updated
authorChristian Urban <urbanc@in.tum.de>
Tue, 27 Nov 2018 21:41:59 +0000
changeset 218 22705d22c105
parent 217 e689375abcc1
child 219 44161f2c3226
updated
cws/cw04.pdf
cws/cw04.tex
cws/cw07.tex
progs/lecture3.scala
progs/lecture4.scala
slides/slides03.pdf
slides/slides03.tex
solutions3/knight1.scala
testing1/collatz_test.sh
testing3-bak/mark
testing3/knight_test2.scala
testing4/mark
Binary file cws/cw04.pdf has changed
--- a/cws/cw04.tex	Fri Nov 23 01:52:37 2018 +0000
+++ b/cws/cw04.tex	Tue Nov 27 21:41:59 2018 +0000
@@ -1,184 +1,646 @@
 \documentclass{article}
 \usepackage{../style}
 \usepackage{../langs}
+\usepackage{disclaimer}
+\usepackage{tikz}
+\usepackage{pgf}
+\usepackage{pgfplots}
+\usepackage{stackengine}
+%% \usepackage{accents}
+\newcommand\barbelow[1]{\stackunder[1.2pt]{#1}{\raisebox{-4mm}{\boldmath$\uparrow$}}}
+
+\begin{filecontents}{re-python2.data}
+1 0.033
+5 0.036
+10 0.034
+15 0.036
+18 0.059
+19 0.084 
+20 0.141
+21 0.248
+22 0.485
+23 0.878
+24 1.71
+25 3.40
+26 7.08
+27 14.12
+28 26.69
+\end{filecontents}
+
+\begin{filecontents}{re-java.data}
+5  0.00298
+10  0.00418
+15  0.00996
+16  0.01710
+17  0.03492
+18  0.03303
+19  0.05084
+20  0.10177
+21  0.19960
+22  0.41159
+23  0.82234
+24  1.70251
+25  3.36112
+26  6.63998
+27  13.35120
+28  29.81185
+\end{filecontents}
+
+\begin{filecontents}{re-java9.data}
+1000  0.01410
+2000  0.04882
+3000  0.10609
+4000  0.17456
+5000  0.27530
+6000  0.41116
+7000  0.53741
+8000  0.70261
+9000  0.93981
+10000 0.97419
+11000 1.28697
+12000 1.51387
+14000 2.07079
+16000 2.69846
+20000 4.41823
+24000 6.46077
+26000 7.64373
+30000 9.99446
+34000 12.966885
+38000 16.281621
+42000 19.180228
+46000 21.984721
+50000 26.950203
+60000 43.0327746
+\end{filecontents}
+
 
 \begin{document}
 
-\section*{Replacement Coursework 1 (Roman Numerals)}
+% BF IDE
+% https://www.microsoft.com/en-us/p/brainf-ck/9nblgggzhvq5
+  
+\section*{Coursework 8 (Regular Expressions and Brainf***)}
 
-This coursework is worth 10\%. It is about translating roman numerals
-into integers and also about validating roman numerals.  The coursework
-is due on 2 February at 5pm.  Make sure the files you submit can be
-processed by just calling \texttt{scala <<filename.scala>>}.\bigskip
+This coursework is worth 10\%. It is about regular expressions,
+pattern matching and an interpreter. The first part is due on 30
+November at 11pm; the second, more advanced part, is due on 21
+December at 11pm. In the first part, you are asked to implement a
+regular expression matcher based on derivatives of regular
+expressions. The reason is that regular expression matching in Java
+and Python can sometimes be extremely slow. The advanced part is about
+an interpreter for a very simple programming language.\bigskip
+
+\IMPORTANT{}
 
 \noindent
-\textbf{Important:} Do not use any mutable data structures in your
-submission! They are not needed. This menas you cannot use 
-\texttt{ListBuffer}s, for example. Do not use \texttt{return} in your
-code! It has a different meaning in Scala, than in Java.  Do not use
-\texttt{var}! This declares a mutable variable.  Make sure the
-functions you submit are defined on the ``top-level'' of Scala, not
-inside a class or object. Also note that the running time will be
-restricted to a maximum of 360 seconds on my laptop.
+Also note that the running time of each part will be restricted to a
+maximum of 30 seconds on my laptop.
+
+\DISCLAIMER{}
 
 
-\subsection*{Disclaimer}
+\subsection*{Part 1 (6 Marks)}
+
+The task is to implement a regular expression matcher that is based on
+derivatives of regular expressions. Most of the functions are defined by
+recursion over regular expressions and can be elegantly implemented
+using Scala's pattern-matching. The implementation should deal with the
+following regular expressions, which have been predefined in the file
+\texttt{re.scala}:
 
-It should be understood that the work you submit represents your own
-effort! You have not copied from anyone else. An exception is the
-Scala code I showed during the lectures or uploaded to KEATS, which
-you can freely use.\bigskip
-
+\begin{center}
+\begin{tabular}{lcll}
+  $r$ & $::=$ & $\ZERO$     & cannot match anything\\
+      &   $|$ & $\ONE$      & can only match the empty string\\
+      &   $|$ & $c$         & can match a single character (in this case $c$)\\
+      &   $|$ & $r_1 + r_2$ & can match a string either with $r_1$ or with $r_2$\\
+  &   $|$ & $r_1\cdot r_2$ & can match the first part of a string with $r_1$ and\\
+          &  & & then the second part with $r_2$\\
+      &   $|$ & $r^*$       & can match zero or more times $r$\\
+\end{tabular}
+\end{center}
 
-\subsection*{Part 1 (Translation)}
+\noindent 
+Why? Knowing how to match regular expressions and strings will let you
+solve a lot of problems that vex other humans. Regular expressions are
+one of the fastest and simplest ways to match patterns in text, and
+are endlessly useful for searching, editing and analysing data in all
+sorts of places (for example analysing network traffic in order to
+detect security breaches). However, you need to be fast, otherwise you
+will stumble over problems such as recently reported at
+
+{\small
+\begin{itemize}
+\item[$\bullet$] \url{http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016}
+\item[$\bullet$] \url{https://vimeo.com/112065252}
+\item[$\bullet$] \url{http://davidvgalbraith.com/how-i-fixed-atom/}  
+\end{itemize}}
+
+\subsubsection*{Tasks (file re.scala)}
 
-\noindent
-Roman numerals are strings consisting of the letters $I$, $V$, $X$,
-$L$, $C$, $D$, and $M$. Such strings should be transformed into an
-internal representation using the datatypes \texttt{RomanDigit} and
-\texttt{RomanNumeral} (defined in \texttt{roman.scala}), and then from
-this internal representation converted into Integers.
+The file \texttt{re.scala} has already a definition for regular
+expressions and also defines some handy shorthand notation for
+regular expressions. The notation in this document matches up
+with the code in the file as follows:
+
+\begin{center}
+  \begin{tabular}{rcl@{\hspace{10mm}}l}
+    & & code: & shorthand:\smallskip \\ 
+  $\ZERO$ & $\mapsto$ & \texttt{ZERO}\\
+  $\ONE$  & $\mapsto$ & \texttt{ONE}\\
+  $c$     & $\mapsto$ & \texttt{CHAR(c)}\\
+  $r_1 + r_2$ & $\mapsto$ & \texttt{ALT(r1, r2)} & \texttt{r1 | r2}\\
+  $r_1 \cdot r_2$ & $\mapsto$ & \texttt{SEQ(r1, r2)} & \texttt{r1 $\sim$ r2}\\
+  $r^*$ & $\mapsto$ &  \texttt{STAR(r)} & \texttt{r.\%}
+\end{tabular}    
+\end{center}  
+
 
 \begin{itemize}
-\item[(1)] First write a polymorphic function that recursively
-  transforms a list of options into an option of a list. For example,
-  if you have the lists on the left-hand side, they should be transformed into
-  the options on the right-hand side:
+\item[(1a)] Implement a function, called \textit{nullable}, by
+  recursion over regular expressions. This function tests whether a
+  regular expression can match the empty string. This means given a
+  regular expression it either returns true or false. The function
+  \textit{nullable}
+  is defined as follows:
+
+\begin{center}
+\begin{tabular}{lcl}
+$\textit{nullable}(\ZERO)$ & $\dn$ & $\textit{false}$\\
+$\textit{nullable}(\ONE)$  & $\dn$ & $\textit{true}$\\
+$\textit{nullable}(c)$     & $\dn$ & $\textit{false}$\\
+$\textit{nullable}(r_1 + r_2)$ & $\dn$ & $\textit{nullable}(r_1) \vee \textit{nullable}(r_2)$\\
+$\textit{nullable}(r_1 \cdot r_2)$ & $\dn$ & $\textit{nullable}(r_1) \wedge \textit{nullable}(r_2)$\\
+$\textit{nullable}(r^*)$ & $\dn$ & $\textit{true}$\\
+\end{tabular}
+\end{center}~\hfill[1 Mark]
 
