213       qed
       
   214       moreover note ih [OF les_i]
       
   215       ultimately show ?thesis by auto
       
   216     qed
       
   217   qed
       
   218 =======
       
   219   with moment_Suc_tl[OF assms]
       
   220   show ?thesis by metis
       
   221 >>>>>>> other
       
   222 qed
       
   223 
       
   224 end
       
   225