// Scala Lecture 3//=================// adding two binary strings very, very lazy mannerdef badd(s1: String, s2: String) : String = (BigInt(s1, 2) + BigInt(s2, 2)).toString(2)// collatz function on binary numbersdef bcollatz(s: String) : Long = (s.dropRight(1), s.last) match { case ("", '1') => 1 // we reached 1 case (rest, '0') => 1 + bcollatz(rest) // even number => divide by two case (rest, '1') => 1 + bcollatz(badd(s + '1', s)) // odd number => s + '1' is 2 * s + 1 // add another s gives 3 * s + 1 } bcollatz(9.toBinaryString)bcollatz(837799.toBinaryString)bcollatz(100000000000000000L.toBinaryString)bcollatz(BigInt("1000000000000000000000000000000000000000000000000000000000000000000000000000").toString(2))def conv(c: Char) : Int = c match { case '0' => 0 case '1' => 1}def badds(s1: String, s2: String, carry: Int) : String = (s1, s2, carry) match { case ("", "", 1) => "1" case ("", "", 0) => "" case (cs1, cs2, carry) => (conv(cs1.last) + conv(cs2.last) + carry) match { case 3 => badds(cs1.dropRight(1), cs2.dropRight(1), 1) + '1' case 2 => badds(cs1.dropRight(1), cs2.dropRight(1), 1) + '0' case 1 => badds(cs1.dropRight(1), cs2.dropRight(1), 0) + '1' case 0 => badds(cs1.dropRight(1), cs2.dropRight(1), 0) + '0' }} def bcollatz2(s: String) : Long = (s.dropRight(1), s.last) match { case ("", '1') => 1 // we reached 1 case (rest, '0') => 1 + bcollatz2(rest) // even number => divide by two case (rest, '1') => 1 + bcollatz2(badds(s + '1', '0' + s, 0)) // odd number => s + '1' is 2 * s + 1 // add another s gives 3 * s + 1 } bcollatz2(9.toBinaryString)bcollatz2(837799.toBinaryString)bcollatz2(100000000000000000L.toBinaryString)bcollatz2(BigInt("1000000000000000000000000000000000000000000000000000000000000000000000000000").toString(2))// Roman Numeralsabstract class RomanDigit case object I extends RomanDigit case object V extends RomanDigit case object X extends RomanDigit case object L extends RomanDigit case object C extends RomanDigit case object D extends RomanDigit case object M extends RomanDigit type RomanNumeral = List[RomanDigit] def RomanNumeral2Int(rs: RomanNumeral): Int = rs match { case Nil => 0 case M::r => 1000 + RomanNumeral2Int(r) case C::M::r => 900 + RomanNumeral2Int(r) case D::r => 500 + RomanNumeral2Int(r) case C::D::r => 400 + RomanNumeral2Int(r) case C::r => 100 + RomanNumeral2Int(r) case X::C::r => 90 + RomanNumeral2Int(r) case L::r => 50 + RomanNumeral2Int(r) case X::L::r => 40 + RomanNumeral2Int(r) case X::r => 10 + RomanNumeral2Int(r) case I::X::r => 9 + RomanNumeral2Int(r) case V::r => 5 + RomanNumeral2Int(r) case I::V::r => 4 + RomanNumeral2Int(r) case I::r => 1 + RomanNumeral2Int(r)}RomanNumeral2Int(List(I,I,I,I)) // 4 (invalid roman number)RomanNumeral2Int(List(I,V)) // 4RomanNumeral2Int(List(V,I)) // 6RomanNumeral2Int(List(I,X)) // 9RomanNumeral2Int(List(M,C,M,L,X,X,I,X)) // 1979RomanNumeral2Int(List(M,M,X,V,I,I)) // 2017// Tail recursion//================def my_contains(elem: Int, lst: List[Int]): Boolean = lst match { case Nil => false case x::xs => if (x == elem) true else my_contains(elem, xs)}my_contains(4, List(1,2,3))my_contains(2, List(1,2,3))my_contains(1000000, (1 to 1000000).toList)my_contains(1000001, (1 to 1000000).toList)//factorial V0.1import scala.annotation.tailrecdef fact(n: Long): Long = if (n == 0) 1 else n * fact(n - 1)fact(10000) // produces a stackoverflow@tailrecdef