-  \begin{center}
-  \begin{tabular}{lcl}  
-    \texttt{List(Some(1), Some(2), Some(3))} & $\Rightarrow$ &
-    \texttt{Some(List(1, 2, 3))} \\
-    \texttt{List(Some(1), None, Some(3))} & $\Rightarrow$ &
-    \texttt{None} \\
-    \texttt{List()} & $\Rightarrow$ & \texttt{Some(List())}
-  \end{tabular}  
-  \end{center}
+\item[(1b)] Implement a function, called \textit{der}, by recursion over
+  regular expressions. It takes a character and a regular expression
+  as arguments and calculates the derivative regular expression according
+  to the rules:
 
-  This means the function should produce \texttt{None} as soon
-  as a \texttt{None} is inside the list. Otherwise it produces
-  a list of all \texttt{Some}s. In case the list is empty, it
-  produces \texttt{Some} of the empty list. \hfill[1 Mark]
+\begin{center}
+\begin{tabular}{lcl}
+$\textit{der}\;c\;(\ZERO)$ & $\dn$ & $\ZERO$\\
+$\textit{der}\;c\;(\ONE)$  & $\dn$ & $\ZERO$\\
+$\textit{der}\;c\;(d)$     & $\dn$ & $\textit{if}\; c = d\;\textit{then} \;\ONE \; \textit{else} \;\ZERO$\\
+$\textit{der}\;c\;(r_1 + r_2)$ & $\dn$ & $(\textit{der}\;c\;r_1) + (\textit{der}\;c\;r_2)$\\
+$\textit{der}\;c\;(r_1 \cdot r_2)$ & $\dn$ & $\textit{if}\;\textit{nullable}(r_1)$\\
+      & & $\textit{then}\;((\textit{der}\;c\;r_1)\cdot r_2) + (\textit{der}\;c\;r_2)$\\
+      & & $\textit{else}\;(\textit{der}\;c\;r_1)\cdot r_2$\\
+$\textit{der}\;c\;(r^*)$ & $\dn$ & $(\textit{der}\;c\;r)\cdot (r^*)$\\
+\end{tabular}
+\end{center}
+
+For example given the regular expression $r = (a \cdot b) \cdot c$, the derivatives
+w.r.t.~the characters $a$, $b$ and $c$ are
 
- 
-\item[(2)] Write first a function that converts the characters $I$, $V$,
-  $X$, $L$, $C$, $D$, and $M$ into an option of a \texttt{RomanDigit}.
-  If it is one of the roman digits, it should produce \texttt{Some};
-  otherwise \texttt{None}.
-  
-  Next write a function that converts a string into a
-  \texttt{RomanNumeral}.  Again, this function should return an
-  \texttt{Option}: If the string consists of $I$, $V$, $X$, $L$, $C$,
-  $D$, and $M$ only, then it produces \texttt{Some}; otherwise if
-  there is any other character in the string, it should produce
-  \texttt{None}. The empty string is just the empty
-  \texttt{RomanNumeral}, that is the empty list of
-  \texttt{RomanDigit}'s.  You should use the function under Task (1)
-  to produce the result.  \hfill[2 Marks]
+\begin{center}
+  \begin{tabular}{lcll}
+    $\textit{der}\;a\;r$ & $=$ & $(\ONE \cdot b)\cdot c$ & ($= r'$)\\
+    $\textit{der}\;b\;r$ & $=$ & $(\ZERO \cdot b)\cdot c$\\
+    $\textit{der}\;c\;r$ & $=$ & $(\ZERO \cdot b)\cdot c$
+  \end{tabular}
+\end{center}
+
+Let $r'$ stand for the first derivative, then taking the derivatives of $r'$
+w.r.t.~the characters $a$, $b$ and $c$ gives
+
+\begin{center}
+  \begin{tabular}{lcll}
+    $\textit{der}\;a\;r'$ & $=$ & $((\ZERO \cdot b) + \ZERO)\cdot c$ \\
+    $\textit{der}\;b\;r'$ & $=$ & $((\ZERO \cdot b) + \ONE)\cdot c$ & ($= r''$)\\
+    $\textit{der}\;c\;r'$ & $=$ & $((\ZERO \cdot b) + \ZERO)\cdot c$
+  \end{tabular}
+\end{center}
 
-\item[(3)] Write a recursive function \texttt{RomanNumral2Int} that
-  converts a \texttt{RomanNumeral} into an integer. You can assume the
-  generated integer will be between 0 and 3999.  The argument of the
-  function is a list of roman digits. It should look how this list
-  starts and then calculate what the corresponding integer is for this
-  ``start'' and add it with the integer for the rest of the list. That
-  means if the argument is of the form shown on the left-hand side, it
-  should do the calculation on the right-hand side.
+One more example: Let $r''$ stand for the second derivative above,
+then taking the derivatives of $r''$ w.r.t.~the characters $a$, $b$
+and $c$ gives
+
+\begin{center}
+  \begin{tabular}{lcll}
+    $\textit{der}\;a\;r''$ & $=$ & $((\ZERO \cdot b) + \ZERO) \cdot c + \ZERO$ \\
+    $\textit{der}\;b\;r''$ & $=$ & $((\ZERO \cdot b) + \ZERO) \cdot c + \ZERO$\\
+    $\textit{der}\;c\;r''$ & $=$ & $((\ZERO \cdot b) + \ZERO) \cdot c + \ONE$ &
+    (is $\textit{nullable}$)                      
+  \end{tabular}
+\end{center}
+
+Note, the last derivative can match the empty string, that is it is \textit{nullable}.\\
+\mbox{}\hfill\mbox{[1 Mark]}
+
+\item[(1c)] Implement the function \textit{simp}, which recursively
+  traverses a regular expression from the inside to the outside, and
+  on the way simplifies every regular expression on the left (see
+  below) to the regular expression on the right, except it does not
+  simplify inside ${}^*$-regular expressions.
 
