--- a/Implementation.thy Wed Jan 06 16:34:26 2016 +0000
+++ b/Implementation.thy Thu Jan 07 08:33:13 2016 +0800
@@ -3,733 +3,9 @@
after every system call (or system operation)
*}
theory Implementation
-imports PIPBasics Max RTree
-begin
-
-text {* @{text "the_preced"} is also the same as @{text "preced"}, the only
- difference is the order of arguemts. *}
-definition "the_preced s th = preced th s"
-
-lemma inj_the_preced:
- "inj_on (the_preced s) (threads s)"
- by (metis inj_onI preced_unique the_preced_def)
-
-text {* @{term "the_thread"} extracts thread out of RAG node. *}
-fun the_thread :: "node \<Rightarrow> thread" where
- "the_thread (Th th) = th"
-
-text {* The following @{text "wRAG"} is the waiting sub-graph of @{text "RAG"}. *}
-definition "wRAG (s::state) = {(Th th, Cs cs) | th cs. waiting s th cs}"
-
-text {* The following @{text "hRAG"} is the holding sub-graph of @{text "RAG"}. *}
-definition "hRAG (s::state) = {(Cs cs, Th th) | th cs. holding s th cs}"
-
-text {* The following lemma splits @{term "RAG"} graph into the above two sub-graphs. *}
-lemma RAG_split: "RAG s = (wRAG s \<union> hRAG s)"
- by (unfold s_RAG_abv wRAG_def hRAG_def s_waiting_abv
- s_holding_abv cs_RAG_def, auto)
-
-text {*
- The following @{text "tRAG"} is the thread-graph derived from @{term "RAG"}.
- It characterizes the dependency between threads when calculating current
- precedences. It is defined as the composition of the above two sub-graphs,
- names @{term "wRAG"} and @{term "hRAG"}.
- *}
-definition "tRAG s = wRAG s O hRAG s"
-
-(* ccc *)
-
-definition "cp_gen s x =
- Max ((the_preced s \<circ> the_thread) ` subtree (tRAG s) x)"
-
-lemma tRAG_alt_def:
- "tRAG s = {(Th th1, Th th2) | th1 th2.
- \<exists> cs. (Th th1, Cs cs) \<in> RAG s \<and> (Cs cs, Th th2) \<in> RAG s}"
- by (auto simp:tRAG_def RAG_split wRAG_def hRAG_def)
-
-lemma tRAG_Field:
- "Field (tRAG s) \<subseteq> Field (RAG s)"
- by (unfold tRAG_alt_def Field_def, auto)
-
-lemma tRAG_ancestorsE:
- assumes "x \<in> ancestors (tRAG s) u"
- obtains th where "x = Th th"
-proof -
- from assms have "(u, x) \<in> (tRAG s)^+"
- by (unfold ancestors_def, auto)
- from tranclE[OF this] obtain c where "(c, x) \<in> tRAG s" by auto
- then obtain th where "x = Th th"
- by (unfold tRAG_alt_def, auto)
- from that[OF this] show ?thesis .
-qed
-
-lemma tRAG_mono:
- assumes "RAG s' \<subseteq> RAG s"
- shows "tRAG s' \<subseteq> tRAG s"
- using assms
- by (unfold tRAG_alt_def, auto)
-
-lemma holding_next_thI:
- assumes "holding s th cs"
- and "length (wq s cs) > 1"
- obtains th' where "next_th s th cs th'"
-proof -
- from assms(1)[folded eq_holding, unfolded cs_holding_def]
- have " th \<in> set (wq s cs) \<and> th = hd (wq s cs)" .
- then obtain rest where h1: "wq s cs = th#rest"
- by (cases "wq s cs", auto)
- with assms(2) have h2: "rest \<noteq> []" by auto
- let ?th' = "hd (SOME q. distinct q \<and> set q = set rest)"
- have "next_th s th cs ?th'" using h1(1) h2
- by (unfold next_th_def, auto)
- from that[OF this] show ?thesis .
