1 // Part 3 about finding a single tour using the Warnsdorf Rule |
1 // Part 3 about finding a single tour using the Warnsdorf Rule |
2 //============================================================= |
2 //============================================================= |
3 |
3 |
4 // copy any function you need from files knight1.scala and |
|
5 // knight2.scala |
|
6 |
4 |
7 type Pos = (Int, Int) // a position on a chessboard |
5 type Pos = (Int, Int) |
8 type Path = List[Pos] // a path...a list of positions |
6 type Path = List[Pos] |
9 |
7 |
10 //(3a) Complete the function that calculates a list of onward |
8 // for measuring time |
11 // moves like in (1b) but orders them according to the Warnsdorf’s |
9 def time_needed[T](n: Int, code: => T) : T = { |
12 // rule. That means moves with the fewest legal onward moves |
10 val start = System.nanoTime() |
13 // should come first. |
11 for (i <- 0 until n) code |
|
12 val result = code |
|
13 val end = System.nanoTime() |
|
14 println(f"Time needed: ${(end - start) / 1.0e9}%3.3f secs.") |
|
15 result |
|
16 } |
14 |
17 |
15 def ordered_moves(dim: Int, path: Path, x: Pos): List[Pos] = .. |
18 def print_board(dim: Int, path: Path): Unit = { |
|
19 println |
|
20 for (i <- 0 until dim) { |
|
21 for (j <- 0 until dim) { |
|
22 print(f"${path.reverse.indexOf((i, j))}%4.0f ") |
|
23 } |
|
24 println |
|
25 } |
|
26 } |
16 |
27 |
17 //(3b) Complete the function that searches for a single *closed* |
28 def add_pair(x: Pos, y: Pos): Pos = |
18 // tour using the ordered moves function. |
29 (x._1 + y._1, x._2 + y._2) |
19 |
30 |
20 def first_closed_tour_heuristic(dim: Int, path: Path): Option[Path] = ... |
31 def is_legal(dim: Int, path: Path, x: Pos): Boolean = |
|
32 0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x) |
21 |
33 |
22 //(3c) Same as (3b) but searches for *open* tours. |
34 def moves(x: Pos): List[Pos] = |
|
35 List(( 1, 2),( 2, 1),( 2, -1),( 1, -2), |
|
36 (-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x, _)) |
23 |
37 |
24 def first_tour_heuristic(dim: Int, path: Path): Option[Path] = ... |
38 def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] = |
|
39 moves(x).filter(is_legal(dim, path, _)) |
|
40 |
|
41 def ordered_moves(dim: Int, path: Path, x: Pos): List[Pos] = |
|
42 legal_moves(dim, path, x).sortBy((x) => legal_moves(dim, path, x).length) |
|
43 |
|
44 import scala.annotation.tailrec |
|
45 |
|
46 @tailrec |
|
47 def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = xs match { |
|
48 case Nil => None |
|
49 case x::xs => { |
|
50 val result = f(x) |
|
51 if (result.isDefined) result else first(xs, f) |
|
52 } |
|
53 } |
|
54 |
|
55 |
|
56 //def first[A, B](xs: List[A], f: A => Option[B]): Option[B] = |
|
57 // xs.flatMap(f(_)).headOption |
|
58 |
|
59 |
|
60 def first_closed_tour_heuristics(dim: Int, path: Path): Option[Path] = { |
|
61 if (path.length == dim * dim && moves(path.head).contains(path.last)) Some(path) |
|
62 else |
|
63 first(ordered_moves(dim, path, path.head), (x: Pos) => first_closed_tour_heuristics(dim, x::path)) |
|
64 } |
|
65 |
|
66 // heuristic cannot be used to search for closed tours on 7 x 7 |
|
67 for (dim <- 1 to 6) { |
|
68 val t = time_needed(0, first_closed_tour_heuristics(dim, List((dim / 2, dim / 2)))) |
|
69 println(s"${dim} x ${dim} closed: " + (if (t == None) "" else { print_board(dim, t.get) ; "" })) |
|
70 } |
|
71 |
|
72 |
|
73 //@tailrec |
|
74 /* |
|
75 def first_tour_heuristics(dim: Int, path: Path): Option[Path] = { |
|
76 |
|
77 @tailrec |
|
78 def aux(dim: Int, path: Path, moves: List[Pos]): Option[Path] = |
|
79 if (path.length == dim * dim) Some(path) |
|
80 else |
|
81 moves match { |
|
82 case Nil => None |
|
83 case x::xs => { |
|
84 val r = first_tour_heuristics(dim, x::path) |
|
85 if (r.isDefined) r else aux(dim, path, xs) |
|
86 } |
|
87 } |
|
88 |
|
89 aux(dim, path, ordered_moves(dim, path, path.head)) |
|
90 } |
|
91 */ |
|
92 |
|
93 @tailrec |
|
94 def tour_on_mega_board(dim: Int, paths: List[Path]): Option[Path] = paths match { |
|
95 case Nil => None |
|
96 case (path::rest) => |
|
97 if (path.length == dim * dim) Some(path) |
|
98 else tour_on_mega_board(dim, ordered_moves(dim, path, path.head).map(_::path) ::: rest) |
|
99 } |
|
100 |
|
101 |
|
102 |
|
103 /* |
|
104 def first_tour_heuristics(dim: Int, path: Path): Option[Path] = { |
|
105 if (path.length == dim * dim) Some(path) |
|
106 else |
|
107 for (p <- ordered_moves(dim, path, path.head)) |
|
108 val r = first_tour_heuristics(dim, x::path) |
|
109 //first(ordered_moves(dim, path, path.head), (x: Pos) => first_tour_heuristics(dim, x::path)) |
|
110 ordered_moves(dim, path, path.head).view.flatMap((x: Pos) => first_tour_heuristics(dim, x::path)).headOption |
|
111 } |
|
112 */ |
|
113 |
|
114 /* |
|
115 for (dim <- 1 to 50) { |
|
116 val t = first_tour_heuristics(dim, List((dim / 2, dim / 2))) |
|
117 println(s"${dim} x ${dim}: " + (if (t == None) "" else { print_board(dim, t.get) ; "" })) |
|
118 } |
|
119 */ |
|
120 |
|
121 val dim = 70 |
|
122 println(s"${dim} x ${dim}:") |
|
123 print_board(dim, time_needed(0, tour_on_mega_board(dim, List(List((0, 0)))).get)) |
|
124 |