--- a/CpsG.thy Tue Dec 15 21:45:46 2015 +0800
+++ b/CpsG.thy Tue Dec 15 15:10:40 2015 +0000
@@ -1842,6 +1842,7 @@
Max ({the_preced s th2} \<union> cp_gen s ` RTree.children (tRAG s) x)" .
also have "... =
Max ({the_preced s' th2} \<union> cp_gen s' ` RTree.children (tRAG s') x)"
+
proof -
from preced_kept have "the_preced s th2 = the_preced s' th2" by simp
moreover have "cp_gen s ` RTree.children (tRAG s) x =
@@ -2000,7 +2001,6 @@
by (insert eq_child_left[OF nd] eq_child_right, auto)
lemma eq_cp:
- fixes th'
assumes nd: "th \<notin> dependants s th'"
shows "cp s th' = cp s' th'"
apply (unfold cp_eq_cpreced cpreced_def)
@@ -2048,7 +2048,6 @@
qed
lemma eq_up:
- fixes th' th''
assumes dp1: "th \<in> dependants s th'"
and dp2: "th' \<in> dependants s th''"
and eq_cps: "cp s th' = cp s' th'"