progs/lecture3.scala
author Christian Urban <urbanc@in.tum.de>
Fri, 24 Nov 2017 03:10:23 +0000
changeset 155 371acb50643d
parent 153 4383809c176a
child 158 94b11ac19b41
permissions -rw-r--r--
updated

// Scala Lecture 3
//=================

// Pattern Matching
//==================

// A powerful tool which is supposed to come to Java in a few years
// time (https://www.youtube.com/watch?v=oGll155-vuQ)...Scala already
// has it for many years. Other functional languages have it for
// decades. I think I would refuse to program in a language that
// does not have pattern matching....its is just so elegant. ;o)

// The general schema:
//
//    expression match {
//       case pattern1 => expression1
//       case pattern2 => expression2
//       ...
//       case patternN => expressionN
//    }


// remember
val lst = List(None, Some(1), Some(2), None, Some(3)).flatten


def my_flatten(xs: List[Option[Int]]): List[Int] = {
  ...?
}





def my_flatten(lst: List[Option[Int]]): List[Int] = lst match {
  case Nil => Nil
  case None::xs => my_flatten(xs)
  case Some(n)::xs => n::my_flatten(xs)
}


// another example including a catch-all pattern
def get_me_a_string(n: Int): String = n match {
  case 0 => "zero"
  case 1 => "one"
  case 2 => "two"
  case _ => "many"
}

get_me_a_string(0)

// you can also have cases combined
def season(month: String) = month match {
  case "March" | "April" | "May" => "It's spring"
  case "June" | "July" | "August" => "It's summer"
  case "September" | "October" | "November" => "It's autumn"
  case "December" | "January" | "February" => "It's winter"
}
 
println(season("November"))

// What happens if no case matches?

println(season("foobar"))


// Collatz function on binary strings

// adding two binary strings in a very, very lazy manner

def badd(s1: String, s2: String) : String = 
  (BigInt(s1, 2) + BigInt(s2, 2)).toString(2)


// collatz function on binary numbers

def bcollatz(s: String) : Long = (s.dropRight(1), s.last) match {
  case ("", '1') => 1                                  // we reached 1
  case (rest, '0') => 1 + bcollatz(rest)               // even number => divide by two
  case (rest, '1') => 1 + bcollatz(badd(s + '1', s))   // odd number => s + '1' is 2 * s + 1
                                                       //               add another s gives 3 * s + 1  
} 

bcollatz(9.toBinaryString)
bcollatz(837799.toBinaryString)
bcollatz(100000000000000000L.toBinaryString)
bcollatz(BigInt("1000000000000000000000000000000000000000000000000000000000000000000000000000").toString(2))




// User-defined Datatypes
//========================

abstract class Colour
case class Red() extends Colour 
case class Green() extends Colour 
case class Blue() extends Colour

def fav_colour(c: Colour) : Boolean = c match {
  case Red()   => false
  case Green() => true
  case Blue()  => false 
}


// actually colors can be written with "object",
// because they do not take any arguments



// Roman Numerals
abstract class RomanDigit 
case object I extends RomanDigit 
case object V extends RomanDigit 
case object X extends RomanDigit 
case object L extends RomanDigit 
case object C extends RomanDigit 
case object D extends RomanDigit 
case object M extends RomanDigit 

type RomanNumeral = List[RomanDigit] 

def RomanNumeral2Int(rs: RomanNumeral): Int = rs match { 
  case Nil => 0
  case M::r    => 1000 + RomanNumeral2Int(r)  
  case C::M::r => 900 + RomanNumeral2Int(r)
  case D::r    => 500 + RomanNumeral2Int(r)
  case C::D::r => 400 + RomanNumeral2Int(r)
  case C::r    => 100 + RomanNumeral2Int(r)
  case X::C::r => 90 + RomanNumeral2Int(r)
  case L::r    => 50 + RomanNumeral2Int(r)
  case X::L::r => 40 + RomanNumeral2Int(r)
  case X::r    => 10 + RomanNumeral2Int(r)
  case I::X::r => 9 + RomanNumeral2Int(r)
  case V::r    => 5 + RomanNumeral2Int(r)
  case I::V::r => 4 + RomanNumeral2Int(r)
  case I::r    => 1 + RomanNumeral2Int(r)
}