factT(n: BigInt, acc: BigInt): BigInt = if (n == 0) acc else factT(n - 1, n * acc)println(factT(10000, 1))// the functions my_contains and factT are tail-recursive // you can check this with import scala.annotation.tailrec// and the annotation @tailrec// for tail-recursive functions the scala compiler// generates loop-like code, which does not need// to allocate stack-space in each recursive// call; scala can do this only for tail-recursive// functions// consider the following "stupid" version of the// coin exchange problem: given some coins and a// total, what is the change can you get?val coins = List(4,5,6,8,10,13,19,20,21,24,38,39,40)def first_positive[B](lst: List[Int], f: Int => Option[B]): Option[B] = lst match { case Nil => None case x::xs => if (x <= 0) first_positive(xs, f) else { val fx = f(x) if (fx.isDefined) fx else first_positive(xs, f) }}import scala.annotation.tailrecdef search(total: Int, coins: List[Int], cs: List[Int]): Option[List[Int]] = { if (total < cs.sum) None else if (cs.sum == total) Some(cs) else first_positive(coins, (c: Int) => search(total, coins, c::cs))}search(11, coins, Nil)search(111, coins, Nil)search(111111, coins, Nil)val junk_coins = List(4,-2,5,6,8,0,10,13,19,20,-3,21,24,38,39, 40)search(11, junk_coins, Nil)search(111, junk_coins, Nil)import scala.annotation.tailrec@tailrecdef searchT(total: Int, coins: List[Int], acc_cs: List[List[Int]]): Option[List[Int]] = acc_cs match { case Nil => None case x::xs => if (total < x.sum) searchT(total, coins, xs) else if (x.sum == total) Some(x) else searchT(total, coins, coins.filter(_ > 0).map(_::x) ::: xs)}val start_acc = coins.filter(_ > 0).map(List(_))searchT(11, junk_coins, start_acc)searchT(111, junk_coins, start_acc)searchT(111111, junk_coins, start_acc)// Moral: Whenever a recursive function is resource-critical// (i.e. works with large recursion depths), then you need to// write it in tail-recursive fashion.// // Unfortuantely, the Scala is because of current limitations in // the JVM not as clever as other functional languages. It can // only optimise "self-tail calls". This excludes the cases of // multiple functions making tail calls to each other. Well,// nothing is perfect. // Polymorphic Types//===================// You do not want to write functions like contains, first // and so on for every type of lists.def length_string_list(lst: List[String]): Int = lst match { case Nil => 0 case x::xs => 1 + length_string_list(xs)}length_string_list(List("1", "2", "3", "4"))def length[A](lst: List[A]): Int = lst match { case Nil => 0 case x::xs => 1 + length(xs)}def map_int_list(lst: List[Int], f: Int => Int): List[Int] = lst match { case Nil => Nil case x::xs => f(x)::map_int_list(xs, f) }map_int_list(List(1, 2, 3, 4), square)// Remember?def first[A, B](xs: List[A], f: A => Option[B]): Option[B] = ...// polymorphic classes//(trees with some content)abstract class Tree[+A]case class Node[A](elem: A, left: Tree[A], right: Tree[A]) extends Tree[A]case object Leaf extends Tree[Nothing]val t0 = Node('4', Node('2', Leaf, Leaf), Node('7', Leaf, Leaf))def insert[A](tr: Tree[A], n: A): Tree[A] = tr match { case Leaf => Node(n, Leaf, Leaf) case Node(m, left, right) => if (n == m) Node(m, left, right) else if (n < m) Node(m, insert(left, n), right) else Node(m, left, insert(right, n))}// the A-type needs to be orderedabstract class