   \begin{center}
-  \begin{tabular}{lcl}
-    $M::r$    & $\Rightarrow$ & $1000 + \text{roman numeral of rest}\; r$\\
-    $C::M::r$ & $\Rightarrow$ & $900 + \text{roman numeral of rest}\; r$\\
-    $D::r$    & $\Rightarrow$ & $500 + \text{roman numeral of rest}\; r$\\
-    $C::D::r$ & $\Rightarrow$ & $400 + \text{roman numeral of rest}\; r$\\
-    $C::r$    & $\Rightarrow$ & $100 + \text{roman numeral of rest}\; r$\\
-    $X::C::r$ & $\Rightarrow$ & $90 + \text{roman numeral of rest}\; r$\\
-    $L::r$    & $\Rightarrow$ & $50 + \text{roman numeral of rest}\; r$\\
-    $X::L::r$ & $\Rightarrow$ & $40 + \text{roman numeral of rest}\; r$\\
-    $X::r$    & $\Rightarrow$ & $10 + \text{roman numeral of rest}\; r$\\
-    $I::X::r$ & $\Rightarrow$ & $9 + \text{roman numeral of rest}\; r$\\
-    $V::r$    & $\Rightarrow$ & $5 + \text{roman numeral of rest}\; r$\\
-    $I::V::r$ & $\Rightarrow$ & $4 + \text{roman numeral of rest}\; r$\\
-    $I::r$    & $\Rightarrow$ & $1 + \text{roman numeral of rest}\; r$
-  \end{tabular}  
-  \end{center}    
-
-  The empty list will be converted to integer $0$.\hfill[1 Mark]
-  
-\item[(4)] Write a function that takes a string and if possible
-  converts it into the internal representation. If successful, it then
-  calculates the integer (an option of an integer) according to the
-  function in (3).  If this is not possible, then return
-  \texttt{None}.\hfill[1 Mark]
-
-
-\item[(5)] The file \texttt{roman.txt} contains a list of roman numerals.
-  Read in these numerals, convert them into integers and then add them all
-  up. The Scala function for reading a file is
-
-  \begin{center}
-  \texttt{Source.fromFile("filename")("ISO-8859-9")}
+\begin{tabular}{l@{\hspace{4mm}}c@{\hspace{4mm}}ll}
+$r \cdot \ZERO$ & $\mapsto$ & $\ZERO$\\ 
+$\ZERO \cdot r$ & $\mapsto$ & $\ZERO$\\ 
+$r \cdot \ONE$ & $\mapsto$ & $r$\\ 
+$\ONE \cdot r$ & $\mapsto$ & $r$\\ 
+$r + \ZERO$ & $\mapsto$ & $r$\\ 
+$\ZERO + r$ & $\mapsto$ & $r$\\ 
+$r + r$ & $\mapsto$ & $r$\\ 
+\end{tabular}
   \end{center}
 
-  Make sure you process the strings correctly by ignoring whitespaces
-  where needed.\\ \mbox{}\hfill[1 Mark]
+  For example the regular expression
+  \[(r_1 + \ZERO) \cdot \ONE + ((\ONE + r_2) + r_3) \cdot (r_4 \cdot \ZERO)\]
+
+  simplifies to just $r_1$. \textbf{Hint:} Regular expressions can be
+  seen as trees and there are several methods for traversing
+  trees. One of them corresponds to the inside-out traversal, which is
+  sometimes also called post-order traversal. Furthermore,
+  remember numerical expressions from school times: there you had expressions
+  like $u + \ldots + (1 \cdot x) - \ldots (z + (y \cdot 0)) \ldots$
+  and simplification rules that looked very similar to rules
+  above. You would simplify such numerical expressions by replacing
+  for example the $y \cdot 0$ by $0$, or $1\cdot x$ by $x$, and then
+  look whether more rules are applicable. If you organise the
+  simplification in an inside-out fashion, it is always clear which
+  rule should be applied next.\hfill[2 Marks]
+
+\item[(1d)] Implement two functions: The first, called \textit{ders},
+  takes a list of characters and a regular expression as arguments, and
+  builds the derivative w.r.t.~the list as follows:
+
+\begin{center}
+\begin{tabular}{lcl}
+$\textit{ders}\;(Nil)\;r$ & $\dn$ & $r$\\
+  $\textit{ders}\;(c::cs)\;r$  & $\dn$ &
+    $\textit{ders}\;cs\;(\textit{simp}(\textit{der}\;c\;r))$\\
+\end{tabular}
+\end{center}
+
+Note that this function is different from \textit{der}, which only
+takes a single character.
+
+The second function, called \textit{matcher}, takes a string and a
+regular expression as arguments. It builds first the derivatives
+according to \textit{ders} and after that tests whether the resulting
+derivative regular expression can match the empty string (using
+\textit{nullable}).  For example the \textit{matcher} will produce
+true for the regular expression $(a\cdot b)\cdot c$ and the string
+$abc$, but false if you give it the string $ab$. \hfill[1 Mark]
+
+\item[(1e)] Implement a function, called \textit{size}, by recursion
+  over regular expressions. If a regular expression is seen as a tree,
+  then \textit{size} should return the number of nodes in such a
+  tree. Therefore this function is defined as follows:
+
+\begin{center}
+\begin{tabular}{lcl}
+$\textit{size}(\ZERO)$ & $\dn$ & $1$\\
+$\textit{size}(\ONE)$  & $\dn$ & $1$\\
+$\textit{size}(c)$     & $\dn$ & $1$\\
+$\textit{size}(r_1 + r_2)$ & $\dn$ & $1 + \textit{size}(r_1) + \textit{size}(r_2)$\\
+$\textit{size}(r_1 \cdot r_2)$ & $\dn$ & $1 + \textit{size}(r_1) + \textit{size}(r_2)$\\
+$\textit{size}(r^*)$ & $\dn$ & $1 + \textit{size}(r)$\\
+\end{tabular}
+\end{center}
+
+You can use \textit{size} in order to test how much the `evil' regular
+expression $(a^*)^* \cdot b$ grows when taking successive derivatives
+according the letter $a$ without simplification and then compare it to
+taking the derivative, but simplify the result.  The sizes
+are given in \texttt{re.scala}. \hfill[1 Mark]
 \end{itemize}
 
+\subsection*{Background}
+
+Although easily implementable in Scala, the idea behind the derivative
+function might not so easy to be seen. To understand its purpose
+better, assume a regular expression $r$ can match strings of the form
+$c\!::\!cs$ (that means strings which start with a character $c$ and have
+some rest, or tail, $cs$). If you take the derivative of $r$ with
+respect to the character $c$, then you obtain a regular expression
+that can match all the strings $cs$.  In other words, the regular
+expression $\textit{der}\;c\;r$ can match the same strings $c\!::\!cs$
+that can be matched by $r$, except that the $c$ is chopped off.
+
+Assume now $r$ can match the string $abc$. If you take the derivative
+according to $a$ then you obtain a regular expression that can match
+$bc$ (it is $abc$ where the $a$ has been chopped off). If you now
+build the derivative $\textit{der}\;b\;(\textit{der}\;a\;r)$ you
+obtain a regular expression that can match the string $c$ (it is $bc$
+where $b$ is chopped off). If you finally build the derivative of this
+according $c$, that is
+$\textit{der}\;c\;(\textit{der}\;b\;(\textit{der}\;a\;r))$, you obtain
+a regular expression that can match the empty string. You can test
+whether this is indeed the case using the function nullable, which is
+what your matcher is doing.
+
+The purpose of the $\textit{simp}$ function is to keep the regular
+expressions small. Normally the derivative function makes the regular
+expression bigger (see the SEQ case and the example in (1b)) and the
+algorithm would be slower and slower over time. The $\textit{simp}$
+function counters this increase in size and the result is that the
+algorithm is fast throughout.  By the way, this algorithm is by Janusz
+Brzozowski who came up with the idea of derivatives in 1964 in his PhD
+thesis.
+
+\begin{center}\small
+\url{https://en.wikipedia.org/wiki/Janusz_Brzozowski_(computer_scientist)}
+\end{center}
+
 
-\subsection*{Part 2 (Validation)}
+If you want to see how badly the regular expression matchers do in
+Java\footnote{Version 8 and below; Version 9 does not seem to be as
+  catastrophic, but still worse than the regular expression matcher
+based on derivatives.} and in Python with the `evil' regular
+expression $(a^*)^*\cdot b$, then have a look at the graphs below (you
+can try it out for yourself: have a look at the file
+\texttt{catastrophic.java} and \texttt{catastrophic.py} on
+KEATS). Compare this with the matcher you have implemented. How long
+can the string of $a$'s be in your matcher and still stay within the
+30 seconds time limit?
 