-qed
-
-lemma RAG_tRAG_transfer:
- assumes "vt s'"
- assumes "RAG s = RAG s' \<union> {(Th th, Cs cs)}"
- and "(Cs cs, Th th'') \<in> RAG s'"
- shows "tRAG s = tRAG s' \<union> {(Th th, Th th'')}" (is "?L = ?R")
-proof -
- interpret vt_s': valid_trace "s'" using assms(1)
- by (unfold_locales, simp)
- interpret rtree: rtree "RAG s'"
- proof
- show "single_valued (RAG s')"
- apply (intro_locales)
- by (unfold single_valued_def,
- auto intro:vt_s'.unique_RAG)
-
- show "acyclic (RAG s')"
- by (rule vt_s'.acyclic_RAG)
- qed
- { fix n1 n2
- assume "(n1, n2) \<in> ?L"
- from this[unfolded tRAG_alt_def]
- obtain th1 th2 cs' where
- h: "n1 = Th th1" "n2 = Th th2"
- "(Th th1, Cs cs') \<in> RAG s"
- "(Cs cs', Th th2) \<in> RAG s" by auto
- from h(4) and assms(2) have cs_in: "(Cs cs', Th th2) \<in> RAG s'" by auto
- from h(3) and assms(2)
- have "(Th th1, Cs cs') = (Th th, Cs cs) \<or>
- (Th th1, Cs cs') \<in> RAG s'" by auto
- hence "(n1, n2) \<in> ?R"
- proof
- assume h1: "(Th th1, Cs cs') = (Th th, Cs cs)"
- hence eq_th1: "th1 = th" by simp
- moreover have "th2 = th''"
- proof -
- from h1 have "cs' = cs" by simp
- from assms(3) cs_in[unfolded this] rtree.sgv
- show ?thesis
- by (unfold single_valued_def, auto)
- qed
- ultimately show ?thesis using h(1,2) by auto
- next
- assume "(Th th1, Cs cs') \<in> RAG s'"
- with cs_in have "(Th th1, Th th2) \<in> tRAG s'"
- by (unfold tRAG_alt_def, auto)
- from this[folded h(1, 2)] show ?thesis by auto
- qed
- } moreover {
- fix n1 n2
- assume "(n1, n2) \<in> ?R"
- hence "(n1, n2) \<in>tRAG s' \<or> (n1, n2) = (Th th, Th th'')" by auto
- hence "(n1, n2) \<in> ?L"
- proof
- assume "(n1, n2) \<in> tRAG s'"
- moreover have "... \<subseteq> ?L"
- proof(rule tRAG_mono)
- show "RAG s' \<subseteq> RAG s" by (unfold assms(2), auto)
- qed
- ultimately show ?thesis by auto
- next
- assume eq_n: "(n1, n2) = (Th th, Th th'')"
- from assms(2, 3) have "(Cs cs, Th th'') \<in> RAG s" by auto
- moreover have "(Th th, Cs cs) \<in> RAG s" using assms(2) by auto
- ultimately show ?thesis
- by (unfold eq_n tRAG_alt_def, auto)
- qed
- } ultimately show ?thesis by auto
-qed
-
-context valid_trace
-begin
-
-lemmas RAG_tRAG_transfer = RAG_tRAG_transfer[OF vt]
-
-end
-
-lemma cp_alt_def:
- "cp s th =
- Max ((the_preced s) ` {th'. Th th' \<in> (subtree (RAG s) (Th th))})"
-proof -
- have "Max (the_preced s ` ({th} \<union> dependants (wq s) th)) =
- Max (the_preced s ` {th'. Th th' \<in> subtree (RAG s) (Th th)})"
- (is "Max (_ ` ?L) = Max (_ ` ?R)")
- proof -
- have "?L = ?R"
- by (auto dest:rtranclD simp:cs_dependants_def cs_RAG_def s_RAG_def subtree_def)
- thus ?thesis by simp
- qed
- thus ?thesis by (unfold cp_eq_cpreced cpreced_def, fold the_preced_def, simp)
-qed
-
-lemma cp_gen_alt_def:
- "cp_gen s = (Max \<circ> (\<lambda>x. (the_preced s \<circ> the_thread) ` subtree (tRAG s) x))"
- by (auto simp:cp_gen_def)
-
-lemma tRAG_nodeE:
- assumes "(n1, n2) \<in> tRAG s"
- obtains th1 th2 where "n1 = Th th1" "n2 = Th th2"
- using assms
- by (auto simp: tRAG_def wRAG_def hRAG_def tRAG_def)
-
-lemma subtree_nodeE:
- assumes "n \<in> subtree (tRAG s) (Th th)"
- obtains th1 where "n = Th th1"
-proof -
- show ?thesis
- proof(rule subtreeE[OF assms])
- assume "n = Th th"
- from that[OF this] show ?thesis .