RomanNumeral2Int(List(I,I,I,I))         // 4 (invalid roman number)
RomanNumeral2Int(List(I,V))             // 4
RomanNumeral2Int(List(V,I))             // 6
RomanNumeral2Int(List(I,X))             // 9
RomanNumeral2Int(List(M,C,M,L,X,X,I,X)) // 1979
RomanNumeral2Int(List(M,M,X,V,I,I))     // 2017



// another example
//=================

// Once upon a time, in a complete fictional country there were persons...

abstract class Person
case class King() extends Person
case class Peer(deg: String, terr: String, succ: Int) extends Person
case class Knight(name: String) extends Person
case class Peasant(name: String) extends Person


def title(p: Person): String = p match {
  case King() => "His Majesty the King"
  case Peer(deg, terr, _) => s"The ${deg} of ${terr}"
  case Knight(name) => s"Sir ${name}"
  case Peasant(name) => name
}


def superior(p1: Person, p2: Person): Boolean = (p1, p2) match {
  case (King(), _) => true
  case (Peer(_,_,_), Knight(_)) => true
  case (Peer(_,_,_), Peasant(_)) => true
  case (Peer(_,_,_), Clown()) => true
  case (Knight(_), Peasant(_)) => true
  case (Knight(_), Clown()) => true
  case (Clown(), Peasant(_)) => true
  case _ => false
}

val people = List(Knight("David"), 
                  Peer("Duke", "Norfolk", 84), 
                  Peasant("Christian"), 
                  King(), 
                  Clown())

println(people.sortWith(superior(_, _)).mkString(", "))




// Tail recursion
//================


def fact(n: Long): Long = 
  if (n == 0) 1 else n * fact(n - 1)

fact(10)              //ok
fact(10000)           // produces a stackoverflow

def factT(n: BigInt, acc: BigInt): BigInt =
  if (n == 0) acc else factT(n - 1, n * acc)

factT(100000, 1)

// there is a flag for ensuring a function is tail recursive
import scala.annotation.tailrec

@tailrec
def factT(n: BigInt, acc: BigInt): BigInt =
  if (n == 0) acc else factT(n - 1, n * acc)



// for tail-recursive functions the Scala compiler
// generates loop-like code, which does not need
// to allocate stack-space in each recursive
// call; Scala can do this only for tail-recursive
// functions



// sudoku again

val game0 = """.14.6.3..
              |62...4..9
              |.8..5.6..
              |.6.2....3
              |.7..1..5.
              |5....9.6.
              |..6.2..3.
              |1..5...92
              |..7.9.41.""".stripMargin.replaceAll("\\n", "")

type Pos = (Int, Int)
val EmptyValue = '.'
val MaxValue = 9

val allValues = "123456789".toList
val indexes = (0 to 8).toList


def empty(game: String) = game.indexOf(EmptyValue)
def isDone(game: String) = empty(game) == -1 
def emptyPosition(game: String) = 
  (empty(game) % MaxValue, empty(game) / MaxValue)


def get_row(game: String, y: Int) = 
  indexes.map(col => game(y * MaxValue + col))
def get_col(game: String, x: Int) = 
  indexes.map(row => game(x + row * MaxValue))

def get_box(game: String, pos: Pos): List[Char] = {
    def base(p: Int): Int = (p / 3) * 3
    val x0 = base(pos._1)
    val y0 = base(pos._2)
    val ys = (y0 until y0 + 3).toList
    (x0 until x0 + 3).toList.flatMap(x => ys.map(y => game(x + y * MaxValue)))
}

// this is not mutable!!
def update(game: String, pos: Int, value: Char): String = 
  game.updated(pos, value)

def toAvoid(game: String, pos: Pos): List[Char] = 
  (get_col(game, pos._1) ++ get_row(game, pos._2) ++ get_box(game, pos))

def candidates(game: String, pos: Pos): List[Char] = 
  allValues.diff(toAvoid(game,pos))

//candidates(game0, (0,0))

def pretty(game: String): String = 
  "\n" + (game sliding (MaxValue, MaxValue) mkString "\n")

// not tail recursive 
def search(game: String): List[String] = {
  if (isDone(game)) List(game)
  else {
    val cs = candidates(game, emptyPosition(game))
    cs.map(c => search(update(game, empty(game), c))).toList.flatten
  }
}