-As you can see the function under Task (3) can produce some unexpected
-results. For example for $XXCIII$ it produces 103. The reason for this
-unexpected result is that $XXCIII$ is actually not a valid roman
-number, neither is $IIII$ for 4 nor $MIM$ for 1999. Although actual
-Romans were not so fussy about this,\footnote{They happily used
-  numbers like $XIIX$ or $IIXX$ for 18.} but modern times declared
-that there are precise rules for what a valid roman number is, namely:
+\begin{center}
+\begin{tabular}{@{}cc@{}}
+\multicolumn{2}{c}{Graph: $(a^*)^*\cdot b$ and strings 
+           $\underbrace{a\ldots a}_{n}$}\bigskip\\
+  
+\begin{tikzpicture}
+\begin{axis}[
+    xlabel={$n$},
+    x label style={at={(1.05,0.0)}},
+    ylabel={time in secs},
+    y label style={at={(0.06,0.5)}},
+    enlargelimits=false,
+    xtick={0,5,...,30},
+    xmax=33,
+    ymax=45,
+    ytick={0,5,...,40},
+    scaled ticks=false,
+    axis lines=left,
+    width=6cm,
+    height=5.5cm, 
+    legend entries={Python, Java 8},  
+    legend pos=north west]
+\addplot[blue,mark=*, mark options={fill=white}] table {re-python2.data};
+\addplot[cyan,mark=*, mark options={fill=white}] table {re-java.data};
+\end{axis}
+\end{tikzpicture}
+  & 
+\begin{tikzpicture}
+\begin{axis}[
+    xlabel={$n$},
+    x label style={at={(1.05,0.0)}},
+    ylabel={time in secs},
+    y label style={at={(0.06,0.5)}},
+    %enlargelimits=false,
+    %xtick={0,5000,...,30000},
+    xmax=65000,
+    ymax=45,
+    ytick={0,5,...,40},
+    scaled ticks=false,
+    axis lines=left,
+    width=6cm,
+    height=5.5cm, 
+    legend entries={Java 9},  
+    legend pos=north west]
+\addplot[cyan,mark=*, mark options={fill=white}] table {re-java9.data};
+\end{axis}
+\end{tikzpicture}
+\end{tabular}  
+\end{center}
+\newpage
+
+\subsection*{Part 2 (4 Marks)}
+
+Coming from Java or C++, you might think Scala is a quite esoteric
+programming language.  But remember, some serious companies have built
+their business on
+Scala.\footnote{\url{https://en.wikipedia.org/wiki/Scala_(programming_language)\#Companies}}
+And there are far, far more esoteric languages out there. One is
+called \emph{brainf***}. You are asked in this part to implement an
+interpreter for this language.
+
+Urban M\"uller developed brainf*** in 1993.  A close relative of this
+language was already introduced in 1964 by Corado B\"ohm, an Italian
+computer pioneer, who unfortunately died a few months ago. The main
+feature of brainf*** is its minimalistic set of instructions---just 8
+instructions in total and all of which are single characters. Despite
+the minimalism, this language has been shown to be Turing
+complete\ldots{}if this doesn't ring any bell with you: it roughly
+means that every algorithm we know can, in principle, be implemented in
+brainf***. It just takes a lot of determination and quite a lot of
+memory resources. Some relatively sophisticated sample programs in
+brainf*** are given in the file \texttt{bf.scala}.\bigskip
+
+\noindent
+As mentioned above, brainf*** has 8 single-character commands, namely
+\texttt{'>'}, \texttt{'<'}, \texttt{'+'}, \texttt{'-'}, \texttt{'.'},
+\texttt{','}, \texttt{'['} and \texttt{']'}. Every other character is
+considered a comment.  Brainf*** operates on memory cells containing
+integers. For this it uses a single memory pointer that points at each
+stage to one memory cell. This pointer can be moved forward by one
+memory cell by using the command \texttt{'>'}, and backward by using
+\texttt{'<'}. The commands \texttt{'+'} and \texttt{'-'} increase,
+respectively decrease, by 1 the content of the memory cell to which
+the memory pointer currently points to. The commands for input/output
+are \texttt{','} and \texttt{'.'}. Output works by reading the content
+of the memory cell to which the memory pointer points to and printing
+it out as an ASCII character. Input works the other way, taking some
+user input and storing it in the cell to which the memory pointer
+points to. The commands \texttt{'['} and \texttt{']'} are looping
+constructs. Everything in between \texttt{'['} and \texttt{']'} is
+repeated until a counter (memory cell) reaches zero.  A typical
+program in brainf*** looks as follows:
+
+\begin{center}
+\begin{verbatim}
+ ++++++++[>++++[>++>+++>+++>+<<<<-]>+>+>->>+[<]<-]>>.>---.+++++++
+ ..+++.>>.<-.<.+++.------.--------.>>+.>++.
+\end{verbatim}
+\end{center}  
+
+\noindent
+This one prints out Hello World\ldots{}obviously. 
+
+\subsubsection*{Tasks (file bf.scala)}
 
 \begin{itemize}
-\item Repeatable roman digits are $I$, $X$, $C$ and $M$. The other ones
-  are non-repeatable. Repeatable digits can be repeated upto 3 times in a
-  number (for example $MMM$ is OK); non-repeatable digits cannot be
-  repeated at all (for example $VV$ is excluded).
+\item[(2a)] Brainf*** memory is represented by a \texttt{Map} from
+  integers to integers. The empty memory is represented by
+  \texttt{Map()}, that is nothing is stored in the
+  memory. \texttt{Map(0 -> 1, 2 -> 3)} clearly stores \texttt{1} at
+  memory location \texttt{0}; at \texttt{2} it stores \texttt{3}. The
+  convention is that if we query the memory at a location that is
+  \emph{not} defined in the \texttt{Map}, we return \texttt{0}. Write
+  a function, \texttt{sread}, that takes a memory (a \texttt{Map}) and
+  a memory pointer (an \texttt{Int}) as argument, and safely reads the
+  corresponding memory location. If the \texttt{Map} is not defined at
+  the memory pointer, \texttt{sread} returns \texttt{0}.
+
+  Write another function \texttt{write}, which takes a memory, a
+  memory pointer and an integer value as argument and updates the
+  \texttt{Map} with the value at the given memory location. As usual
+  the \texttt{Map} is not updated `in-place' but a new map is created
+  with the same data, except the value is stored at the given memory
+  pointer.\hfill[1 Mark]
+
+\item[(2b)] Write two functions, \texttt{jumpRight} and
+  \texttt{jumpLeft} that are needed to implement the loop constructs
+  of brainf***. They take a program (a \texttt{String}) and a program
+  counter (an \texttt{Int}) as argument and move right (respectively
+  left) in the string in order to find the \textbf{matching}
+  opening/closing bracket. For example, given the following program
+  with the program counter indicated by an arrow:
+
+  \begin{center}
+  \texttt{--[\barbelow{.}.+>--],>,++}
+  \end{center}
+
+  then the matching closing bracket is in 9th position (counting from 0) and
+  \texttt{jumpRight} is supposed to return the position just after this
   
-\item If a smaller digits precedes a bigger digit, then $I$ can precede $V$ and $X$; $X$ can preced
-  $L$ and $C$; and $C$ can preced $D$ and $M$. No other combination is permitted in this case.
+  \begin{center}
+  \texttt{--[..+>--]\barbelow{,}>,++}
+  \end{center}
+
+  meaning it jumps to after the loop. Similarly, if you are in 8th position
+  then \texttt{jumpLeft} is supposed to jump to just after the opening
+  bracket (that is jumping to the beginning of the loop):
 