- next
- assume "Th th \<in> ancestors (tRAG s) n"
- hence "(n, Th th) \<in> (tRAG s)^+" by (auto simp:ancestors_def)
- hence "\<exists> th1. n = Th th1"
- proof(induct)
- case (base y)
- from tRAG_nodeE[OF this] show ?case by metis
- next
- case (step y z)
- thus ?case by auto
- qed
- with that show ?thesis by auto
- qed
-qed
-
-lemma tRAG_star_RAG: "(tRAG s)^* \<subseteq> (RAG s)^*"
-proof -
- have "(wRAG s O hRAG s)^* \<subseteq> (RAG s O RAG s)^*"
- by (rule rtrancl_mono, auto simp:RAG_split)
- also have "... \<subseteq> ((RAG s)^*)^*"
- by (rule rtrancl_mono, auto)
- also have "... = (RAG s)^*" by simp
- finally show ?thesis by (unfold tRAG_def, simp)
-qed
-
-lemma tRAG_subtree_RAG: "subtree (tRAG s) x \<subseteq> subtree (RAG s) x"
-proof -
- { fix a
- assume "a \<in> subtree (tRAG s) x"
- hence "(a, x) \<in> (tRAG s)^*" by (auto simp:subtree_def)
- with tRAG_star_RAG[of s]
- have "(a, x) \<in> (RAG s)^*" by auto
- hence "a \<in> subtree (RAG s) x" by (auto simp:subtree_def)
- } thus ?thesis by auto
-qed
-
-lemma tRAG_trancl_eq:
- "{th'. (Th th', Th th) \<in> (tRAG s)^+} =
- {th'. (Th th', Th th) \<in> (RAG s)^+}"
- (is "?L = ?R")
-proof -
- { fix th'
- assume "th' \<in> ?L"
- hence "(Th th', Th th) \<in> (tRAG s)^+" by auto
- from tranclD[OF this]
- obtain z where h: "(Th th', z) \<in> tRAG s" "(z, Th th) \<in> (tRAG s)\<^sup>*" by auto
- from tRAG_subtree_RAG[of s] and this(2)
- have "(z, Th th) \<in> (RAG s)^*" by (meson subsetCE tRAG_star_RAG)
- moreover from h(1) have "(Th th', z) \<in> (RAG s)^+" using tRAG_alt_def by auto
- ultimately have "th' \<in> ?R" by auto
- } moreover
- { fix th'
- assume "th' \<in> ?R"
- hence "(Th th', Th th) \<in> (RAG s)^+" by (auto)
- from plus_rpath[OF this]
- obtain xs where rp: "rpath (RAG s) (Th th') xs (Th th)" "xs \<noteq> []" by auto
- hence "(Th th', Th th) \<in> (tRAG s)^+"
- proof(induct xs arbitrary:th' th rule:length_induct)
- case (1 xs th' th)
- then obtain x1 xs1 where Cons1: "xs = x1#xs1" by (cases xs, auto)
- show ?case
- proof(cases "xs1")
- case Nil
- from 1(2)[unfolded Cons1 Nil]
- have rp: "rpath (RAG s) (Th th') [x1] (Th th)" .
- hence "(Th th', x1) \<in> (RAG s)" by (cases, simp)
- then obtain cs where "x1 = Cs cs"
- by (unfold s_RAG_def, auto)
- from rpath_nnl_lastE[OF rp[unfolded this]]
- show ?thesis by auto
- next
- case (Cons x2 xs2)
- from 1(2)[unfolded Cons1[unfolded this]]
- have rp: "rpath (RAG s) (Th th') (x1 # x2 # xs2) (Th th)" .