// tail recursive version that searches 
// for all solution
def searchT(games: List[String], sols: List[String]): List[String] = games match {
  case Nil => sols
  case game::rest => {
    if (isDone(game)) searchT(rest, game::sols)
    else {
      val cs = candidates(game, emptyPosition(game))
      searchT(cs.map(c => update(game, empty(game), c)) ::: rest, sols)
    }
  }
}

// tail recursive version that searches 
// for a single solution
def search1T(games: List[String]): Option[String] = games match {
  case Nil => None
  case game::rest => {
    if (isDone(game)) Some(game)
    else {
      val cs = candidates(game, emptyPosition(game))
      search1T(cs.map(c => update(game, empty(game), c)) ::: rest)
    }
  }
}

// game with multiple solutions
val game3 = """.8...9743
              |.5...8.1.
              |.1.......
              |8....5...
              |...8.4...
              |...3....6
              |.......7.
              |.3.5...8.
              |9724...5.""".stripMargin.replaceAll("\\n", "")

searchT(List(game3), List()).map(pretty)
search1T(List(game3)).map(pretty)

// Moral: Whenever a recursive function is resource-critical
// (i.e. works with large recursion depths), then you need to
// write it in tail-recursive fashion.
// 
// Unfortuantely, Scala because of current limitations in 
// the JVM is not as clever as other functional languages. It can 
// only optimise "self-tail calls". This excludes the cases of 
// multiple functions making tail calls to each other. Well,
// nothing is perfect. 




// Polymorphic Types
//===================

// You do not want to write functions like contains, first 
// and so on for every type of lists.


def length_string_list(lst: List[String]): Int = lst match {
  case Nil => 0
  case x::xs => 1 + length_string_list(xs)
}

length_string_list(List("1", "2", "3", "4"))


def length[A](lst: List[A]): Int = lst match {
  case Nil => 0
  case x::xs => 1 + length(xs)
}


def map_int_list(lst: List[Int], f: Int => Int): List[Int] = lst match {
  case Nil => Nil
  case x::xs => f(x)::map_int_list(xs, f) 
}

map_int_list(List(1, 2, 3, 4), square)


// Remember?
def first[A, B](xs: List[A], f: A => Option[B]): Option[B] = ...



// Cool Stuff
//============




// Implicits 
//===========
//
// For example adding your own methods to Strings:
// Imagine you want to increment strings, like
//
//     "HAL".increment
//
// you can avoid ugly fudges, like a MyString, by
// using implicit conversions.


implicit class MyString(s: String) {
  def increment = for (c <- s) yield (c + 1).toChar 
}

"HAL".increment




// Regular expressions - the power of DSLs in Scala
//==================================================

abstract class Rexp
case object ZERO extends Rexp                       // nothing
case object ONE extends Rexp                        // the empty string
case class CHAR(c: Char) extends Rexp               // a character c
case class ALT(r1: Rexp, r2: Rexp) extends Rexp     // alternative  r1 + r2
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp     // sequence     r1 o r2  
case class STAR(r: Rexp) extends Rexp               // star         r*


// (ab)*
val r0 = STAR(SEQ(CHAR('a'), CHAR('b')))


// some convenience for typing in regular expressions
import scala.language.implicitConversions    
import scala.language.reflectiveCalls 

def charlist2rexp(s: List[Char]): Rexp = s match {
  case Nil => ONE
  case c::Nil => CHAR(c)
  case c::s => SEQ(CHAR(c), charlist2rexp(s))
}
implicit def string2rexp(s: String): Rexp = charlist2rexp(s.toList)


val r1 = STAR("ab")
val r2 = STAR("")
val r3 = STAR(ALT("ab", "baa baa black sheep"))

implicit def RexpOps (r: Rexp) = new {
  def | (s: Rexp) = ALT(r, s)
  def % = STAR(r)
  def ~ (s: Rexp) = SEQ(r, s)
}

implicit def stringOps (s: String) = new {
  def | (r: Rexp) = ALT(s, r)
  def | (r: String) = ALT(s, r)
  def % = STAR(s)
  def ~ (r: Rexp) = SEQ(s, r)
  def ~ (r: String) = SEQ(s, r)
}

//example regular expressions
val digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
val sign = "+" | "-" | ""
val number = sign ~ digit ~ digit.% 





// The End
//=========

// A function should do one thing, and only one thing.

// Make your variables immutable, unless there's a good 
// reason not to.

// You can be productive on Day 1, but the language is deep.

// I like best about Scala that it lets me write
// concise, readable code.