--- a/progs/knight3.scala Tue Nov 20 14:31:14 2018 +0000
+++ b/progs/knight3.scala Thu Nov 22 17:19:23 2018 +0000
@@ -1,24 +1,124 @@
// Part 3 about finding a single tour using the Warnsdorf Rule
//=============================================================
-// copy any function you need from files knight1.scala and
-// knight2.scala
+
+type Pos = (Int, Int)
+type Path = List[Pos]
+
+// for measuring time
+def time_needed[T](n: Int, code: => T) : T = {
+ val start = System.nanoTime()
+ for (i <- 0 until n) code
+ val result = code
+ val end = System.nanoTime()
+ println(f"Time needed: ${(end - start) / 1.0e9}%3.3f secs.")
+ result
+}
+
+def print_board(dim: Int, path: Path): Unit = {
+ println
+ for (i <- 0 until dim) {
+ for (j <- 0 until dim) {
+ print(f"${path.reverse.indexOf((i, j))}%4.0f ")
+ }
+ println
+ }
+}
+
+def add_pair(x: Pos, y: Pos): Pos =
+ (x._1 + y._1, x._2 + y._2)
-type Pos = (Int, Int) // a position on a chessboard
-type Path = List[Pos] // a path...a list of positions
+def is_legal(dim: Int, path: Path, x: Pos): Boolean =
+ 0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x)
+
+def moves(x: Pos): List[Pos] =
+ List(( 1, 2),( 2, 1),( 2, -1),( 1, -2),
+ (-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x, _))
+
+def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] =
+ moves(x).filter(is_legal(dim, path, _))
+
+def ordered_moves(dim: Int, path: Path, x: Pos): List[Pos] =
+ legal_moves(dim, path, x).sortBy((x) => legal_moves(dim, path, x).length)
-//(3a) Complete the function that calculates a list of onward
-// moves like in (1b) but orders them according to the Warnsdorf’s
-// rule. That means moves with the fewest legal onward moves
-// should come first.
+import scala.annotation.tailrec
+
+@tailrec
+def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = xs match {
+ case Nil => None
+ case x::xs => {
+ val result = f(x)
+ if (result.isDefined) result else first(xs, f)
+ }
+}
+
+
+//def first[A, B](xs: List[A], f: A => Option[B]): Option[B] =
+// xs.flatMap(f(_)).headOption
+
-def ordered_moves(dim: Int, path: Path, x: Pos): List[Pos] = ..
+def first_closed_tour_heuristics(dim: Int, path: Path): Option[Path] = {
+ if (path.length == dim * dim && moves(path.head).contains(path.last)) Some(path)
+ else
+ first(ordered_moves(dim, path, path.head), (x: Pos) => first_closed_tour_heuristics(dim, x::path))
+}
+
+// heuristic cannot be used to search for closed tours on 7 x 7
+for (dim <- 1 to 6) {
+ val t = time_needed(0, first_closed_tour_heuristics(dim, List((dim / 2, dim / 2))))
+ println(s"${dim} x ${dim} closed: " + (if (t == None) "" else { print_board(dim, t.get) ; "" }))
+}
+
-//(3b) Complete the function that searches for a single *closed*
-// tour using the ordered moves function.
+//@tailrec
+/*
+def first_tour_heuristics(dim: Int, path: Path): Option[Path] = {
+
+ @tailrec
+ def aux(dim: Int, path: Path, moves: List[Pos]): Option[Path] =
+ if (path.length == dim * dim) Some(path)
+ else
+ moves match {
+ case Nil => None
+ case x::xs => {
+ val r = first_tour_heuristics(dim, x::path)
+ if (r.isDefined) r else aux(dim, path, xs)
+ }
+ }
+
+ aux(dim, path, ordered_moves(dim, path, path.head))
+}
+*/
-def first_closed_tour_heuristic(dim: Int, path: Path): Option[Path] = ...
+@tailrec
+def tour_on_mega_board(dim: Int, paths: List[Path]): Option[Path] = paths match {
+ case Nil => None
+ case (path::rest) =>
+ if (path.length == dim * dim) Some(path)
+ else tour_on_mega_board(dim, ordered_moves(dim, path, path.head).map(_::path) ::: rest)
+}
+
+
-//(3c) Same as (3b) but searches for *open* tours.
+/*
+def first_tour_heuristics(dim: Int, path: Path): Option[Path] = {
+ if (path.length == dim * dim) Some(path)
+ else
+ for (p <- ordered_moves(dim, path, path.head))
+ val r = first_tour_heuristics(dim, x::path)
+ //first(ordered_moves(dim, path, path.head), (x: Pos) => first_tour_heuristics(dim, x::path))
+ ordered_moves(dim, path, path.head).view.flatMap((x: Pos) => first_tour_heuristics(dim, x::path)).headOption
+}
+*/
-def first_tour_heuristic(dim: Int, path: Path): Option[Path] = ...
+/*
+for (dim <- 1 to 50) {
+ val t = first_tour_heuristics(dim, List((dim / 2, dim / 2)))
+ println(s"${dim} x ${dim}: " + (if (t == None) "" else { print_board(dim, t.get) ; "" }))
+}
+*/
+
+val dim = 70
+println(s"${dim} x ${dim}:")
+print_board(dim, time_needed(0, tour_on_mega_board(dim, List(List((0, 0)))).get))
+