- from rpath_edges_on[OF this]
- have eds: "edges_on (Th th' # x1 # x2 # xs2) \<subseteq> RAG s" .
- have "(Th th', x1) \<in> edges_on (Th th' # x1 # x2 # xs2)"
- by (simp add: edges_on_unfold)
- with eds have rg1: "(Th th', x1) \<in> RAG s" by auto
- then obtain cs1 where eq_x1: "x1 = Cs cs1" by (unfold s_RAG_def, auto)
- have "(x1, x2) \<in> edges_on (Th th' # x1 # x2 # xs2)"
- by (simp add: edges_on_unfold)
- from this eds
- have rg2: "(x1, x2) \<in> RAG s" by auto
- from this[unfolded eq_x1]
- obtain th1 where eq_x2: "x2 = Th th1" by (unfold s_RAG_def, auto)
- from rg1[unfolded eq_x1] rg2[unfolded eq_x1 eq_x2]
- have rt1: "(Th th', Th th1) \<in> tRAG s" by (unfold tRAG_alt_def, auto)
- from rp have "rpath (RAG s) x2 xs2 (Th th)"
- by (elim rpath_ConsE, simp)
- from this[unfolded eq_x2] have rp': "rpath (RAG s) (Th th1) xs2 (Th th)" .
- show ?thesis
- proof(cases "xs2 = []")
- case True
- from rpath_nilE[OF rp'[unfolded this]]
- have "th1 = th" by auto
- from rt1[unfolded this] show ?thesis by auto
- next
- case False
- from 1(1)[rule_format, OF _ rp' this, unfolded Cons1 Cons]
- have "(Th th1, Th th) \<in> (tRAG s)\<^sup>+" by simp
- with rt1 show ?thesis by auto
- qed
- qed
- qed
- hence "th' \<in> ?L" by auto
- } ultimately show ?thesis by blast
-qed
-
-lemma tRAG_trancl_eq_Th:
- "{Th th' | th'. (Th th', Th th) \<in> (tRAG s)^+} =
- {Th th' | th'. (Th th', Th th) \<in> (RAG s)^+}"
- using tRAG_trancl_eq by auto
-
-lemma dependants_alt_def:
- "dependants s th = {th'. (Th th', Th th) \<in> (tRAG s)^+}"
- by (metis eq_RAG s_dependants_def tRAG_trancl_eq)
-
-context valid_trace
+imports PIPBasics
begin
-lemma count_eq_tRAG_plus:
- assumes "cntP s th = cntV s th"
- shows "{th'. (Th th', Th th) \<in> (tRAG s)^+} = {}"
- using assms count_eq_dependants dependants_alt_def eq_dependants by auto
-
-lemma count_eq_RAG_plus:
- assumes "cntP s th = cntV s th"
- shows "{th'. (Th th', Th th) \<in> (RAG s)^+} = {}"
- using assms count_eq_dependants cs_dependants_def eq_RAG by auto
-
-lemma count_eq_RAG_plus_Th:
- assumes "cntP s th = cntV s th"
- shows "{Th th' | th'. (Th th', Th th) \<in> (RAG s)^+} = {}"
- using count_eq_RAG_plus[OF assms] by auto
-
-lemma count_eq_tRAG_plus_Th:
- assumes "cntP s th = cntV s th"
- shows "{Th th' | th'. (Th th', Th th) \<in> (tRAG s)^+} = {}"
- using count_eq_tRAG_plus[OF assms] by auto
-
-end
-
-lemma tRAG_subtree_eq:
- "(subtree (tRAG s) (Th th)) = {Th th' | th'. Th th' \<in> (subtree (RAG s) (Th th))}"
- (is "?L = ?R")
-proof -
- { fix n
- assume h: "n \<in> ?L"
- hence "n \<in> ?R"
- by (smt mem_Collect_eq subsetCE subtree_def subtree_nodeE tRAG_subtree_RAG)
- } moreover {
- fix n
- assume "n \<in> ?R"
- then obtain th' where h: "n = Th th'" "(Th th', Th th) \<in> (RAG s)^*"
- by (auto simp:subtree_def)
- from rtranclD[OF this(2)]
- have "n \<in> ?L"
- proof
- assume "Th th' \<noteq> Th th \<and> (Th th', Th th) \<in> (RAG s)\<^sup>+"
- with h have "n \<in> {Th th' | th'. (Th th', Th th) \<in> (RAG s)^+}" by auto
- thus ?thesis using subtree_def tRAG_trancl_eq by fastforce
- qed (insert h, auto simp:subtree_def)
- } ultimately show ?thesis by auto
