--- a/Moment.thy Wed Jan 13 15:22:14 2016 +0000
+++ b/Moment.thy Wed Jan 13 23:39:59 2016 +0800
@@ -147,14 +147,14 @@
assumes "Suc i \<le> length s"
shows "tl (moment (Suc i) s) = moment i s"
using assms unfolding moment_def rev_take
-by (simp, metis Suc_diff_le diff_Suc_Suc drop_Suc tl_drop)
-
+ by (simp, metis Suc_diff_le diff_Suc_Suc drop_Suc tl_drop)
+
lemma moment_plus:
assumes "Suc i \<le> length s"
shows "(moment (Suc i) s) = (hd (moment (Suc i) s)) # (moment i s)"
proof -
- have "(moment (Suc i) s) \<noteq> []"
- using assms by (auto simp add: moment_def)
+ have "(moment (Suc i) s) \<noteq> []" using assms
+ by (simp add:moment_def rev_take)
hence "(moment (Suc i) s) = (hd (moment (Suc i) s)) # tl (moment (Suc i) s)"
by auto
with moment_Suc_tl[OF assms]