-\item If a smaller digit precedes a bigger digit (for example $IV$), then the smaller number   
-  must be either the first digit in the number, or follow a digit which is at least 10 times its value.
-  So $VIV$ is excluded, because $I$ follows $V$ and $I * 10$ is bigger than $V$; but $XIV$ is
-  allowed, because $I$ follows $X$ and $I * 10$ is equal to $X$.
+  \begin{center}
+    \texttt{--[..+>-\barbelow{-}],>,++}
+    \qquad$\stackrel{\texttt{jumpLeft}}{\longrightarrow}$\qquad
+    \texttt{--[\barbelow{.}.+>--],>,++}
+  \end{center}
+
+  Unfortunately we have to take into account that there might be
+  other opening and closing brackets on the `way' to find the
+  matching bracket. For example in the brainf*** program
+
+  \begin{center}
+  \texttt{--[\barbelow{.}.[+>]--],>,++}
+  \end{center}
 
-\item Let us say two digits are called a \emph{compound} roman digit
-  when a smaller digit precedes a bigger digit (so $IV$, $XL$, $CM$
-  for example). If a compound digit is followed by another digit, then
-  this digit must be smaller than the first digit in the compound
-  digit. For example $IXI$ is excluded, but $XLI$ is not.
+  we do not want to return the index for the \texttt{'-'} in the 9th
+  position, but the program counter for \texttt{','} in 12th
+  position. The easiest to find out whether a bracket is matched is by
+  using levels (which are the third argument in \texttt{jumpLeft} and
+  \texttt{jumpLeft}). In case of \texttt{jumpRight} you increase the
+  level by one whenever you find an opening bracket and decrease by
+  one for a closing bracket. Then in \texttt{jumpRight} you are looking
+  for the closing bracket on level \texttt{0}. For \texttt{jumpLeft} you
+  do the opposite. In this way you can find \textbf{matching} brackets
+  in strings such as
+
+  \begin{center}
+  \texttt{--[\barbelow{.}.[[-]+>[.]]--],>,++}
+  \end{center}
 
-\item The empty roman numeral is valid.  
-\end{itemize}
+  for which \texttt{jumpRight} should produce the position:
+
+  \begin{center}
+  \texttt{--[..[[-]+>[.]]--]\barbelow{,}>,++}
+  \end{center}
+
+  It is also possible that the position returned by \texttt{jumpRight} or
+  \texttt{jumpLeft} is outside the string in cases where there are
+  no matching brackets. For example
+
+  \begin{center}
+  \texttt{--[\barbelow{.}.[[-]+>[.]]--,>,++}
+  \qquad$\stackrel{\texttt{jumpRight}}{\longrightarrow}$\qquad
+  \texttt{--[..[[-]+>[.]]-->,++\barbelow{\;\phantom{+}}}
+  \end{center}
+  \hfill[1 Mark]
 
-\noindent
-The tasks in this part are as follows:
 
-\begin{itemize}
-\item[(6)] Implement a recursive function \texttt{isValidNumeral} that
-  takes a \texttt{RomanNumeral} as argument and produces true if \textbf{all}
-  the rules above are satisfied, and otherwise false.
+\item[(2c)] Write a recursive function \texttt{run} that executes a
+  brainf*** program. It takes a program, a program counter, a memory
+  pointer and a memory as arguments. If the program counter is outside
+  the program string, the execution stops and \texttt{run} returns the
+  memory. If the program counter is inside the string, it reads the
+  corresponding character and updates the program counter \texttt{pc},
+  memory pointer \texttt{mp} and memory \texttt{mem} according to the
+  rules shown in Figure~\ref{comms}. It then calls recursively
+  \texttt{run} with the updated data.
+
+  Write another function \texttt{start} that calls \texttt{run} with a
+  given brainfu** program and memory, and the program counter and memory pointer
+  set to~$0$. Like \texttt{run} it returns the memory after the execution
+  of the program finishes. You can test your brainf**k interpreter with the
+  Sierpinski triangle or the Hello world programs or have a look at
 
-  Hint: It might be more convenient to test when the rules fail and then return false;
-  return true in all other cases.
-  \mbox{}\hfill[2 Marks]
-
-\item[(7)] Write a recursive function that converts an Integer into a \texttt{RomanNumeral}.
-  You can assume the function will only be called for integers between 0 and 3999.\mbox{}\hfill[1 Mark]
+  \begin{center}
+  \url{https://esolangs.org/wiki/Brainfuck}
+  \end{center}\hfill[2 Marks]
   
-\item[(8)] Write a function that reads a text file (for example \texttt{roman2.txt})
-  containing valid and invalid roman numerals. Convert all valid roman numerals into
-  integers, add them up and produce the result as a \texttt{RomanNumeral} (using the function
-  from (7)). \hfill[1 Mark]
-\end{itemize}
-  
+  \begin{figure}[p]
+  \begin{center}
+    \begin{tabular}{|@{}p{0.8cm}|l|}
+      \hline
+      \hfill\texttt{'>'} & \begin{tabular}[t]{@{}l@{\hspace{2mm}}l@{}}
+                       $\bullet$ & $\texttt{pc} + 1$\\
+                       $\bullet$ & $\texttt{mp} + 1$\\
+                       $\bullet$ & \texttt{mem} unchanged
+                     \end{tabular}\\\hline   
+      \hfill\texttt{'<'} & \begin{tabular}[t]{@{}l@{\hspace{2mm}}l@{}}
+                       $\bullet$ & $\texttt{pc} + 1$\\
+                       $\bullet$ & $\texttt{mp} - 1$\\
+                       $\bullet$ & \texttt{mem} unchanged
+                     \end{tabular}\\\hline   
+      \hfill\texttt{'+'} & \begin{tabular}[t]{@{}l@{\hspace{2mm}}l@{}}
+                       $\bullet$ & $\texttt{pc} + 1$\\
+                       $\bullet$ & $\texttt{mp}$ unchanged\\
+                       $\bullet$ & \texttt{mem} updated with \texttt{mp -> mem(mp) + 1}\\
+                     \end{tabular}\\\hline   
+      \hfill\texttt{'-'} & \begin{tabular}[t]{@{}l@{\hspace{2mm}}l@{}}
+                       $\bullet$ & $\texttt{pc} + 1$\\
+                       $\bullet$ & $\texttt{mp}$ unchanged\\
+                       $\bullet$ & \texttt{mem} updated with \texttt{mp -> mem(mp) - 1}\\
+                     \end{tabular}\\\hline   
+      \hfill\texttt{'.'} & \begin{tabular}[t]{@{}l@{\hspace{2mm}}l@{}}
+                       $\bullet$ & $\texttt{pc} + 1$\\
+                       $\bullet$ & $\texttt{mp}$ and \texttt{mem} unchanged\\
+                       $\bullet$ & print out \,\texttt{mem(mp)} as a character\\
+                     \end{tabular}\\\hline   
+      \hfill\texttt{','} & \begin{tabular}[t]{@{}l@{\hspace{2mm}}l@{}}
+                       $\bullet$ & $\texttt{pc} + 1$\\
+                       $\bullet$ & $\texttt{mp}$ unchanged\\
+                       $\bullet$ & \texttt{mem} updated with \texttt{mp -> \textrm{input}}\\
+                       \multicolumn{2}{@{}l}{the input is given by \texttt{Console.in.read().toByte}}
+                     \end{tabular}\\\hline   
+      \hfill\texttt{'['} & \begin{tabular}[t]{@{}l@{\hspace{2mm}}l@{}}
+                       \multicolumn{2}{@{}l}{if \texttt{mem(mp) == 0} then}\\
+                       $\bullet$ & $\texttt{pc = jumpRight(prog, pc + 1, 0)}$\\
+                       $\bullet$ & $\texttt{mp}$ and \texttt{mem} unchanged\medskip\\
+                       \multicolumn{2}{@{}l}{otherwise if \texttt{mem(mp) != 0} then}\\
+                       $\bullet$ & $\texttt{pc} + 1$\\
+                       $\bullet$ & $\texttt{mp}$ and \texttt{mem} unchanged\\
+                     \end{tabular}
+                     \\\hline   
+      \hfill\texttt{']'} & \begin{tabular}[t]{@{}l@{\hspace{2mm}}l@{}}
+                       \multicolumn{2}{@{}l}{if \texttt{mem(mp) != 0} then}\\
+                       $\bullet$ & $\texttt{pc = jumpLeft(prog, pc - 1, 0)}$\\
+                       $\bullet$ & $\texttt{mp}$ and \texttt{mem} unchanged\medskip\\
+                       \multicolumn{2}{@{}l}{otherwise if \texttt{mem(mp) == 0} then}\\
+                       $\bullet$ & $\texttt{pc} + 1$\\
+                       $\bullet$ & $\texttt{mp}$ and \texttt{mem} unchanged\\
+                     \end{tabular}\\\hline   
+      any other char & \begin{tabular}[t]{@{}l@{\hspace{2mm}}l@{}}
+                         $\bullet$ & $\texttt{pc} + 1$\\
+                         $\bullet$ & \texttt{mp} and \texttt{mem} unchanged
+                       \end{tabular}\\
+      \hline                 
+    \end{tabular}
+  \end{center}
+  \caption{The rules for how commands in the brainf*** language update the program counter \texttt{pc},
+    memory pointer \texttt{mp} and memory \texttt{mem}.\label{comms}}
+  \end{figure}
+\end{itemize}\bigskip  
+
+
+
 