-qed
-
-lemma threads_set_eq:
- "the_thread ` (subtree (tRAG s) (Th th)) =
- {th'. Th th' \<in> (subtree (RAG s) (Th th))}" (is "?L = ?R")
- by (auto intro:rev_image_eqI simp:tRAG_subtree_eq)
-
-lemma cp_alt_def1:
- "cp s th = Max ((the_preced s o the_thread) ` (subtree (tRAG s) (Th th)))"
-proof -
- have "(the_preced s ` the_thread ` subtree (tRAG s) (Th th)) =
- ((the_preced s \<circ> the_thread) ` subtree (tRAG s) (Th th))"
- by auto
- thus ?thesis by (unfold cp_alt_def, fold threads_set_eq, auto)
-qed
-
-lemma cp_gen_def_cond:
- assumes "x = Th th"
- shows "cp s th = cp_gen s (Th th)"
-by (unfold cp_alt_def1 cp_gen_def, simp)
-
-lemma cp_gen_over_set:
- assumes "\<forall> x \<in> A. \<exists> th. x = Th th"
- shows "cp_gen s ` A = (cp s \<circ> the_thread) ` A"
-proof(rule f_image_eq)
- fix a
- assume "a \<in> A"
- from assms[rule_format, OF this]
- obtain th where eq_a: "a = Th th" by auto
- show "cp_gen s a = (cp s \<circ> the_thread) a"
- by (unfold eq_a, simp, unfold cp_gen_def_cond[OF refl[of "Th th"]], simp)
-qed
-
-
-context valid_trace
-begin
-
-lemma RAG_threads:
- assumes "(Th th) \<in> Field (RAG s)"
- shows "th \<in> threads s"
- using assms
- by (metis Field_def UnE dm_RAG_threads range_in vt)
-
-lemma subtree_tRAG_thread:
- assumes "th \<in> threads s"
- shows "subtree (tRAG s) (Th th) \<subseteq> Th ` threads s" (is "?L \<subseteq> ?R")
-proof -
- have "?L = {Th th' |th'. Th th' \<in> subtree (RAG s) (Th th)}"
- by (unfold tRAG_subtree_eq, simp)
- also have "... \<subseteq> ?R"
- proof
- fix x
- assume "x \<in> {Th th' |th'. Th th' \<in> subtree (RAG s) (Th th)}"
- then obtain th' where h: "x = Th th'" "Th th' \<in> subtree (RAG s) (Th th)" by auto
- from this(2)
- show "x \<in> ?R"
- proof(cases rule:subtreeE)
- case 1
- thus ?thesis by (simp add: assms h(1))
- next
- case 2
- thus ?thesis by (metis ancestors_Field dm_RAG_threads h(1) image_eqI)
- qed
- qed
- finally show ?thesis .
-qed
-
-lemma readys_root:
- assumes "th \<in> readys s"
- shows "root (RAG s) (Th th)"
-proof -
- { fix x
- assume "x \<in> ancestors (RAG s) (Th th)"
- hence h: "(Th th, x) \<in> (RAG s)^+" by (auto simp:ancestors_def)
- from tranclD[OF this]
- obtain z where "(Th th, z) \<in> RAG s" by auto
- with assms(1) have False
- apply (case_tac z, auto simp:readys_def s_RAG_def s_waiting_def cs_waiting_def)
- by (fold wq_def, blast)
- } thus ?thesis by (unfold root_def, auto)
-qed
-
-lemma readys_in_no_subtree:
- assumes "th \<in> readys s"
- and "th' \<noteq> th"
- shows "Th th \<notin> subtree (RAG s) (Th th')"
-proof
- assume "Th th \<in> subtree (RAG s) (Th th')"
- thus False
- proof(cases rule:subtreeE)
- case 1
- with assms show ?thesis by auto
- next
- case 2
- with readys_root[OF assms(1)]
- show ?thesis by (auto simp:root_def)
- qed
-qed
-
-lemma not_in_thread_isolated:
- assumes "th \<notin> threads s"
- shows "(Th th) \<notin> Field (RAG s)"
-proof
- assume "(Th th) \<in> Field (RAG s)"
- with dm_RAG_threads and range_in assms
- show False by (unfold Field_def, blast)
-qed
-
-lemma wf_RAG: "wf (RAG s)"
-proof(rule finite_acyclic_wf)
- from finite_RAG show "finite (RAG s)" .
