--- a/Journal/Paper.thy Tue Apr 25 16:23:46 2017 +0100
+++ b/Journal/Paper.thy Fri Apr 28 13:20:44 2017 +0100
@@ -413,8 +413,14 @@
\noindent
This allows us to define what actions a set of threads @{text ths} might
perform in a list of events @{text s}, namely
- @{thm actions_of_def[THEN eq_reflection]}.
- A \emph{precedence} of a thread @{text th} in a
+
+ \begin{isabelle}\ \ \ \ \ %%%
+ @{thm actions_of_def[where ?s="s" and ?ths="ths", THEN eq_reflection]}.
+ \end{isabelle}
+
+ where we use Isabelle's notation for list-comprehensions. This
+ notation is very similar to notation used in Haskell for list
+ comprehensions. A \emph{precedence} of a thread @{text th} in a
state @{text s} is the pair of natural numbers defined as
\begin{isabelle}\ \ \ \ \ %%%
@@ -1118,11 +1124,11 @@
which is equal to the @{term preced} of @{text th}.\qed
\end{proof}
- \endnote{
- @{thm "th_blockedE_pretty"} -- thm-blockedE??
-
- @{text "th_kept"} shows that th is a thread in s'-s
- }
+ %\endnote{
+ %@{thm "th_blockedE_pretty"} -- thm-blockedE??
+ %
+ % @{text "th_kept"} shows that th is a thread in s'-s
+ % }
Next we show that a running thread @{text "th'"} must either wait for or
hold a resource in state @{text s}.