diff -r a8ceb68bfeb0 -r 2ec13cfbb81c Journal/Paper.thy --- a/Journal/Paper.thy Tue Apr 25 16:23:46 2017 +0100 +++ b/Journal/Paper.thy Fri Apr 28 13:20:44 2017 +0100 @@ -413,8 +413,14 @@ \noindent This allows us to define what actions a set of threads @{text ths} might perform in a list of events @{text s}, namely - @{thm actions_of_def[THEN eq_reflection]}. - A \emph{precedence} of a thread @{text th} in a + + \begin{isabelle}\ \ \ \ \ %%% + @{thm actions_of_def[where ?s="s" and ?ths="ths", THEN eq_reflection]}. + \end{isabelle} + + where we use Isabelle's notation for list-comprehensions. This + notation is very similar to notation used in Haskell for list + comprehensions. A \emph{precedence} of a thread @{text th} in a state @{text s} is the pair of natural numbers defined as \begin{isabelle}\ \ \ \ \ %%% @@ -1118,11 +1124,11 @@ which is equal to the @{term preced} of @{text th}.\qed \end{proof} - \endnote{ - @{thm "th_blockedE_pretty"} -- thm-blockedE?? - - @{text "th_kept"} shows that th is a thread in s'-s - } + %\endnote{ + %@{thm "th_blockedE_pretty"} -- thm-blockedE?? + % + % @{text "th_kept"} shows that th is a thread in s'-s + % } Next we show that a running thread @{text "th'"} must either wait for or hold a resource in state @{text s}.