-next
- from acyclic_RAG show "acyclic (RAG s)" .
-qed
-
-lemma sgv_wRAG: "single_valued (wRAG s)"
- using waiting_unique
- by (unfold single_valued_def wRAG_def, auto)
-
-lemma sgv_hRAG: "single_valued (hRAG s)"
- using holding_unique
- by (unfold single_valued_def hRAG_def, auto)
-
-lemma sgv_tRAG: "single_valued (tRAG s)"
- by (unfold tRAG_def, rule single_valued_relcomp,
- insert sgv_wRAG sgv_hRAG, auto)
-
-lemma acyclic_tRAG: "acyclic (tRAG s)"
-proof(unfold tRAG_def, rule acyclic_compose)
- show "acyclic (RAG s)" using acyclic_RAG .
-next
- show "wRAG s \<subseteq> RAG s" unfolding RAG_split by auto
-next
- show "hRAG s \<subseteq> RAG s" unfolding RAG_split by auto
-qed
-
-lemma sgv_RAG: "single_valued (RAG s)"
- using unique_RAG by (auto simp:single_valued_def)
-
-lemma rtree_RAG: "rtree (RAG s)"
- using sgv_RAG acyclic_RAG
- by (unfold rtree_def rtree_axioms_def sgv_def, auto)
-
-end
-
-
-sublocale valid_trace < rtree_RAG: rtree "RAG s"
-proof
- show "single_valued (RAG s)"
- apply (intro_locales)
- by (unfold single_valued_def,
- auto intro:unique_RAG)
-
- show "acyclic (RAG s)"
- by (rule acyclic_RAG)
-qed
-
-sublocale valid_trace < rtree_s: rtree "tRAG s"
-proof(unfold_locales)
- from sgv_tRAG show "single_valued (tRAG s)" .
-next
- from acyclic_tRAG show "acyclic (tRAG s)" .
-qed
-
-sublocale valid_trace < fsbtRAGs : fsubtree "RAG s"
-proof -
- show "fsubtree (RAG s)"
- proof(intro_locales)
- show "fbranch (RAG s)" using finite_fbranchI[OF finite_RAG] .
- next
- show "fsubtree_axioms (RAG s)"
- proof(unfold fsubtree_axioms_def)
- find_theorems wf RAG
- from wf_RAG show "wf (RAG s)" .
- qed
- qed
-qed
-
-sublocale valid_trace < fsbttRAGs: fsubtree "tRAG s"
-proof -
- have "fsubtree (tRAG s)"
- proof -
- have "fbranch (tRAG s)"
- proof(unfold tRAG_def, rule fbranch_compose)
- show "fbranch (wRAG s)"
- proof(rule finite_fbranchI)
- from finite_RAG show "finite (wRAG s)"
- by (unfold RAG_split, auto)
- qed
- next
- show "fbranch (hRAG s)"
- proof(rule finite_fbranchI)
- from finite_RAG
- show "finite (hRAG s)" by (unfold RAG_split, auto)
- qed
- qed
- moreover have "wf (tRAG s)"
- proof(rule wf_subset)
- show "wf (RAG s O RAG s)" using wf_RAG
- by (fold wf_comp_self, simp)
- next
- show "tRAG s \<subseteq> (RAG s O RAG s)"
- by (unfold tRAG_alt_def, auto)
- qed
- ultimately show ?thesis
- by (unfold fsubtree_def fsubtree_axioms_def,auto)
- qed
- from this[folded tRAG_def] show "fsubtree (tRAG s)" .
