equal
deleted
inserted
replaced
1840 from vat_s.cp_gen_rec[OF this] |
1840 from vat_s.cp_gen_rec[OF this] |
1841 have "?L = |
1841 have "?L = |
1842 Max ({the_preced s th2} \<union> cp_gen s ` RTree.children (tRAG s) x)" . |
1842 Max ({the_preced s th2} \<union> cp_gen s ` RTree.children (tRAG s) x)" . |
1843 also have "... = |
1843 also have "... = |
1844 Max ({the_preced s' th2} \<union> cp_gen s' ` RTree.children (tRAG s') x)" |
1844 Max ({the_preced s' th2} \<union> cp_gen s' ` RTree.children (tRAG s') x)" |
|
1845 |
1845 proof - |
1846 proof - |
1846 from preced_kept have "the_preced s th2 = the_preced s' th2" by simp |
1847 from preced_kept have "the_preced s th2 = the_preced s' th2" by simp |
1847 moreover have "cp_gen s ` RTree.children (tRAG s) x = |
1848 moreover have "cp_gen s ` RTree.children (tRAG s) x = |
1848 cp_gen s' ` RTree.children (tRAG s') x" |
1849 cp_gen s' ` RTree.children (tRAG s') x" |
1849 proof - |
1850 proof - |
1998 assumes nd: "(Th th, Th th') \<notin> (child s)^+" |
1999 assumes nd: "(Th th, Th th') \<notin> (child s)^+" |
1999 shows "((n1, Th th') \<in> (child s)^+) = ((n1, Th th') \<in> (child s')^+)" |
2000 shows "((n1, Th th') \<in> (child s)^+) = ((n1, Th th') \<in> (child s')^+)" |
2000 by (insert eq_child_left[OF nd] eq_child_right, auto) |
2001 by (insert eq_child_left[OF nd] eq_child_right, auto) |
2001 |
2002 |
2002 lemma eq_cp: |
2003 lemma eq_cp: |
2003 fixes th' |
|
2004 assumes nd: "th \<notin> dependants s th'" |
2004 assumes nd: "th \<notin> dependants s th'" |
2005 shows "cp s th' = cp s' th'" |
2005 shows "cp s th' = cp s' th'" |
2006 apply (unfold cp_eq_cpreced cpreced_def) |
2006 apply (unfold cp_eq_cpreced cpreced_def) |
2007 proof - |
2007 proof - |
2008 have nd': "(Th th, Th th') \<notin> (child s)^+" |
2008 have nd': "(Th th, Th th') \<notin> (child s)^+" |
2046 thus "Max ((\<lambda>th. preced th s) ` ({th'} \<union> dependants (wq s) th')) = |
2046 thus "Max ((\<lambda>th. preced th s) ` ({th'} \<union> dependants (wq s) th')) = |
2047 Max ((\<lambda>th. preced th s') ` ({th'} \<union> dependants (wq s') th'))" by simp |
2047 Max ((\<lambda>th. preced th s') ` ({th'} \<union> dependants (wq s') th'))" by simp |
2048 qed |
2048 qed |
2049 |
2049 |
2050 lemma eq_up: |
2050 lemma eq_up: |
2051 fixes th' th'' |
|
2052 assumes dp1: "th \<in> dependants s th'" |
2051 assumes dp1: "th \<in> dependants s th'" |
2053 and dp2: "th' \<in> dependants s th''" |
2052 and dp2: "th' \<in> dependants s th''" |
2054 and eq_cps: "cp s th' = cp s' th'" |
2053 and eq_cps: "cp s th' = cp s' th'" |
2055 shows "cp s th'' = cp s' th''" |
2054 shows "cp s th'' = cp s' th''" |
2056 proof - |
2055 proof - |