 \end{document}
 
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/cws/cw07.tex	Tue Nov 27 21:41:59 2018 +0000
@@ -0,0 +1,189 @@
+\documentclass{article}
+\usepackage{../style}
+\usepackage{../langs}
+
+\begin{document}
+
+\section*{Replacement Coursework 1 (Roman Numerals)}
+
+This coursework is worth 10\%. It is about translating roman numerals
+into integers and also about validating roman numerals.  The coursework
+is due on 2 February at 5pm.  Make sure the files you submit can be
+processed by just calling \texttt{scala <<filename.scala>>}.\bigskip
+
+\noindent
+\textbf{Important:} Do not use any mutable data structures in your
+submission! They are not needed. This menas you cannot use 
+\texttt{ListBuffer}s, for example. Do not use \texttt{return} in your
+code! It has a different meaning in Scala, than in Java.  Do not use
+\texttt{var}! This declares a mutable variable.  Make sure the
+functions you submit are defined on the ``top-level'' of Scala, not
+inside a class or object. Also note that the running time will be
+restricted to a maximum of 360 seconds on my laptop.
+
+
+\subsection*{Disclaimer}
+
+It should be understood that the work you submit represents your own
+effort! You have not copied from anyone else. An exception is the
+Scala code I showed during the lectures or uploaded to KEATS, which
+you can freely use.\bigskip
+
+
+\subsection*{Part 1 (Translation)}
+
+\noindent
+Roman numerals are strings consisting of the letters $I$, $V$, $X$,
+$L$, $C$, $D$, and $M$. Such strings should be transformed into an
+internal representation using the datatypes \texttt{RomanDigit} and
+\texttt{RomanNumeral} (defined in \texttt{roman.scala}), and then from
+this internal representation converted into Integers.
+
+\begin{itemize}
+\item[(1)] First write a polymorphic function that recursively
+  transforms a list of options into an option of a list. For example,
+  if you have the lists on the left-hand side, they should be transformed into
+  the options on the right-hand side:
+
+  \begin{center}
+  \begin{tabular}{lcl}  
+    \texttt{List(Some(1), Some(2), Some(3))} & $\Rightarrow$ &
+    \texttt{Some(List(1, 2, 3))} \\
+    \texttt{List(Some(1), None, Some(3))} & $\Rightarrow$ &
+    \texttt{None} \\
+    \texttt{List()} & $\Rightarrow$ & \texttt{Some(List())}
+  \end{tabular}  
+  \end{center}
+
+  This means the function should produce \texttt{None} as soon
+  as a \texttt{None} is inside the list. Otherwise it produces
+  a list of all \texttt{Some}s. In case the list is empty, it
+  produces \texttt{Some} of the empty list. \hfill[1 Mark]
+
+ 
+\item[(2)] Write first a function that converts the characters $I$, $V$,
+  $X$, $L$, $C$, $D$, and $M$ into an option of a \texttt{RomanDigit}.
+  If it is one of the roman digits, it should produce \texttt{Some};
+  otherwise \texttt{None}.
+  
+  Next write a function that converts a string into a
+  \texttt{RomanNumeral}.  Again, this function should return an
+  \texttt{Option}: If the string consists of $I$, $V$, $X$, $L$, $C$,
+  $D$, and $M$ only, then it produces \texttt{Some}; otherwise if
+  there is any other character in the string, it should produce
+  \texttt{None}. The empty string is just the empty
+  \texttt{RomanNumeral}, that is the empty list of
+  \texttt{RomanDigit}'s.  You should use the function under Task (1)
+  to produce the result.  \hfill[2 Marks]
+
+\item[(3)] Write a recursive function \texttt{RomanNumral2Int} that
+  converts a \texttt{RomanNumeral} into an integer. You can assume the
+  generated integer will be between 0 and 3999.  The argument of the
+  function is a list of roman digits. It should look how this list
+  starts and then calculate what the corresponding integer is for this
+  ``start'' and add it with the integer for the rest of the list. That
+  means if the argument is of the form shown on the left-hand side, it
+  should do the calculation on the right-hand side.
+
+  \begin{center}
+  \begin{tabular}{lcl}
+    $M::r$    & $\Rightarrow$ & $1000 + \text{roman numeral of rest}\; r$\\
+    $C::M::r$ & $\Rightarrow$ & $900 + \text{roman numeral of rest}\; r$\\
+    $D::r$    & $\Rightarrow$ & $500 + \text{roman numeral of rest}\; r$\\
+    $C::D::r$ & $\Rightarrow$ & $400 + \text{roman numeral of rest}\; r$\\
+    $C::r$    & $\Rightarrow$ & $100 + \text{roman numeral of rest}\; r$\\
+    $X::C::r$ & $\Rightarrow$ & $90 + \text{roman numeral of rest}\; r$\\
+    $L::r$    & $\Rightarrow$ & $50 + \text{roman numeral of rest}\; r$\\
+    $X::L::r$ & $\Rightarrow$ & $40 + \text{roman numeral of rest}\; r$\\
+    $X::r$    & $\Rightarrow$ & $10 + \text{roman numeral of rest}\; r$\\
+    $I::X::r$ & $\Rightarrow$ & $9 + \text{roman numeral of rest}\; r$\\
+    $V::r$    & $\Rightarrow$ & $5 + \text{roman numeral of rest}\; r$\\
+    $I::V::r$ & $\Rightarrow$ & $4 + \text{roman numeral of rest}\; r$\\
+    $I::r$    & $\Rightarrow$ & $1 + \text{roman numeral of rest}\; r$
+  \end{tabular}  
+  \end{center}    
+
+  The empty list will be converted to integer $0$.\hfill[1 Mark]
+  
+\item[(4)] Write a function that takes a string and if possible
+  converts it into the internal representation. If successful, it then
+  calculates the integer (an option of an integer) according to the
+  function in (3).  If this is not possible, then return
+  \texttt{None}.\hfill[1 Mark]
+
+
+\item[(5)] The file \texttt{roman.txt} contains a list of roman numerals.
+  Read in these numerals, convert them into integers and then add them all
+  up. The Scala function for reading a file is
+
+  \begin{center}
+  \texttt{Source.fromFile("filename")("ISO-8859-9")}
+  \end{center}
+
+  Make sure you process the strings correctly by ignoring whitespaces
+  where needed.\\ \mbox{}\hfill[1 Mark]
+\end{itemize}
+
+
+\subsection*{Part 2 (Validation)}
+
+As you can see the function under Task (3) can produce some unexpected
+results. For example for $XXCIII$ it produces 103. The reason for this
+unexpected result is that $XXCIII$ is actually not a valid roman
+number, neither is $IIII$ for 4 nor $MIM$ for 1999. Although actual
+Romans were not so fussy about this,\footnote{They happily used
+  numbers like $XIIX$ or $IIXX$ for 18.} but modern times declared
+that there are precise rules for what a valid roman number is, namely:
+
+\begin{itemize}
+\item Repeatable roman digits are $I$, $X$, $C$ and $M$. The other ones
+  are non-repeatable. Repeatable digits can be repeated upto 3 times in a
+  number (for example $MMM$ is OK); non-repeatable digits cannot be
+  repeated at all (for example $VV$ is excluded).
+  
+\item If a smaller digits precedes a bigger digit, then $I$ can precede $V$ and $X$; $X$ can preced
+  $L$ and $C$; and $C$ can preced $D$ and $M$. No other combination is permitted in this case.
+
+\item If a smaller digit precedes a bigger digit (for example $IV$), then the smaller number   
+  must be either the first digit in the number, or follow a digit which is at least 10 times its value.
+  So $VIV$ is excluded, because $I$ follows $V$ and $I * 10$ is bigger than $V$; but $XIV$ is
+  allowed, because $I$ follows $X$ and $I * 10$ is equal to $X$.
+
+\item Let us say two digits are called a \emph{compound} roman digit
+  when a smaller digit precedes a bigger digit (so $IV$, $XL$, $CM$
+  for example). If a compound digit is followed by another digit, then
+  this digit must be smaller than the first digit in the compound
+  digit. For example $IXI$ is excluded, but $XLI$ is not.
+
+\item The empty roman numeral is valid.  
+\end{itemize}
+
+\noindent
+The tasks in this part are as follows:
+
+\begin{itemize}
+\item[(6)] Implement a recursive function \texttt{isValidNumeral} that
+  takes a \texttt{RomanNumeral} as argument and produces true if \textbf{all}
+  the rules above are satisfied, and otherwise false.
+
+  Hint: It might be more convenient to test when the rules fail and then return false;
+  return true in all other cases.
+  \mbox{}\hfill[2 Marks]
+
+\item[(7)] Write a recursive function that converts an Integer into a \texttt{RomanNumeral}.
+  You can assume the function will only be called for integers between 0 and 3999.\mbox{}\hfill[1 Mark]
+  
+\item[(8)] Write a function that reads a text file (for example \texttt{roman2.txt})
+  containing valid and invalid roman numerals. Convert all valid roman numerals into
+  integers, add them up and produce the result as a \texttt{RomanNumeral} (using the function
+  from (7)). \hfill[1 Mark]
+\end{itemize}
+  
+
+\end{document}
+
+
+%%% Local Variables: 
+%%% mode: latex
+%%% TeX-master: t
+%%% End: 
--- a/progs/lecture3.scala	Fri Nov 23 01:52:37 2018 +0000
+++ b/progs/lecture3.scala	Tue Nov 27 21:41:59 2018 +0000
@@ -7,7 +7,7 @@
 //
 // the idea is to look for links using the
 // regular expression "https?://[^"]*" and for
-// email addresses using another regex.
+// email addresses using yet another regex.
 