-qed
-
-lemma Max_UNION:
- assumes "finite A"
- and "A \<noteq> {}"
- and "\<forall> M \<in> f ` A. finite M"
- and "\<forall> M \<in> f ` A. M \<noteq> {}"
- shows "Max (\<Union>x\<in> A. f x) = Max (Max ` f ` A)" (is "?L = ?R")
- using assms[simp]
-proof -
- have "?L = Max (\<Union>(f ` A))"
- by (fold Union_image_eq, simp)
- also have "... = ?R"
- by (subst Max_Union, simp+)
- finally show ?thesis .
-qed
-
-lemma max_Max_eq:
- assumes "finite A"
- and "A \<noteq> {}"
- and "x = y"
- shows "max x (Max A) = Max ({y} \<union> A)" (is "?L = ?R")
-proof -
- have "?R = Max (insert y A)" by simp
- also from assms have "... = ?L"
- by (subst Max.insert, simp+)
- finally show ?thesis by simp
-qed
-
-context valid_trace
-begin
-
-(* ddd *)
-lemma cp_gen_rec:
- assumes "x = Th th"
- shows "cp_gen s x = Max ({the_preced s th} \<union> (cp_gen s) ` children (tRAG s) x)"
-proof(cases "children (tRAG s) x = {}")
- case True
- show ?thesis
- by (unfold True cp_gen_def subtree_children, simp add:assms)
-next
- case False
- hence [simp]: "children (tRAG s) x \<noteq> {}" by auto
- note fsbttRAGs.finite_subtree[simp]
- have [simp]: "finite (children (tRAG s) x)"
- by (intro rev_finite_subset[OF fsbttRAGs.finite_subtree],
- rule children_subtree)
- { fix r x
- have "subtree r x \<noteq> {}" by (auto simp:subtree_def)
- } note this[simp]
- have [simp]: "\<exists>x\<in>children (tRAG s) x. subtree (tRAG s) x \<noteq> {}"
- proof -
- from False obtain q where "q \<in> children (tRAG s) x" by blast
- moreover have "subtree (tRAG s) q \<noteq> {}" by simp
- ultimately show ?thesis by blast
- qed
- have h: "Max ((the_preced s \<circ> the_thread) `
- ({x} \<union> \<Union>(subtree (tRAG s) ` children (tRAG s) x))) =
- Max ({the_preced s th} \<union> cp_gen s ` children (tRAG s) x)"
- (is "?L = ?R")
- proof -
- let "Max (?f ` (?A \<union> \<Union> (?g ` ?B)))" = ?L
- let "Max (_ \<union> (?h ` ?B))" = ?R
- let ?L1 = "?f ` \<Union>(?g ` ?B)"
- have eq_Max_L1: "Max ?L1 = Max (?h ` ?B)"
- proof -
- have "?L1 = ?f ` (\<Union> x \<in> ?B.(?g x))" by simp
- also have "... = (\<Union> x \<in> ?B. ?f ` (?g x))" by auto
- finally have "Max ?L1 = Max ..." by simp
- also have "... = Max (Max ` (\<lambda>x. ?f ` subtree (tRAG s) x) ` ?B)"
- by (subst Max_UNION, simp+)
- also have "... = Max (cp_gen s ` children (tRAG s) x)"
- by (unfold image_comp cp_gen_alt_def, simp)
- finally show ?thesis .
- qed
- show ?thesis
- proof -
- have "?L = Max (?f ` ?A \<union> ?L1)" by simp
- also have "... = max (the_preced s (the_thread x)) (Max ?L1)"
- by (subst Max_Un, simp+)
- also have "... = max (?f x) (Max (?h ` ?B))"
- by (unfold eq_Max_L1, simp)
- also have "... =?R"
- by (rule max_Max_eq, (simp)+, unfold assms, simp)
- finally show ?thesis .
