diff -r b4bcd1edbb6d -r 633b1fc8631b Implementation.thy --- a/Implementation.thy Wed Jan 06 16:34:26 2016 +0000 +++ b/Implementation.thy Thu Jan 07 08:33:13 2016 +0800 @@ -3,733 +3,9 @@ after every system call (or system operation) *} theory Implementation -imports PIPBasics Max RTree -begin - -text {* @{text "the_preced"} is also the same as @{text "preced"}, the only - difference is the order of arguemts. *} -definition "the_preced s th = preced th s" - -lemma inj_the_preced: - "inj_on (the_preced s) (threads s)" - by (metis inj_onI preced_unique the_preced_def) - -text {* @{term "the_thread"} extracts thread out of RAG node. *} -fun the_thread :: "node \ thread" where - "the_thread (Th th) = th" - -text {* The following @{text "wRAG"} is the waiting sub-graph of @{text "RAG"}. *} -definition "wRAG (s::state) = {(Th th, Cs cs) | th cs. waiting s th cs}" - -text {* The following @{text "hRAG"} is the holding sub-graph of @{text "RAG"}. *} -definition "hRAG (s::state) = {(Cs cs, Th th) | th cs. holding s th cs}" - -text {* The following lemma splits @{term "RAG"} graph into the above two sub-graphs. *} -lemma RAG_split: "RAG s = (wRAG s \ hRAG s)" - by (unfold s_RAG_abv wRAG_def hRAG_def s_waiting_abv - s_holding_abv cs_RAG_def, auto) - -text {* - The following @{text "tRAG"} is the thread-graph derived from @{term "RAG"}. - It characterizes the dependency between threads when calculating current - precedences. It is defined as the composition of the above two sub-graphs, - names @{term "wRAG"} and @{term "hRAG"}. - *} -definition "tRAG s = wRAG s O hRAG s" - -(* ccc *) - -definition "cp_gen s x = - Max ((the_preced s \ the_thread) ` subtree (tRAG s) x)" - -lemma tRAG_alt_def: - "tRAG s = {(Th th1, Th th2) | th1 th2. - \ cs. (Th th1, Cs cs) \ RAG s \ (Cs cs, Th th2) \ RAG s}" - by (auto simp:tRAG_def RAG_split wRAG_def hRAG_def) - -lemma tRAG_Field: - "Field (tRAG s) \ Field (RAG s)" - by (unfold tRAG_alt_def Field_def, auto) - -lemma tRAG_ancestorsE: - assumes "x \ ancestors (tRAG s) u" - obtains th where "x = Th th" -proof - - from assms have "(u, x) \ (tRAG s)^+" - by (unfold ancestors_def, auto) - from tranclE[OF this] obtain c where "(c, x) \ tRAG s" by auto - then obtain th where "x = Th th" - by (unfold tRAG_alt_def, auto) - from that[OF this] show ?thesis . -qed - -lemma tRAG_mono: - assumes "RAG s' \ RAG s" - shows "tRAG s' \ tRAG s" - using assms - by (unfold tRAG_alt_def, auto) - -lemma holding_next_thI: - assumes "holding s th cs" - and "length (wq s cs) > 1" - obtains th' where "next_th s th cs th'" -proof - - from assms(1)[folded eq_holding, unfolded cs_holding_def] - have " th \ set (wq s cs) \ th = hd (wq s cs)" . - then obtain rest where h1: "wq s cs = th#rest" - by (cases "wq s cs", auto) - with assms(2) have h2: "rest \ []" by auto - let ?th' = "hd (SOME q. distinct q \ set q = set rest)" - have "next_th s th cs ?th'" using h1(1) h2 - by (unfold next_th_def, auto) - from that[OF this] show ?thesis . -qed - -lemma RAG_tRAG_transfer: - assumes "vt s'" - assumes "RAG s = RAG s' \ {(Th th, Cs cs)}" - and "(Cs cs, Th th'') \ RAG s'" - shows "tRAG s = tRAG s' \ {(Th th, Th th'')}" (is "?L = ?R") -proof - - interpret vt_s': valid_trace "s'" using assms(1) - by (unfold_locales, simp) - interpret rtree: rtree "RAG s'" - proof - show "single_valued (RAG s')" - apply (intro_locales) - by (unfold single_valued_def, - auto intro:vt_s'.unique_RAG) - - show "acyclic (RAG s')" - by (rule vt_s'.acyclic_RAG) - qed - { fix n1 n2 - assume "(n1, n2) \ ?L" - from this[unfolded tRAG_alt_def] - obtain th1 th2 cs' where - h: "n1 = Th th1" "n2 = Th th2" - "(Th th1, Cs cs') \ RAG s" - "(Cs cs', Th th2) \ RAG s" by auto - from h(4) and assms(2) have cs_in: "(Cs cs', Th th2) \ RAG s'" by auto - from h(3) and assms(2) - have "(Th th1, Cs cs') = (Th th, Cs cs) \ - (Th th1, Cs cs') \ RAG s'" by auto - hence "(n1, n2) \ ?R" - proof - assume h1: "(Th th1, Cs cs') = (Th th, Cs cs)" - hence eq_th1: "th1 = th" by simp - moreover have "th2 = th''" - proof - - from h1 have "cs' = cs" by simp - from assms(3) cs_in[unfolded this] rtree.sgv - show ?thesis - by (unfold single_valued_def, auto) - qed - ultimately show ?thesis using h(1,2) by auto - next - assume "(Th th1, Cs cs') \ RAG s'" - with cs_in have "(Th th1, Th th2) \ tRAG s'" - by (unfold tRAG_alt_def, auto) - from this[folded h(1, 2)] show ?thesis by auto - qed - } moreover { - fix n1 n2 - assume "(n1, n2) \ ?R" - hence "(n1, n2) \tRAG s' \ (n1, n2) = (Th th, Th th'')" by auto - hence "(n1, n2) \ ?L" - proof - assume "(n1, n2) \ tRAG s'" - moreover have "... \ ?L" - proof(rule tRAG_mono) - show "RAG s' \ RAG s" by (unfold assms(2), auto) - qed - ultimately show ?thesis by auto - next - assume eq_n: "(n1, n2) = (Th th, Th th'')" - from assms(2, 3) have "(Cs cs, Th th'') \ RAG s" by auto - moreover have "(Th th, Cs cs) \ RAG s" using assms(2) by auto - ultimately show ?thesis - by (unfold eq_n tRAG_alt_def, auto) - qed - } ultimately show ?thesis by auto -qed - -context valid_trace -begin - -lemmas RAG_tRAG_transfer = RAG_tRAG_transfer[OF vt] - -end - -lemma cp_alt_def: - "cp s th = - Max ((the_preced s) ` {th'. Th th' \ (subtree (RAG s) (Th th))})" -proof - - have "Max (the_preced s ` ({th} \ dependants (wq s) th)) = - Max (the_preced s ` {th'. Th th' \ subtree (RAG s) (Th th)})" - (is "Max (_ ` ?L) = Max (_ ` ?R)") - proof - - have "?L = ?R" - by (auto dest:rtranclD simp:cs_dependants_def cs_RAG_def s_RAG_def subtree_def) - thus ?thesis by simp - qed - thus ?thesis by (unfold cp_eq_cpreced cpreced_def, fold the_preced_def, simp) -qed - -lemma cp_gen_alt_def: - "cp_gen s = (Max \ (\x. (the_preced s \ the_thread) ` subtree (tRAG s) x))" - by (auto simp:cp_gen_def) - -lemma tRAG_nodeE: - assumes "(n1, n2) \ tRAG s" - obtains th1 th2 where "n1 = Th th1" "n2 = Th th2" - using assms - by (auto simp: tRAG_def wRAG_def hRAG_def tRAG_def) - -lemma subtree_nodeE: - assumes "n \ subtree (tRAG s) (Th th)" - obtains th1 where "n = Th th1" -proof - - show ?thesis - proof(rule subtreeE[OF assms]) - assume "n = Th th" - from that[OF this] show ?thesis . - next - assume "Th th \ ancestors (tRAG s) n" - hence "(n, Th th) \ (tRAG s)^+" by (auto simp:ancestors_def) - hence "\ th1. n = Th th1" - proof(induct) - case (base y) - from tRAG_nodeE[OF this] show ?case by metis - next - case (step y z) - thus ?case by auto - qed - with that show ?thesis by auto - qed -qed - -lemma tRAG_star_RAG: "(tRAG s)^* \ (RAG s)^*" -proof - - have "(wRAG s O hRAG s)^* \ (RAG s O RAG s)^*" - by (rule rtrancl_mono, auto simp:RAG_split) - also have "... \ ((RAG s)^*)^*" - by (rule rtrancl_mono, auto) - also have "... = (RAG s)^*" by simp - finally show ?thesis by (unfold tRAG_def, simp) -qed - -lemma tRAG_subtree_RAG: "subtree (tRAG s) x \ subtree (RAG s) x" -proof - - { fix a - assume "a \ subtree (tRAG s) x" - hence "(a, x) \ (tRAG s)^*" by (auto simp:subtree_def) - with tRAG_star_RAG[of s] - have "(a, x) \ (RAG s)^*" by auto - hence "a \ subtree (RAG s) x" by (auto simp:subtree_def) - } thus ?thesis by auto -qed - -lemma tRAG_trancl_eq: - "{th'. (Th th', Th th) \ (tRAG s)^+} = - {th'. (Th th', Th th) \ (RAG s)^+}" - (is "?L = ?R") -proof - - { fix th' - assume "th' \ ?L" - hence "(Th th', Th th) \ (tRAG s)^+" by auto - from tranclD[OF this] - obtain z where h: "(Th th', z) \ tRAG s" "(z, Th th) \ (tRAG s)\<^sup>*" by auto - from tRAG_subtree_RAG[of s] and this(2) - have "(z, Th th) \ (RAG s)^*" by (meson subsetCE tRAG_star_RAG) - moreover from h(1) have "(Th th', z) \ (RAG s)^+" using tRAG_alt_def by auto - ultimately have "th' \ ?R" by auto - } moreover - { fix th' - assume "th' \ ?R" - hence "(Th th', Th th) \ (RAG s)^+" by (auto) - from plus_rpath[OF this] - obtain xs where rp: "rpath (RAG s) (Th th') xs (Th th)" "xs \ []" by auto - hence "(Th th', Th th) \ (tRAG s)^+" - proof(induct xs arbitrary:th' th rule:length_induct) - case (1 xs th' th) - then obtain x1 xs1 where Cons1: "xs = x1#xs1" by (cases xs, auto) - show ?case - proof(cases "xs1") - case Nil - from 1(2)[unfolded Cons1 Nil] - have rp: "rpath (RAG s) (Th th') [x1] (Th th)" . - hence "(Th th', x1) \ (RAG s)" by (cases, simp) - then obtain cs where "x1 = Cs cs" - by (unfold s_RAG_def, auto) - from rpath_nnl_lastE[OF rp[unfolded this]] - show ?thesis by auto - next - case (Cons x2 xs2) - from 1(2)[unfolded Cons1[unfolded this]] - have rp: "rpath (RAG s) (Th th') (x1 # x2 # xs2) (Th th)" . - from rpath_edges_on[OF this] - have eds: "edges_on (Th th' # x1 # x2 # xs2) \ RAG s" . - have "(Th th', x1) \ edges_on (Th th' # x1 # x2 # xs2)" - by (simp add: edges_on_unfold) - with eds have rg1: "(Th th', x1) \ RAG s" by auto - then obtain cs1 where eq_x1: "x1 = Cs cs1" by (unfold s_RAG_def, auto) - have "(x1, x2) \ edges_on (Th th' # x1 # x2 # xs2)" - by (simp add: edges_on_unfold) - from this eds - have rg2: "(x1, x2) \ RAG s" by auto - from this[unfolded eq_x1] - obtain th1 where eq_x2: "x2 = Th th1" by (unfold s_RAG_def, auto) - from rg1[unfolded eq_x1] rg2[unfolded eq_x1 eq_x2] - have rt1: "(Th th', Th th1) \ tRAG s" by (unfold tRAG_alt_def, auto) - from rp have "rpath (RAG s) x2 xs2 (Th th)" - by (elim rpath_ConsE, simp) - from this[unfolded eq_x2] have rp': "rpath (RAG s) (Th th1) xs2 (Th th)" . - show ?thesis - proof(cases "xs2 = []") - case True - from rpath_nilE[OF rp'[unfolded this]] - have "th1 = th" by auto - from rt1[unfolded this] show ?thesis by auto - next - case False - from 1(1)[rule_format, OF _ rp' this, unfolded Cons1 Cons] - have "(Th th1, Th th) \ (tRAG s)\<^sup>+" by simp - with rt1 show ?thesis by auto - qed - qed - qed - hence "th' \ ?L" by auto - } ultimately show ?thesis by blast -qed - -lemma tRAG_trancl_eq_Th: - "{Th th' | th'. (Th th', Th th) \ (tRAG s)^+} = - {Th th' | th'. (Th th', Th th) \ (RAG s)^+}" - using tRAG_trancl_eq by auto - -lemma dependants_alt_def: - "dependants s th = {th'. (Th th', Th th) \ (tRAG s)^+}" - by (metis eq_RAG s_dependants_def tRAG_trancl_eq) - -context valid_trace +imports PIPBasics begin -lemma count_eq_tRAG_plus: - assumes "cntP s th = cntV s th" - shows "{th'. (Th th', Th th) \ (tRAG s)^+} = {}" - using assms count_eq_dependants dependants_alt_def eq_dependants by auto - -lemma count_eq_RAG_plus: - assumes "cntP s th = cntV s th" - shows "{th'. (Th th', Th th) \ (RAG s)^+} = {}" - using assms count_eq_dependants cs_dependants_def eq_RAG by auto - -lemma count_eq_RAG_plus_Th: - assumes "cntP s th = cntV s th" - shows "{Th th' | th'. (Th th', Th th) \ (RAG s)^+} = {}" - using count_eq_RAG_plus[OF assms] by auto - -lemma count_eq_tRAG_plus_Th: - assumes "cntP s th = cntV s th" - shows "{Th th' | th'. (Th th', Th th) \ (tRAG s)^+} = {}" - using count_eq_tRAG_plus[OF assms] by auto - -end - -lemma tRAG_subtree_eq: - "(subtree (tRAG s) (Th th)) = {Th th' | th'. Th th' \ (subtree (RAG s) (Th th))}" - (is "?L = ?R") -proof - - { fix n - assume h: "n \ ?L" - hence "n \ ?R" - by (smt mem_Collect_eq subsetCE subtree_def subtree_nodeE tRAG_subtree_RAG) - } moreover { - fix n - assume "n \ ?R" - then obtain th' where h: "n = Th th'" "(Th th', Th th) \ (RAG s)^*" - by (auto simp:subtree_def) - from rtranclD[OF this(2)] - have "n \ ?L" - proof - assume "Th th' \ Th th \ (Th th', Th th) \ (RAG s)\<^sup>+" - with h have "n \ {Th th' | th'. (Th th', Th th) \ (RAG s)^+}" by auto - thus ?thesis using subtree_def tRAG_trancl_eq by fastforce - qed (insert h, auto simp:subtree_def) - } ultimately show ?thesis by auto -qed - -lemma threads_set_eq: - "the_thread ` (subtree (tRAG s) (Th th)) = - {th'. Th th' \ (subtree (RAG s) (Th th))}" (is "?L = ?R") - by (auto intro:rev_image_eqI simp:tRAG_subtree_eq) - -lemma cp_alt_def1: - "cp s th = Max ((the_preced s o the_thread) ` (subtree (tRAG s) (Th th)))" -proof - - have "(the_preced s ` the_thread ` subtree (tRAG s) (Th th)) = - ((the_preced s \ the_thread) ` subtree (tRAG s) (Th th))" - by auto - thus ?thesis by (unfold cp_alt_def, fold threads_set_eq, auto) -qed - -lemma cp_gen_def_cond: - assumes "x = Th th" - shows "cp s th = cp_gen s (Th th)" -by (unfold cp_alt_def1 cp_gen_def, simp) - -lemma cp_gen_over_set: - assumes "\ x \ A. \ th. x = Th th" - shows "cp_gen s ` A = (cp s \ the_thread) ` A" -proof(rule f_image_eq) - fix a - assume "a \ A" - from assms[rule_format, OF this] - obtain th where eq_a: "a = Th th" by auto - show "cp_gen s a = (cp s \ the_thread) a" - by (unfold eq_a, simp, unfold cp_gen_def_cond[OF refl[of "Th th"]], simp) -qed - - -context valid_trace -begin - -lemma RAG_threads: - assumes "(Th th) \ Field (RAG s)" - shows "th \ threads s" - using assms - by (metis Field_def UnE dm_RAG_threads range_in vt) - -lemma subtree_tRAG_thread: - assumes "th \ threads s" - shows "subtree (tRAG s) (Th th) \ Th ` threads s" (is "?L \ ?R") -proof - - have "?L = {Th th' |th'. Th th' \ subtree (RAG s) (Th th)}" - by (unfold tRAG_subtree_eq, simp) - also have "... \ ?R" - proof - fix x - assume "x \ {Th th' |th'. Th th' \ subtree (RAG s) (Th th)}" - then obtain th' where h: "x = Th th'" "Th th' \ subtree (RAG s) (Th th)" by auto - from this(2) - show "x \ ?R" - proof(cases rule:subtreeE) - case 1 - thus ?thesis by (simp add: assms h(1)) - next - case 2 - thus ?thesis by (metis ancestors_Field dm_RAG_threads h(1) image_eqI) - qed - qed - finally show ?thesis . -qed - -lemma readys_root: - assumes "th \ readys s" - shows "root (RAG s) (Th th)" -proof - - { fix x - assume "x \ ancestors (RAG s) (Th th)" - hence h: "(Th th, x) \ (RAG s)^+" by (auto simp:ancestors_def) - from tranclD[OF this] - obtain z where "(Th th, z) \ RAG s" by auto - with assms(1) have False - apply (case_tac z, auto simp:readys_def s_RAG_def s_waiting_def cs_waiting_def) - by (fold wq_def, blast) - } thus ?thesis by (unfold root_def, auto) -qed - -lemma readys_in_no_subtree: - assumes "th \ readys s" - and "th' \ th" - shows "Th th \ subtree (RAG s) (Th th')" -proof - assume "Th th \ subtree (RAG s) (Th th')" - thus False - proof(cases rule:subtreeE) - case 1 - with assms show ?thesis by auto - next - case 2 - with readys_root[OF assms(1)] - show ?thesis by (auto simp:root_def) - qed -qed - -lemma not_in_thread_isolated: - assumes "th \ threads s" - shows "(Th th) \ Field (RAG s)" -proof - assume "(Th th) \ Field (RAG s)" - with dm_RAG_threads and range_in assms - show False by (unfold Field_def, blast) -qed - -lemma wf_RAG: "wf (RAG s)" -proof(rule finite_acyclic_wf) - from finite_RAG show "finite (RAG s)" . -next - from acyclic_RAG show "acyclic (RAG s)" . -qed - -lemma sgv_wRAG: "single_valued (wRAG s)" - using waiting_unique - by (unfold single_valued_def wRAG_def, auto) - -lemma sgv_hRAG: "single_valued (hRAG s)" - using holding_unique - by (unfold single_valued_def hRAG_def, auto) - -lemma sgv_tRAG: "single_valued (tRAG s)" - by (unfold tRAG_def, rule single_valued_relcomp, - insert sgv_wRAG sgv_hRAG, auto) - -lemma acyclic_tRAG: "acyclic (tRAG s)" -proof(unfold tRAG_def, rule acyclic_compose) - show "acyclic (RAG s)" using acyclic_RAG . -next - show "wRAG s \ RAG s" unfolding RAG_split by auto -next - show "hRAG s \ RAG s" unfolding RAG_split by auto -qed - -lemma sgv_RAG: "single_valued (RAG s)" - using unique_RAG by (auto simp:single_valued_def) - -lemma rtree_RAG: "rtree (RAG s)" - using sgv_RAG acyclic_RAG - by (unfold rtree_def rtree_axioms_def sgv_def, auto) - -end - - -sublocale valid_trace < rtree_RAG: rtree "RAG s" -proof - show "single_valued (RAG s)" - apply (intro_locales) - by (unfold single_valued_def, - auto intro:unique_RAG) - - show "acyclic (RAG s)" - by (rule acyclic_RAG) -qed - -sublocale valid_trace < rtree_s: rtree "tRAG s" -proof(unfold_locales) - from sgv_tRAG show "single_valued (tRAG s)" . -next - from acyclic_tRAG show "acyclic (tRAG s)" . -qed - -sublocale valid_trace < fsbtRAGs : fsubtree "RAG s" -proof - - show "fsubtree (RAG s)" - proof(intro_locales) - show "fbranch (RAG s)" using finite_fbranchI[OF finite_RAG] . - next - show "fsubtree_axioms (RAG s)" - proof(unfold fsubtree_axioms_def) - find_theorems wf RAG - from wf_RAG show "wf (RAG s)" . - qed - qed -qed - -sublocale valid_trace < fsbttRAGs: fsubtree "tRAG s" -proof - - have "fsubtree (tRAG s)" - proof - - have "fbranch (tRAG s)" - proof(unfold tRAG_def, rule fbranch_compose) - show "fbranch (wRAG s)" - proof(rule finite_fbranchI) - from finite_RAG show "finite (wRAG s)" - by (unfold RAG_split, auto) - qed - next - show "fbranch (hRAG s)" - proof(rule finite_fbranchI) - from finite_RAG - show "finite (hRAG s)" by (unfold RAG_split, auto) - qed - qed - moreover have "wf (tRAG s)" - proof(rule wf_subset) - show "wf (RAG s O RAG s)" using wf_RAG - by (fold wf_comp_self, simp) - next - show "tRAG s \ (RAG s O RAG s)" - by (unfold tRAG_alt_def, auto) - qed - ultimately show ?thesis - by (unfold fsubtree_def fsubtree_axioms_def,auto) - qed - from this[folded tRAG_def] show "fsubtree (tRAG s)" . -qed - -lemma Max_UNION: - assumes "finite A" - and "A \ {}" - and "\ M \ f ` A. finite M" - and "\ M \ f ` A. M \ {}" - shows "Max (\x\ A. f x) = Max (Max ` f ` A)" (is "?L = ?R") - using assms[simp] -proof - - have "?L = Max (\(f ` A))" - by (fold Union_image_eq, simp) - also have "... = ?R" - by (subst Max_Union, simp+) - finally show ?thesis . -qed - -lemma max_Max_eq: - assumes "finite A" - and "A \ {}" - and "x = y" - shows "max x (Max A) = Max ({y} \ A)" (is "?L = ?R") -proof - - have "?R = Max (insert y A)" by simp - also from assms have "... = ?L" - by (subst Max.insert, simp+) - finally show ?thesis by simp -qed - -context valid_trace -begin - -(* ddd *) -lemma cp_gen_rec: - assumes "x = Th th" - shows "cp_gen s x = Max ({the_preced s th} \ (cp_gen s) ` children (tRAG s) x)" -proof(cases "children (tRAG s) x = {}") - case True - show ?thesis - by (unfold True cp_gen_def subtree_children, simp add:assms) -next - case False - hence [simp]: "children (tRAG s) x \ {}" by auto - note fsbttRAGs.finite_subtree[simp] - have [simp]: "finite (children (tRAG s) x)" - by (intro rev_finite_subset[OF fsbttRAGs.finite_subtree], - rule children_subtree) - { fix r x - have "subtree r x \ {}" by (auto simp:subtree_def) - } note this[simp] - have [simp]: "\x\children (tRAG s) x. subtree (tRAG s) x \ {}" - proof - - from False obtain q where "q \ children (tRAG s) x" by blast - moreover have "subtree (tRAG s) q \ {}" by simp - ultimately show ?thesis by blast - qed - have h: "Max ((the_preced s \ the_thread) ` - ({x} \ \(subtree (tRAG s) ` children (tRAG s) x))) = - Max ({the_preced s th} \ cp_gen s ` children (tRAG s) x)" - (is "?L = ?R") - proof - - let "Max (?f ` (?A \ \ (?g ` ?B)))" = ?L - let "Max (_ \ (?h ` ?B))" = ?R - let ?L1 = "?f ` \(?g ` ?B)" - have eq_Max_L1: "Max ?L1 = Max (?h ` ?B)" - proof - - have "?L1 = ?f ` (\ x \ ?B.(?g x))" by simp - also have "... = (\ x \ ?B. ?f ` (?g x))" by auto - finally have "Max ?L1 = Max ..." by simp - also have "... = Max (Max ` (\x. ?f ` subtree (tRAG s) x) ` ?B)" - by (subst Max_UNION, simp+) - also have "... = Max (cp_gen s ` children (tRAG s) x)" - by (unfold image_comp cp_gen_alt_def, simp) - finally show ?thesis . - qed - show ?thesis - proof - - have "?L = Max (?f ` ?A \ ?L1)" by simp - also have "... = max (the_preced s (the_thread x)) (Max ?L1)" - by (subst Max_Un, simp+) - also have "... = max (?f x) (Max (?h ` ?B))" - by (unfold eq_Max_L1, simp) - also have "... =?R" - by (rule max_Max_eq, (simp)+, unfold assms, simp) - finally show ?thesis . - qed - qed thus ?thesis - by (fold h subtree_children, unfold cp_gen_def, simp) -qed - -lemma cp_rec: - "cp s th = Max ({the_preced s th} \ - (cp s o the_thread) ` children (tRAG s) (Th th))" -proof - - have "Th th = Th th" by simp - note h = cp_gen_def_cond[OF this] cp_gen_rec[OF this] - show ?thesis - proof - - have "cp_gen s ` children (tRAG s) (Th th) = - (cp s \ the_thread) ` children (tRAG s) (Th th)" - proof(rule cp_gen_over_set) - show " \x\children (tRAG s) (Th th). \th. x = Th th" - by (unfold tRAG_alt_def, auto simp:children_def) - qed - thus ?thesis by (subst (1) h(1), unfold h(2), simp) - qed -qed - -end - -(* keep *) -lemma next_th_holding: - assumes vt: "vt s" - and nxt: "next_th s th cs th'" - shows "holding (wq s) th cs" -proof - - from nxt[unfolded next_th_def] - obtain rest where h: "wq s cs = th # rest" - "rest \ []" - "th' = hd (SOME q. distinct q \ set q = set rest)" by auto - thus ?thesis - by (unfold cs_holding_def, auto) -qed - -context valid_trace -begin - -lemma next_th_waiting: - assumes nxt: "next_th s th cs th'" - shows "waiting (wq s) th' cs" -proof - - from nxt[unfolded next_th_def] - obtain rest where h: "wq s cs = th # rest" - "rest \ []" - "th' = hd (SOME q. distinct q \ set q = set rest)" by auto - from wq_distinct[of cs, unfolded h] - have dst: "distinct (th # rest)" . - have in_rest: "th' \ set rest" - proof(unfold h, rule someI2) - show "distinct rest \ set rest = set rest" using dst by auto - next - fix x assume "distinct x \ set x = set rest" - with h(2) - show "hd x \ set (rest)" by (cases x, auto) - qed - hence "th' \ set (wq s cs)" by (unfold h(1), auto) - moreover have "th' \ hd (wq s cs)" - by (unfold h(1), insert in_rest dst, auto) - ultimately show ?thesis by (auto simp:cs_waiting_def) -qed - -lemma next_th_RAG: - assumes nxt: "next_th (s::event list) th cs th'" - shows "{(Cs cs, Th th), (Th th', Cs cs)} \ RAG s" - using vt assms next_th_holding next_th_waiting - by (unfold s_RAG_def, simp) - -end - --- {* A useless definition *} -definition cps:: "state \ (thread \ precedence) set" -where "cps s = {(th, cp s th) | th . th \ threads s}" - - text {* (* ddd *) One beauty of our modelling is that we follow the definitional extension tradition of HOL. The benefit of such a concise and miniature model is that large number of intuitively @@ -861,7 +137,6 @@ hence "th \ runing s'" by (cases, simp) thus ?thesis by (simp add:readys_def runing_def) qed - find_theorems readys subtree from vat_s'.readys_in_no_subtree[OF this assms(1)] show ?thesis by blast qed @@ -1143,7 +418,6 @@ lemma subtree_th: "subtree (RAG s) (Th th) = subtree (RAG s') (Th th) - {Cs cs}" -find_theorems "subtree" "_ - _" RAG proof(unfold RAG_s, fold subtree_cs, rule vat_s'.rtree_RAG.subtree_del_inside) from edge_of_th show "(Cs cs, Th th) \ edges_in (RAG s') (Th th)" @@ -1620,7 +894,6 @@ qed auto have neq_th_a: "th_a \ th" proof - - find_theorems readys subtree s' from vat_s'.readys_in_no_subtree[OF th_ready assms] have "(Th th) \ subtree (RAG s') (Th th')" . with tRAG_subtree_RAG[of s' "Th th'"]