 import io.Source
 import scala.util._
@@ -22,9 +22,8 @@
 val http_pattern = """"https?://[^"]*"""".r
 val email_pattern = """([a-z0-9_\.-]+)@([\da-z\.-]+)\.([a-z\.]{2,6})""".r
 
-//email_pattern.findAllIn
-//  ("foo bla christian@kcl.ac.uk 1234567").toList
-
+//  val s = "foo bla christian@kcl.ac.uk 1234567"
+//  email_pattern.findAllIn(s).toList
 
 // drops the first and last character from a string
 def unquote(s: String) = s.drop(1).dropRight(1)
@@ -34,6 +33,7 @@
 
 // naive version of crawl - searches until a given depth,
 // visits pages potentially more than once
+
 def crawl(url: String, n: Int) : Set[String] = {
   if (n == 0) Set()
   else {
@@ -41,36 +41,92 @@
     val page = get_page(url)
     val new_emails = email_pattern.findAllIn(page).toSet
     new_emails ++ 
-      (for (u <- get_all_URLs(page)) yield crawl(u, n - 1)).flatten
+      (for (u <- get_all_URLs(page).par) yield crawl(u, n - 1)).flatten
   }
 }
 
 // some starting URLs for the crawler
 val startURL = """https://nms.kcl.ac.uk/christian.urban/"""
-
 crawl(startURL, 2)
 
 
 
 // User-defined Datatypes and Pattern Matching
-//============================================
-
+//=============================================
 
 abstract class Exp
-case class N(n: Int) extends Exp
+case class N(n: Int) extends Exp                  // for numbers
 case class Plus(e1: Exp, e2: Exp) extends Exp
 case class Times(e1: Exp, e2: Exp) extends Exp
 
+def string(e: Exp) : String = e match {
+  case N(n) => n.toString
+  case Plus(e1, e2) => "(" + string(e1) + " + " + string(e2) + ")" 
+  case Times(e1, e2) => "(" + string(e1) + " * " + string(e2) + ")" 
+}
 
+val e = Plus(N(9), Times(N(3), N(4)))
+println(string(e))
+
+def eval(e: Exp) : Int = e match {
+  case N(n) => n
+  case Plus(e1, e2) => eval(e1) + eval(e2) 
+  case Times(e1, e2) => eval(e1) * eval(e2) 
+}
+
+def simp(e: Exp) : Exp = e match {
+  case N(n) => N(n)
+  case Plus(e1, e2) => (simp(e1), simp(e2)) match {
+    case (N(0), e2s) => e2s
+    case (e1s, N(0)) => e1s
+    case (e1s, e2s) => Plus(e1s, e2s)
+  }  
+  case Times(e1, e2) => (simp(e1), simp(e2)) match {
+    case (N(0), _) => N(0)
+    case (_, N(0)) => N(0)
+    case (N(1), e2s) => e2s
+    case (e1s, N(1)) => e1s
+    case (e1s, e2s) => Times(e1s, e2s)
+  }  
+}
+
+println(eval(e))
 
-// string of an Exp
-// eval of an Exp
-// simp an Exp
-// Tokens
-// Reverse Polish Notation
-// compute RP
-// transform RP into Exp
-// process RP string and generate Exp
+val e2 = Times(Plus(N(0), N(1)), Plus(N(0), N(9)))
+println(string(e2))
+println(string(simp(e2)))
+
+// Tokens and Reverse Polish Notation
+abstract class Token
+case class T(n: Int) extends Token
+case object PL extends Token
+case object TI extends Token
+
+def rp(e: Exp) : List[Token] = e match {
+  case N(n) => List(T(n))
+  case Plus(e1, e2) => rp(e1) ::: rp(e2) ::: List(PL) 
+  case Times(e1, e2) => rp(e1) ::: rp(e2) ::: List(TI) 
+}
+println(string(e2))
+println(rp(e2))
+
+def comp(ls: List[Token], st: List[Int]) : Int = (ls, st) match {
+  case (Nil, st) => st.head 
+  case (T(n)::rest, st) => comp(rest, n::st)
+  case (PL::rest, n1::n2::st) => comp(rest, n1 + n2::st)
+  case (TI::rest, n1::n2::st) => comp(rest, n1 * n2::st)
+}
+
+comp(rp(e), Nil)
+
+def proc(s: String) : Token = s match {
+  case  "+" => PL
+  case  "*" => TI
+  case  _ => T(s.toInt) 
+}
+
+comp("1 2 + 4 * 5 + 3 +".split(" ").toList.map(proc), Nil)
+
 