- qed
- qed thus ?thesis
- by (fold h subtree_children, unfold cp_gen_def, simp)
-qed
-
-lemma cp_rec:
- "cp s th = Max ({the_preced s th} \<union>
- (cp s o the_thread) ` children (tRAG s) (Th th))"
-proof -
- have "Th th = Th th" by simp
- note h = cp_gen_def_cond[OF this] cp_gen_rec[OF this]
- show ?thesis
- proof -
- have "cp_gen s ` children (tRAG s) (Th th) =
- (cp s \<circ> the_thread) ` children (tRAG s) (Th th)"
- proof(rule cp_gen_over_set)
- show " \<forall>x\<in>children (tRAG s) (Th th). \<exists>th. x = Th th"
- by (unfold tRAG_alt_def, auto simp:children_def)
- qed
- thus ?thesis by (subst (1) h(1), unfold h(2), simp)
- qed
-qed
-
-end
-
-(* keep *)
-lemma next_th_holding:
- assumes vt: "vt s"
- and nxt: "next_th s th cs th'"
- shows "holding (wq s) th cs"
-proof -
- from nxt[unfolded next_th_def]
- obtain rest where h: "wq s cs = th # rest"
- "rest \<noteq> []"
- "th' = hd (SOME q. distinct q \<and> set q = set rest)" by auto
- thus ?thesis
- by (unfold cs_holding_def, auto)
-qed
-
-context valid_trace
-begin
-
-lemma next_th_waiting:
- assumes nxt: "next_th s th cs th'"
- shows "waiting (wq s) th' cs"
-proof -
- from nxt[unfolded next_th_def]
- obtain rest where h: "wq s cs = th # rest"
- "rest \<noteq> []"
- "th' = hd (SOME q. distinct q \<and> set q = set rest)" by auto
- from wq_distinct[of cs, unfolded h]
- have dst: "distinct (th # rest)" .
- have in_rest: "th' \<in> set rest"
- proof(unfold h, rule someI2)
- show "distinct rest \<and> set rest = set rest" using dst by auto
- next
- fix x assume "distinct x \<and> set x = set rest"
- with h(2)
- show "hd x \<in> set (rest)" by (cases x, auto)
- qed
- hence "th' \<in> set (wq s cs)" by (unfold h(1), auto)
- moreover have "th' \<noteq> hd (wq s cs)"
- by (unfold h(1), insert in_rest dst, auto)
- ultimately show ?thesis by (auto simp:cs_waiting_def)
-qed
-
-lemma next_th_RAG:
- assumes nxt: "next_th (s::event list) th cs th'"
- shows "{(Cs cs, Th th), (Th th', Cs cs)} \<subseteq> RAG s"
- using vt assms next_th_holding next_th_waiting
- by (unfold s_RAG_def, simp)
-
-end
-
--- {* A useless definition *}
-definition cps:: "state \<Rightarrow> (thread \<times> precedence) set"
-where "cps s = {(th, cp s th) | th . th \<in> threads s}"
-
-
text {* (* ddd *)
One beauty of our modelling is that we follow the definitional extension tradition of HOL.
The benefit of such a concise and miniature model is that large number of intuitively
@@ -861,7 +137,6 @@
hence "th \<in> runing s'" by (cases, simp)
thus ?thesis by (simp add:readys_def runing_def)
qed
- find_theorems readys subtree
from vat_s'.readys_in_no_subtree[OF this assms(1)]
show ?thesis by blast
qed
@@ -1143,7 +418,6 @@
lemma subtree_th:
"subtree (RAG s) (Th th) = subtree (RAG s') (Th th) - {Cs cs}"
-find_theorems "subtree" "_ - _" RAG
proof(unfold RAG_s, fold subtree_cs, rule vat_s'.rtree_RAG.subtree_del_inside)
from edge_of_th
show "(Cs cs, Th th) \<in> edges_in (RAG s') (Th th)"
@@ -1620,7 +894,6 @@
qed auto
have neq_th_a: "th_a \<noteq> th"
proof -
- find_theorems readys subtree s'
from vat_s'.readys_in_no_subtree[OF th_ready assms]
have "(Th th) \<notin> subtree (RAG s') (Th th')" .
with tRAG_subtree_RAG[of s' "Th th'"]