Tree[+A <% Ordered[A]]case class Node[A <% Ordered[A]](elem: A, left: Tree[A], right: Tree[A]) extends Tree[A]case object Leaf extends Tree[Nothing]def insert[A <% Ordered[A]](tr: Tree[A], n: A): Tree[A] = tr match { case Leaf => Node(n, Leaf, Leaf) case Node(m, left, right) => if (n == m) Node(m, left, right) else if (n < m) Node(m, insert(left, n), right) else Node(m, left, insert(right, n))}val t1 = Node(4, Node(2, Leaf, Leaf), Node(7, Leaf, Leaf))insert(t1, 3)val t2 = Node('b', Node('a', Leaf, Leaf), Node('f', Leaf, Leaf))insert(t2, 'e')// Regular expressions - the power of DSLs in Scala//==================================================abstract class Rexpcase object ZERO extends Rexpcase object ONE extends Rexpcase class CHAR(c: Char) extends Rexpcase class ALT(r1: Rexp, r2: Rexp) extends Rexp // alternative r1 + r2case class SEQ(r1: Rexp, r2: Rexp) extends Rexp // sequence r1 r2 case class STAR(r: Rexp) extends Rexp // star r*// (ab)*val r0 = STAR(SEQ(CHAR('a'), CHAR('b')))// some convenience for typing in regular expressionsimport scala.language.implicitConversions import scala.language.reflectiveCalls def charlist2rexp(s: List[Char]): Rexp = s match { case Nil => ONE case c::Nil => CHAR(c) case c::s => SEQ(CHAR(c), charlist2rexp(s))}implicit def string2rexp(s: String): Rexp = charlist2rexp(s.toList)val r1 = STAR("ab")val r2 = STAR("")val r3 = STAR(ALT("ab", "baa baa black sheep"))implicit def RexpOps (r: Rexp) = new { def | (s: Rexp) = ALT(r, s) def % = STAR(r) def ~ (s: Rexp) = SEQ(r, s)}implicit def stringOps (s: String) = new { def | (r: Rexp) = ALT(s, r) def | (r: String) = ALT(s, r) def % = STAR(s) def ~ (r: Rexp) = SEQ(s, r) def ~ (r: String) = SEQ(s, r)}//example regular expressionsval digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"val sign = "+" | "-" | ""val number = sign ~ digit ~ digit.% //implement print_re// Lazyness with style//=====================// The concept of lazy evaluation doesn’t really exist in // non-functional languages, but it is pretty easy to grasp. // Consider first def square(x: Int) = x * xsquare(42 + 8)// this is called strict evaluationdef expensiveOperation(n: BigInt): Boolean = expensiveOperation(n + 1) val a = "foo"val b = "bar"val test = if ((a == b) || expensiveOperation(0)) true else false// this is called lazy evaluation// you delay compuation until it is really // needed; once calculated though, does not // need to be re-calculated// a useful example isdef time_needed[T](i: Int, code: => T) = { val start = System.nanoTime() for (j <- 1 to i) code val end = System.nanoTime() ((end - start) / i / 1.0e9) + " secs"}// streams (I do not care how many)// primes: 2, 3, 5, 7, 9, 11, 13 ....def generatePrimes (s: Stream[Int]): Stream[Int] = s.head #:: generatePrimes(s.tail filter (_ % s.head != 0))val primes: Stream[Int] = generatePrimes(Stream.from(2))primes.take(10).toListprimes.filter(_ > 100).take(2000).toListtime_needed(1, primes.filter(_ > 100).take(2000).toList)time_needed(1, primes.filter(_ > 100).take(2000).toList)// streams are useful for implementing search problems ;o)// The End//=========// A function should do one thing, and only one thing.// Make your variables immutable, unless there's a good // reason not to.// You can be productive on Day 1, but the language is deep.// I like best about Scala that it lets me write// concise, readable code