 
 
@@ -159,6 +215,11 @@
 def fact(n: Long): Long = 
   if (n == 0) 1 else n * fact(n - 1)
 
+def factB(n: BigInt): BigInt = 
+  if (n == 0) 1 else n * factB(n - 1)
+
+factB(100000)
+
 fact(10)              //ok
 fact(10000)           // produces a stackoverflow
 
@@ -166,7 +227,7 @@
   if (n == 0) acc else factT(n - 1, n * acc)
 
 factT(10, 1)
-factT(100000, 1)
+println(factT(100000, 1))
 
 // there is a flag for ensuring a function is tail recursive
 import scala.annotation.tailrec
@@ -192,6 +253,8 @@
 // the first n prefixes of xs
 // for 1 => include xs
 
+
+
 def moves(xs: List[Int], n: Int) : List[List[Int]] = (xs, n) match {
   case (Nil, _) => Nil
   case (xs, 0) => Nil
@@ -204,7 +267,6 @@
 moves(List(5,1,0), 5)
 
 // checks whether a jump tour exists at all
-// in the second case it needs to be < instead of <=
 
 def search(xs: List[Int]) : Boolean = xs match {
   case Nil => true
@@ -235,14 +297,12 @@
   case Nil => Nil
   case (x::xs) => {
     val children = moves(xs, x)
-    val results = children.flatMap((cs) => jumps(cs).map(x :: _))
+    val results = children.map((cs) => jumps(cs).map(x :: _)).flatten
     if (xs.length < x) List(x) :: results else results
   }
 }
 
-
-
-jumps(List(5,3,2,5,1,1))
+println(jumps(List(5,3,2,5,1,1)).minBy(_.length))
 jumps(List(3,5,1,2,1,2,1))
 jumps(List(3,5,1,2,3,4,1))
 jumps(List(3,5,1,0,0,0,1))
@@ -315,7 +375,8 @@
 
 //get_row(game0, 0)
 //get_row(game0, 1)
-//get_box(game0, (3,1))
+//get_col(game0, 0)
+//get_box(game0, (3, 1))
 
 
 // this is not mutable!!
@@ -326,20 +387,19 @@
   (get_col(game, pos._1) ++ get_row(game, pos._2) ++ get_box(game, pos))
 
 def candidates(game: String, pos: Pos): List[Char] = 
-  allValues.diff(toAvoid(game,pos))
+  allValues.diff(toAvoid(game, pos))
 
 //candidates(game0, (0,0))
 
 def pretty(game: String): String = 
-  "\n" + (game sliding (MaxValue, MaxValue) mkString "\n")
+  "\n" + (game.sliding(MaxValue, MaxValue).mkString("\n"))
 
-/////////////////////
-// not tail recursive 
+
 def search(game: String): List[String] = {
   if (isDone(game)) List(game)
   else {
     val cs = candidates(game, emptyPosition(game))
-    cs.map(c => search(update(game, empty(game), c))).toList.flatten
+    cs.par.map(c => search(update(game, empty(game), c))).toList.flatten
   }
 }
 
@@ -379,8 +439,6 @@
               |9724...5.""".stripMargin.replaceAll("\\n", "")
 
 
-
-
 search(game1).map(pretty)
 search(game3).map(pretty)
 search(game2).map(pretty)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/progs/lecture4.scala	Tue Nov 27 21:41:59 2018 +0000
@@ -0,0 +1,11 @@
+def distinctBy[B, C](xs: List[B], f: B => C, acc: List[C] = Nil): List[B] = xs match {
+  case Nil => Nil
+  case (x::xs) => {
+    val res = f(x)
+    if (acc.contains(res)) distinctBy(xs, f, acc)  
+    else x::distinctBy(xs, f, res::acc)
+  }
+} 
+
+
+
Binary file slides/slides03.pdf has changed
--- a/slides/slides03.tex	Fri Nov 23 01:52:37 2018 +0000
+++ b/slides/slides03.tex	Tue Nov 27 21:41:59 2018 +0000
@@ -116,8 +116,8 @@
  def process_ratings(lines: List[String]) = {
     val values = List[(String,String)]()
 
-    for(line <- lines){
-        val splitList = line.split(",").toList
+    for(line <- lines) {
+        val splitList = ...
 
         if(splitList(2).toInt >= 4){
             val userID = splitList(0)
@@ -132,7 +132,7 @@
 \end{lstlisting}
 
 \normalsize
-What does this function always return?
+What does this function (always) return?
 
 
 \end{frame}
--- a/solutions3/knight1.scala	Fri Nov 23 01:52:37 2018 +0000
+++ b/solutions3/knight1.scala	Tue Nov 27 21:41:59 2018 +0000
@@ -154,6 +154,7 @@
 
 // 15 secs for 8 x 8
 //val ts1 = time_needed(0,first_tour(8, List((0, 0))).get)
+val ts1 = time_needed(0,first_tour(8, List((1, 1))).get)
 
 // no result for 4 x 4
 //val ts2 = time_needed(0, first_tour(4, List((0, 0))))
--- a/testing1/collatz_test.sh	Fri Nov 23 01:52:37 2018 +0000
+++ b/testing1/collatz_test.sh	Tue Nov 27 21:41:59 2018 +0000
@@ -37,7 +37,7 @@
 
 if (scala_vars collatz.scala)
 then
-  echo "  --> fail (make triple-sure your program conforms to the required format)" >> $out
+  echo "  --> FAIL (make triple-sure your program conforms to the required format)\n" >> $out
   tsts0=$(( 0 ))
 else
   echo "  --> success" >> $out
@@ -56,7 +56,7 @@
     echo "  --> success" >> $out
     tsts=$(( 0 ))
   else
-    echo "  --> scala did not run collatz.scala" >> $out
+    echo "  --> SCALA DID NOT RUN COLLATZ.SCALA\n" >> $out
     tsts=$(( 1 )) 
   fi
 else
@@ -76,7 +76,7 @@
   then
     echo "  --> success" >> $out
   else
-    echo "  --> one of the tests failed" >> $out
+    echo "  --> ONE OF THE TESTS FAILED\n" >> $out
   fi
 fi
 
@@ -95,7 +95,7 @@
   then
     echo "  --> success" >> $out
   else
-    echo "  --> one of the tests failed" >> $out
+    echo "  --> ONE OF THE TESTS FAILED\n" >> $out
   fi
 fi
 
--- a/testing3-bak/mark	Fri Nov 23 01:52:37 2018 +0000
+++ b/testing3-bak/mark	Tue Nov 27 21:41:59 2018 +0000
@@ -1,4 +1,4 @@
-#!/bin/sh
+#!/bin/bash
 ###set -e
 
 trap "exit" INT
--- a/testing3/knight_test2.scala	Fri Nov 23 01:52:37 2018 +0000
+++ b/testing3/knight_test2.scala	Tue Nov 27 21:41:59 2018 +0000
@@ -1,9 +1,7 @@
 
-assert(legal_moves(8, Nil, (2,2)) == 
-             List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4)))
+assert(legal_moves(8, Nil, (2,2)) == List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4)))
 assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6)))
-assert(legal_moves(8, List((4,1), (1,0)), (2,2)) == 
-       List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4)))
+assert(legal_moves(8, List((4,1), (1,0)), (2,2)) == List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4)))
 assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6)))
 assert(legal_moves(1, Nil, (0,0)) == List())
 assert(legal_moves(2, Nil, (0,0)) == List())
--- a/testing4/mark	Fri Nov 23 01:52:37 2018 +0000
+++ b/testing4/mark	Tue Nov 27 21:41:59 2018 +0000
@@ -1,4 +1,4 @@
-#!/bin/sh
+#!/bin/bash
 ###set -e
 
 trap "exit" INT